首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic material in plants is distributed into nucleus, plastids and mitochondria. Plastid has a central role of carrying out photosynthesis in plant cells. Plastid transformation is becoming more popular and an alternative to nuclear gene transformation because of various advantages like high protein levels, the feasibility of expressing multiple proteins from polycistronic mRNAs, and gene containment through the lack of pollen transmission. Recently, much progress in plastid engineering has been made. In addition to model plant tobacco, many transplastomic crop plants have been generated which possess higher resistance to biotic and abiotic stresses and molecular pharming. In this mini review, we will discuss the features of the plastid DNA and advantages of plastid transformation. We will also present some examples of transplastomic plants developed so far through plastid engineering, and the various applications of plastid transformation.  相似文献   

2.
3.
Marker genes are essential for the selection and identification of rarely occurring transformation events generated in biotechnology. This includes plastid transformation, which requires that multiple copies of the modified chloroplast genome be present to obtain genetically stable transplastomic plants. However, the marker gene becomes dispensable when homoplastomic plants are obtained. Here, we demonstrate the precise excision of attP‐ and attB‐flanked DNA from the plastid genome mediated by the large serine recombinase Bxb1. We transformed the tobacco plastid genome with the pTCH‐PB vector containing a stuffer fragment of DNA flanked by directly oriented nonhomologous attP and attB recombinase recognition sites. In the absence of the Bxb1 recombinase, the transformed plastid genomes were stable and heritable. Nuclear‐transformed transgenic tobacco plants expressing a plastid‐targeted Bxb1 recombinase were crossed with transplastomic pTCH‐PB plants, and the T1 hybrids exhibited efficient excision of the target sequence. The Bxb1–att system should prove to be a useful tool for site‐specifically manipulating the plastid genome and generating marker‐free transplastomic plants.  相似文献   

4.
Chloroplast transformation has an extraordinary potential for antigen production in plants because of the capacity to accumulate high levels of recombinant proteins and increased biosafety due to maternal plastid inheritance in most crops. In this article, we evaluate tobacco chloroplasts transformation for the production of a highly immunogenic epitope containing amino acid residues 135–160 of the structural protein VP1 of the foot and mouth disease virus (FMDV). To increase the accumulation levels, the peptide was expressed as a fusion protein with the β-glucuronidase reporter gene (uidA). The recombinant protein represented the 51% of the total soluble proteins in mature leaves, a level higher than those of the Rubisco large subunit, the most abundant protein in the leaf of a wild-type plant. Despite this high accumulation of heterologous protein, the transplastomic plants and wild-type tobacco were phenotypically indistinguishable. The FMDV epitope expressed in transplastomic plants was immunogenic in mice. These results show that transplastomic tobacco express efficiently the recombinant protein, and we conclude that this technology allows the production of large quantities of immunogenic proteins.  相似文献   

5.
Thus far plastid transformation in higher plants has been based on incorporation of foreign DNA in the plastid genome by the plastid's homologous recombination machinery. We report here an alternative approach that relies on integration of foreign DNA by the phiC31 phage site-specific integrase (INT) mediating recombination between bacterial and phage attachment sites (attB and attP, respectively). Plastid transformation by the new approach depends on the availability of a recipient line in which an attB site has been incorporated in the plastid genome by homologous recombination. Plastid transformation involves insertion of an attP vector into the attB site by INT and selection of transplastomic clones by selection for antibiotic resistance carried in the attP plastid vector. INT function was provided by either expression from a nuclear gene, which encoded a plastid-targeted INT, or expressing INT transiently from a non-integrating plasmid in plastids. Transformation was successful with both approaches using attP vectors with kanamycin resistance or spectinomycin resistance as the selective marker. Transformation efficiency in some of the stable nuclear INT lines was as high as 17 independently transformed lines per bombarded sample. As this system does not rely on the plastid's homologous recombination machinery, we expect that INT-based vectors will make plastid transformation a routine in species in which homologous recombination rarely yields transplastomic clones.  相似文献   

