首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
The effects of 24-epibrassinolide (EBR) on chlorophyll fluorescence, leaf surface morphology and cellular ultrastructure of grape seedlings (Vitis vinifera L.) under water stress were investigated. The grape seedlings were subjected to 10 % (w/v) polyethylene glycol (PEG-6000) and treated with 0.05, 0.10 or 0.20 mg L?1 EBR, respectively. EBR application increased chlorophyll contents, the effective photochemical quantum yield of PSII, maximum photochemical efficiency of PSII, maximal fluorescence and non-photochemical quenching coefficient under water stress in each concentration. Compared with water stress control, higher stomatal density and stomatal length were observed in young leaves under EBR treatments, but not in mature leaves. In-depth analysis of the ultrastructure of leaves indicated that water stress induced disappearance of nucleus, chloroplast swelling, fractured mitochondrial cristae and disorder of thylakoid arrangement both in young leaves and mature leaves. However, EBR application counteracted the detrimental effects of water stress on the structure of the photosynthetic apparatus better in young leaves than in mature leaves. Compared to the other treatments, treatment of 0.10 mg L?1 EBR had best ameliorative effect against water stress. These results suggested that exogenous EBR could alleviate water stress-induced inhibition of photosynthesis on grape possibly through increasing chlorophyll content, lessening the stomatal and non-stomatal limitation of photosynthesis performance.  相似文献   

2.
Brassinosteroids (BRs), an important class of plant steroidal hormones, play a significant role in the amelioration of various biotic and abiotic stresses. 24-epibrassinolide (EBR), an active brassinosteroid, was applied exogenously in different concentrations to characterize a role of BRs in tolerance of melon (Cucumis melo L.) to high temperature (HT) stress and to investigate photosynthetic performance of HT-stressed, Honglvzaocui (HT-tolerant) and Baiyuxiang (HTsensitive), melon variety. Under HT, Honglvzaocui showed higher biomass accumulation and a lower index of heat injury compared with the Baiyuxiang. The exogenous application of 1.0 mg L?1 EBR, the most effective concentration, alleviated dramatically the growth suppression caused by HT in both ecotypes. Similarly, EBR pretreatment of HTstressed plants attenuated the decrease in relative chlorophyll content, net photosynthetic rate, stomatal conductance, stomatal limitation, and water-use efficiency (WUE), as well as the maximal quantum yield of PSII photochemistry (Fv/Fm), the efficiency of excitation capture of open PSII center, the effective quantum yield of PSII photochemistry (ΦPSII), photochemical quenching coefficient, and the photon activity distribution coefficients of PSI (α). EBR pretreatment further inhibited the increase in intracellular CO2 concentration, leaf transpiration rate, minimal fluorescence of dark-adapted state, nonphotochemical quenching, thermal dissipation, and photon activity distribution coefficients of PSII. Results obtained here demonstrated that EBR could alleviate the detrimental effects of HT on the plant growth by improving photosynthesis in leaves, mainly reflected as up-regulation of photosynthetic pigment contents and photochemical activity associated with PSI.  相似文献   

3.
Rhododendron delavayi is an alpine evergreen ornamental plant with strong tolerance to drought stress. Brassinosteroids are promising agents for alleviating the negative effects of drought on plants, but the mechanism by which BRs induce plant resistance to drought is not well understood. The present study investigated the effects of exogenous spray of 24-epibrassionlide (EBR) at different concentrations (0~1 mg l−1) on the physiological response of R. delavayi to drought caused by no watering for 10 days. With the increase in EBR concentration, net photosynthetic rate, stomatal conductance, transportation rate, light saturated photosynthetic rate, light compensation point, light saturation point, excitation energy capture efficiency of reaction center, actual photochemical efficiency of photosystem II (PSII), photochemical quenching and electron transport rate significantly increased, but there were no significant effects on photosynthetic pigment content. These results suggested that the EBR-induced improvement in CO2 assimilation under drought was mainly related to stomatal and non-stomatal factors, and partially attributed to the increased photochemical efficiency of PSII. In addition, the leaf water potential increased with the increase in EBR concentration, while the malondialdehyde, superoxide dismutase, catalase, proline and soluble protein decreased. The results suggested EBR application partially alleviated the negative effect of drought on R. delavayi by improving water relations and decreasing lipid peroxidation and reactive oxygen species production. We concluded that exogenous application of EBR improved photosynthesis and alleviated the negative effects of drought-induced membrane peroxidation and severe oxidative stress.  相似文献   