6.
7.
8.
何勇  罗岸  母连胜  陈强  张艳  叶开温  田志宏 《遗传》2017,39(9):810-827
与细胞核基因工程相比,质体基因工程能更安全、精确和高效地对外源基因进行表达,作为下一代转基因技术已广泛用于基础研究和生物技术应用领域。与细胞核基因工程一样,质体基因工程中也需要合适的选择标记基因用于转化子的筛选和同质化,但基于质体基因组的多拷贝性和母系遗传特点,转化子的同质化需要一个长期的筛选过程,这就决定了质体基因工程中选择标记基因的选择标准将不同于细胞核基因工程中广泛使用的现行标准。目前,质体基因工程的遗传转化操作中使用较多的是抗生素选择标记基因,出于安全性考虑,需要找到可替换、安全的选择标记基因或有效的标记基因删除方法。本文在对质体基因工程研究的相关文献分析基础之上,对主要使用的选择标记基因及其删除体系进行了综述,并对比了其优缺点,同时探讨了质体基因工程中所使用的报告基因,以期为现有选择标记基因及其删除体系的改进和开发提供一定参考,进一步推动质体基因工程,尤其是单子叶植物质体基因工程的发展。  相似文献   

9.
Generation of fertile transplastomic soybean   总被引:26,自引:0,他引:26  
We describe here the development of a plastid transformation method for soybean, a leguminous plant of major agronomic interest. Chloroplasts from embryogenic tissue of Glycine max have been successfully transformed by bombardment. The transforming DNA carries a spectinomycin resistance gene (aadA) under the control of tobacco plastid regulatory expression elements, flanked by two adjacent soybean plastome sequences allowing its targeted insertion between the trnV gene and the rps12/7 operon. All generated spectinomycin resistant plants were transplastomic and no remaining wild type plastome copies were detected. No spontaneous mutants were obtained. The transformation efficiency is similar to that of tobacco plastids. All transplastomic T0 plants were fertile and T1 progeny was uniformly spectinomycin resistant, showing the stability of the plastid transgene. This is the first report on the generation of fertile transplastomic soybean.  相似文献   

10.
Plastid transformation vectors are used for high-level expression of industrially important recombinant proteins in plants. In the present study, new vectors for plastid transformation were developed. One of these vectors targets transgenes at a new site in the chloroplast genome. Intergenic regions of trnfM-trnG, ndhB-trnL and rrn16-trnV were selected as sites for transgene insertion. Tobacco chloroplast was successfully transformed with designed vectors, and the transplastomic plants accumulated recombinant protein as high as 5–6% of total soluble protein which remained localized in the chloroplasts. Although the vectors were designed using the plastid genome of Nicotiana tabacum, flanking regions used in two vectors show a high level of homology with chloroplast genomes of other plant species, thus it might be possible to use them for the transformation of a wider range of plant species.  相似文献   

11.
Transgenic techniques are used to enhance and improve crop production, and their application to the production of chemical resources in plants has been under investigation. To achieve this latter goal, multiple-gene transformation is required to improve or change plant metabolic pathways; when accomplished by plant nuclear transformation, however, this procedure is costly and time consuming. We succeeded in the metabolic engineering of the tobacco plant by introducing multiple genes within a bacteria-like operon into a plastid genome. A tobacco plastid was transformed with a polycistron consisting of the spectinomycin resistance gene and three bacterial genes for the biosynthesis of the biodegradable polyester, poly[(R)-3-hydroxybutyrate] (PHB), after modification of their ribosome binding sites. DNA and RNA analysis confirmed the insertion of the introduced genes into the plastid genome and their polycistronic expression. As the result, the transplastomic tobacco accumulated PHB in its leaves. The introduced genes and the PHB productivity were maternally inherited, avoiding genetic spread by pollen diffusion, and were maintained stably in the seed progeny. Despite the low PHB productivity, this report demonstrates the feasibility of transplastomic technology for metabolic engineering. This "phyto-fermentation" system can be applied to plant production of various chemical commodities and pharmaceuticals.  相似文献   

12.
The plastid transformation approach offers a number of unique advantages, including high-level transgene expression, multi-gene engineering, transgene containment, and a lack of gene silencing and position effects. The extension of plastid transformation technology to monocotyledonous cereal crops, including rice, bears great promise for the improvement of agronomic traits, and the efficient production of pharmaceutical or nutritional enhancement. Here, we report a promising step towards stable plastid transformation in rice. We produced fertile transplastomic rice plants and demonstrated transmission of the plastid-expressed green fluorescent protein (GFP) and aminoglycoside 3'-adenylyltransferase genes to the progeny of these plants. Transgenic chloroplasts were determined to have stably expressed the GFP, which was confirmed by both confocal microscopy and Western blot analyses. Although the produced rice plastid transformants were found to be heteroplastomic, and the transformation efficiency requires further improvement, this study has established a variety of parameters for the use of plastid transformation technology in cereal crops.  相似文献   

13.
In the past decades, the progress made in plant biotechnology has made possible the use of plants as a novel production platform for a wide range of molecules. In this context, the transformation of the plastid genome has given a huge boost to prove that plants are a promising system to produce recombinant proteins. In this review, we provide a background on plastid genetics and on the principles of this technology in higher plants. Further, we discuss the most recent biotechnological applications of plastid transformation for the production of enzymes, therapeutic proteins, antibiotics, and proteins with immunological properties. We also discuss the potential of plastid biotechnology and the novel tools developed to overcome some limitations of chloroplast transformation.  相似文献   

14.
Transgenic plastids offer unique advantages in plant biotechnology, including high-level foreign protein expression. However, broad application of plastid genome engineering in biotechnology has been largely hampered by the lack of plastid transformation systems for major crops. Here we describe the development of a plastid transformation system for lettuce, Lactuca sativa L. cv. Cisco. The transforming DNA carries a spectinomycin-resistance gene (aadA) under the control of lettuce chloroplast regulatory expression elements, flanked by two adjacent lettuce plastid genome sequences allowing its targeted insertion between the rbcL and accD genes. On average, we obtained 1 transplastomic lettuce plant per bombardment. We show that lettuce leaf chloroplasts can express transgene-encoded GFP to ~36% of the total soluble protein. All transplastomic T0 plants were fertile and the T1 progeny uniformly showed stability of the transgene in the chloroplast genome. This system will open up new possibilities for the efficient production of edible vaccines, pharmaceuticals, and antibodies in plants.  相似文献   

15.
16.
A fusion between the plastid psbA promoter and the green fluorescent protein gene (gfp) was introduced into the tobacco chloroplast genome by stable plastid transformation. GFP was synthesized actively and exclusively in the chloroplasts. Tubular projections filled with GFP but containing no chlorophyll were visualized for the first time in chloroplasts of these transplastomic plants. Occasionally, the tubules connect chloroplasts with each other, suggesting the possibility of the exchange of endogenous proteins. However, the fusion of protoplasts between the transplastomic and wild-type plants showed that such chloroplast connections might be rare in mesophyll protoplasts.  相似文献   