4.
To investigate the effects of exogenously applied brassinosteroids on the thermotolerance of plants, leaf CO2 assimilation, chlorophyll fluorescence parameters, and antioxidant enzyme metabolism were examined in tomato (Lycopersicon esculentum Mill. cv. 9021) plants with or without 24-epibrassinolide (EBR) application. Tomato plants were exposed to 40/30°C for 8 days and then returned to optimal conditions for 4 days. High temperature significantly decreased the net photosynthetic rate (P n), stomatal conductance (G s), and maximum carboxylation rate of Rubisco (V cmax), the maximum potential rate of electron transport contributed to ribulose-1,5-bisphosphate (RuBP), as well as the relative quantum efficiency of PSII photochemistry (ФPSII), photochemical quenching (q P), and increased nonphotochemical quenching (NPQ). However, only slight reversible photoinhibition occurred during heat stress. Interestingly, EBR pretreatment significantly alleviated high-temperature-induced inhibition of photosynthesis. The activities of antioxidant enzymes such as superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidase (GPOD), and catalase (CAT) increased during heat treatments, and these increases proved to be more significant in EBR-treated plants. EBR application also reduced total hydrogen peroxide (H2O2) and malonaldehyde (MDA) contents, while significantly increasing shoot weight following heat stress. It was concluded that EBR could alleviate the detrimental effects of high temperatures on plant growth by increasing carboxylation efficiency and enhancing antioxidant enzyme systems in leaves.  相似文献   

5.
This study was carried out to better understand the role of 24-epibrassinolide (EBR) in thermotolerance of melon (Cucumis melo L.). The melon seedlings were pretreated with various concentrations of EBR (0, 0.05, 0.1, 0.5, 1.0, and 1.5 mg dm?3) as foliar spray and then exposed to a high temperature (HT) stress. Exogenous EBR (0.5–1.5 mg dm?3) alleviated HT-caused growth suppression. In parallel, 1.0 mg dm?3 EBR attenuated the decrease in chlorophyll content, net photosynthetic rate, stomatal conductance, maximum quantum efficiency of photosystem (PS) II, quantum yield of PS II, and photochemical quenching of chlorophyll a fluorescence in HT-stressed plants, and inhibited transpiration rate and non-photochemical quenching. Furthermore, exogenous EBR also significantly reduced the content of malondialdehyde (MDA) and increased the content of soluble proteins and free proline, and activities of antioxidant enzymes including superoxide dismutase, guaiacol peroxidase, catalase, and ascorbate peroxidase under the HT stress. The results show that protective effects of EBR against the HT stress in the melon seedlings were most likely mediated through the improvement of photosynthesis and the stimulation of antioxidant capacity.  相似文献   

6.
The effects of exogenous application of glycinebetaine (GB) (10 m M ) on growth, leaf water content, water use efficiency, photosynthetic gas exchange, and photosystem II photochemistry were investigated in maize plants subjected to salt stress (50 and 100 m M NaCl). Salt stress resulted in the decrease in growth and leaf relative water content as well as net photosynthesis and the apparent quantum yield of photosynthesis. Stomatal conductance, evaporation rate, and water use efficiency were decreased in salt-stressed plants. Salt stress also caused a decrease in the actual efficiency of PSII ( Φ PSII), the efficiency of excitation energy capture by open PSII reaction centers ( F v'/ F m'), and the coefficients of photochemical quenching ( q P) but caused an increase in non-photochemical quenching (NPQ). Salt stress showed no effects on the maximal efficiency of PSII photochemistry ( F v/ F m). On the other hand, in salt-stressed plants, GB application improved growth, leaf water content, net photosynthesis, and the apparent quantum yield of photosynthesis. GB application also increased stomatal conductance, leaf evaporation rate, and water use efficiency. In addition, GB application increased Φ PSII, F v'/ F m', and q P but decreased NPQ. However, GB application showed no effects on F v/ F m. These results suggest that photosynthesis was improved by GB application in salt-stressed plants and such an improvement was associated with an improvement in stomatal conductance and the actual PSII efficiency.  相似文献   

7.
By analysis of gas exchange and chlorophyll fluorescence, the effects of NaCl treatment and supplemental CaCl2 on photosynthesis, photosystem II (PSII) photochemistry and photoinhibition were investigated in Rumex leaves. Photosynthesis in Rumex leaves was strongly inhibited by 200 m M NaCl treatment. Such inhibition of photosynthesis was ameliorated by CaCl2 supplement. Neither NaCl treatment nor CaCl2 supplement had any significant effects on the PSII primary photochemical reaction in dark-adapted leaves. In light-adapted leaves, however, 200 m M NaCl treatment significantly decreased photochemical quenching (qp), efficiency of excitation energy capture by open PSII reaction centers (FV'/FM') and quantum yield of PSII electron transport (ΦPSII). These decreases in qp, FV'/FM' and ΦPSII were mitigated by CaCl2 supplement with the maximum of its effect appearing at a concentration of 8 m M CaCl2. A similar mitigating effect was shown in 200 m M NaCl-treated Rumex leaves when susceptibility of PSII to photoinhibition was determined under high irradiance. It is suggested that the mitigation of photoinhibition in NaCl-treated leaves is because of the amelioration of inhibition of photosynthesis.  相似文献   

8.
为了探明外源水杨酸(SA)和2,4-表油菜素内酯(EBR)对低温胁迫下黄瓜幼苗光合作用的调控机理,以‘优博1-5’黄瓜为试材,用1 mmol·L-1SA和0.1 μmol·L-1EBR喷施预处理幼苗,每天喷1次,连喷2 d后置于低温下[10 ℃/5 ℃,光强(PFD)80 μmol·m-2·s-1]处理.结果表明: 低温胁迫下黄瓜幼苗生长量及净光合速率(Pn)下降;喷施SA和BER显著提高了Pn、光系统Ⅱ最大光化学效率(Fv/Fm)、光系统Ⅱ实际光化学效率(ΦPS)和光化学猝灭系数(qP),减缓了非光化学猝灭系数(NPQ)增加的幅度,同时核酮糖-1,5-二磷酸羧化/加氧酶(Rubisco)、景天庚酮糖-1,7-二磷酸酯酶(SBPase)、转酮醇酶(TK)和果糖-1,6-二磷酸醛缩酶(FBA)活性明显升高.说明SA和EBR可以通过调节光合关键酶的活性,缓解低温对黄瓜幼苗光合作用的影响,增强其对低温的适应性.  相似文献   

9.
Photosynthesis, the fundamental physiological process of plant responsible for the growth and yield of crops, is strongly affected by environmental stresses. Several methods have been used to study changes in the physiological parameters of plants exposed to stresses. The work aimed to study physiological parameters related to photosynthesis in leaf discs of soybean plants exposed to a photosystem II-inhibiting herbicide. Soybean leaf discs obtained from mature leaves of plants in the vegetative stage immersed in bentazon herbicide solutions at concentrations of 0, 100, 250 or 500 μM were evaluated. In experiment I, the effect of the herbicide on chlorophyll a fluorescence transient was measured using a portable fluorometer. In the second experiment, the effect of the herbicide on modulated chlorophyll a fluorescence and gas exchange were evaluated, with the latter being measured with an infrared gas analyzer. The evaluations of transient and modulated fluorescence provided additional information on the photosynthetic activity of soybean leaf discs exposed to the action of bentazon. For the fluorescence transient analysis, performance indices were the parameters most sensitive to the action of bentazon, showing a decrease of approximately 70 % at a dose of 500 μM. For the modulated fluorescence analysis, the photochemical quenching coefficient, the electron transport rate, the photochemical efficiency of photosystem II and the net assimilation rate, decreased in response to herbicide application, with values that were almost equal to zero at a dose of 500 µM, which are the parameters that showed the greatest sensitivity to bentazon in soybean.  相似文献   

10.
In this article we discuss and update some of the effects of Cd toxicity on the photosynthetic apparatus in a model crop Lactuca sativa. Seeds of L. sativa were germinated in solutions with 0, 1, 10 and 50 μM of Cd(NO3)2 and then transferred to a hydroponic culture medium. After 28 days, the effects of Cd on the photosynthetic apparatus of lettuce were analysed. Exposure of lettuce to 1 μM Cd(NO3)2 affected already plant growth (dry biomass), but, did not induce serious damages in the photosynthetic apparatus. However, increasing concentrations of this metal to 10 and 50 μM promoted a strong reduction of the maximum photochemical efficiency of PSII and an impairment of net CO2 assimilation rate, putatively due to Rubisco activity decrease. This ultimately results in a strong inhibition of plant growth. Nutrient uptake and carbohydrate assimilation were also severely affected by Cd.  相似文献   

11.
Seedlings of the hypoxia-sensitive cucumber cultivar were hydroponically grown under hypoxia for 7 d in the presence or absence of 24-epibrassinolide (EBR, 2.1 nM). Hypoxia significantly inhibited growth, while EBR partially counteracted this inhibition. Leaf net photosynthetic rate (P N), stomatal conductance, transpiration rate, and water-use efficiency declined greatly, while the stomatal limitation value increased significantly. The maximum net photosynthetic rate was strongly reduced by hypoxia, indicating that stomatal limitation was not the only cause of the P N decrease. EBR markedly diminished the harmful effects of hypoxia on P N as well as on stomata openness. It also greatly stimulated CO2 fixation by the way of increasing the carboxylation capacity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), ribulose-1,5-bisphosphate regeneration, Rubisco activity, and the protection of Rubisco large subunit from degradation. Our data indicated that photosystem (PS) II was damaged by hypoxia, while EBR had the protective effect. EBR further increased nonphotochemical quenching that could reduce photodamage of the PSII reaction center. The proportion of absorbed light energy allocated for photochemical reaction (P) was reduced, while both nonphotochemical reaction dissipation of light energy and imbalanced partitioning of excitation energy between PSI and PSII increased. EBR increased P and alleviated this imbalance. The results suggest that both stomatal and nonstomatal factors limited the photosynthesis of cucumber seedlings under hypoxia. EBR alleviated the growth inhibition by improving CO2 asimilation and protecting leaves against PSII damage.  相似文献   