17.
Plastid transformation in higher plants is accomplished through a gradual process, during which all the 300-10,000 plastid genome copies are uniformly altered. Antibiotic resistance genes incorporated in the plastid genome facilitate maintenance of transplastomes during this process. Given the high number of plastid genome copies in a cell, transformation unavoidably yields chimeric tissues, which requires the identification of transplastomic cells in order to regenerate plants. In the chimeric tissue, however, antibiotic resistance is not cell autonomous: transplastomic and wild-type sectors both have a resistant phenotype because of phenotypic masking by the transgenic cells. We report a system of marker genes for plastid transformation, termed FLARE-S, which is obtained by translationally fusing aminoglycoside 3"-adenyltransferase with the Aequorea victoria green fluorescent protein. 3"-adenyltransferase (FLARE-S) confers resistance to both spectinomycin and streptomycin. The utility of FLARE-S is shown by tracking segregation of individual transformed and wild-type plastids in tobacco and rice plants after bombardment with FLARE-S vector DNA and selection for spectinomycin and streptomycin resistance, respectively. This method facilitates the extension of plastid transformation to nongreen plastids in embryogenic cells of cereal crops.  相似文献   

18.
Transgenic chloroplasts offer unique advantages in plant biotechnology, including high-level foreign protein expression, absence of epigenetic effects, and gene containment due to the lack of transgene transmission through pollen. However, broad application of plastid genome engineering in biotechnology has been largely hampered by both the lack of chloroplast transformation systems for major crop plants and the usually low plastid gene expression levels in nongreen tissues such as fruits, tubers, and other storage organs. Here we describe the development of a plastid transformation system for tomato, Lycopersicon esculentum. This is the first report on the generation of fertile transplastomic plants in a food crop with an edible fruit. We show that chromoplasts in the tomato fruit express the transgene to approximately 50% of the expression levels in leaf chloroplasts. Given the generally very high foreign protein accumulation rates that can be achieved in transgenic chloroplasts (>40% of the total soluble protein), this system paves the way to efficient production of edible vaccines, pharmaceuticals, and antibodies in tomato.  相似文献   

19.
Transgenic plastids in basic research and plant biotechnology   总被引:20,自引:0,他引:20  
Facile methods of genetic transformation are of outstanding importance for both basic and applied research. For many years, transgenic technologies for plants were restricted to manipulations of the nuclear genome. More recently, a second genome of the plant cell has become amenable to genetic engineering: the prokaryotically organized circular genome of the chloroplast. The possibility to directly manipulate chloroplast genome-encoded information has paved the way to detailed in vivo studies of virtually all aspects of plastid gene expression. Moreover, plastid transformation technologies have been intensely used in functional genomics by performing gene knockouts and site-directed mutageneses of plastid genes. These studies have contributed greatly to our understanding of the physiology and biochemistry of biogenergetic processes inside the plastid compartment. Plastid transformation technologies have also stirred considerable excitement among plant biotechnologists, since transgene expression from the plastid genome offers a number of most attractive advantages, including high-level foreign protein expression and transgene containment due to lack of pollen transmission. This review describes the generation of plants with transgenic plastids, summarizes our current understanding of the transformation process and highlights selected applications of transplastomic technologies in basic and applied research.  相似文献   

20.
Homologous recombination within plastids directs plastid genome transformation for foreign gene expression and study of plastid gene function. Though transgenes are generally efficiently targeted to their desired insertion site, unintended homologous recombination events have been observed during plastid transformation. To understand the nature and abundance of these recombination events, we analyzed transplastomic tobacco lines derived from three different plastid transformation vectors utilizing two different loci for foreign gene insertion. Two unintended recombinant plastid DNA species were formed from each regulatory plastid DNA element included in the transformation vector. Some of these recombinant DNA species accumulated to as much as 10–60% of the amount of the desired integrated transgenic sequence in T0 plants. Some of the recombinant DNA species undergo further, “secondary” recombination events, resulting in an even greater number of recombinant plastid DNA species. The abundance of novel recombinant DNA species was higher in T0 plants than in T1 progeny, indicating that the ancillary recombination events described here may have the greatest impact during selection and regeneration of transformants. A line of transplastomic tobacco was identified containing an antibiotic resistance gene unlinked from the intended transgene insertion as a result of an unintended recombination event, indicating that the homologous recombination events described here may hinder efficient recovery of plastid transformants containing the desired transgene. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号