12.
Gametophytes of Acrostichum aureum were cultured in 0.0 to 1.0% NaCl solutions or in NaCl‐free solution and then transferred to 1.0% NaCl solution. Photosynthetic light‐response curves, efficiency of the primary photochemical reaction, relative electron transport rate, and photochemical and non‐photochemical quenching at steady state were determined by photosynthetic O2 evolution and in vivo chlorophyll fluorescence. Results obtained showed that the chlorophyll fluorescence parameters, Fv/Fm and F'v/F'm and αO2 (the initial linear slope of the photosynthetic light‐response curve) increased in gametophytes grown in NaCl. Linear electron transport rate was stimulated by NaCl. Based on the chlorophyll content, light‐saturated photosynthesis in gametophytes grown in 0.2 to 0.7% NaCl increased slightly; it decreased in gametophytes grown in 1.0% NaCl. Photochemical quenching decreased in NaCl‐grown gametophytes at all photosynthetic photon flux density (PPFD) levels measured, but there was no increase in non‐photochemical quenching. The chlorophyll a/b ratio increased with increasing NaCl concentration in culture solutions. These results indicated that NaCl enhanced photochemical efficiency of photosystem II (PSII) and photosynthetic linear electron transport, thus resulting in the development of an excitation pressure in PSII. Such excitation pressure might act as a signal for photosynthetic acclimation to salt stress, thus allowing the gametophytes to grow in their natural habitats.  相似文献   

13.
Sunflower seedlings ( Helianthus annuus hybrid Select) were grown in a complete nutrient solution in the absence or presence of Cd2+ (10 and 20 μM). Analyses were performed to establish whether there was a differential effect of Cd2+ on mature and young leaves. After 7 d the growth parameters as well as the leaf area had decreased in both mature and young leaves. Accumulation of Cd2+ in the roots exceeded that in the shoots. Seedlings treated with Cd2+ exhibited reduced contents of chlorophyll and CO2 assimilation rate, with a greater decrease in young leaves. The photochemical efficiency of photosystem II (PSII) was not altered by Cd2+ treatment in either mature or young leaves, although during steady-state photosynthesis in young leaves there was a significant alteration in the following parameters: quantum yield of electron transport by PSII (ΦPSII), photochemical quenching ( q P), non-photochemical quenching ( q NP), and excitation capture efficiency of PSII (Φexc).  相似文献   

14.
Tomato (Lycopersicon esculentum Miller) cv. Jiahe No. 9 (a salinity-resistant cultivar) and cv. Shuangfeng 87-5 (a salinity-sensitive cultivar) were used as experimental materials to investigate the effects of exogenous selenium (Na2SeO3 0.05 mM) on plant growth, chlorophyll fluorescence, photosynthetic rate, and antioxidative metabolism of chloroplasts in tomato seedlings under NaCl (100 mM) stress. Salt stress significantly inhibited plant growth, net photosynthetic rate (P n), maximum quantum yield of PSII (F v/F m), actual photochemical efficiency of PSII (Φ PSII), photochemical quenching coefficient (q P), and non-photochemical quenching coefficient (q N) of both cultivars, whereas application of Se reversed the negative effects of salt stress. Furthermore, application of Se significantly decreased the levels of hydrogen peroxide (H2O2) and malondialdehyde. Application of Se increased the activities of superoxidase dismutase, glutathione reductase, dehydroascorbate reductase, monodehydroascorbate reductase, glutathione peroxidase, and thioredoxin reductase, and the contents of ascorbate, glutathione (GSH) and NADPH, and the ratios of GSH/GSSH, AsA/DHA, and NADPH/ NADP+ in the salt-stressed chloroplasts of both cultivars. These results suggest that Se alleviates salt-induced oxidative stress through regulating the antioxidant defense systems in the chloroplasts of tomato seedlings, which is associated with the improvement of the photochemical efficiency of PSII, thereby maintaining higher photosynthetic rates. In addition, the salt tolerance of Jiahe No. 9 is closely related with high reactive oxygen species scavenging activity and reducing power levels in the chloroplasts.  相似文献   

15.
This study was carried out to understand the mechanism of protection of plants under cold stress by exogenous 24-epibrassinolide (EBR). The eggplant (Solanum melongena L.) seedlings were pretreated with five concentrations of EBR (0, 0.05, 0.1, 0.2 and 0.4 °M) and then exposed to day/night temperatures of 10/5 °C for 8 d. The results show that EBR, especially 0.1 °M EBR, dramatically alleviated growth suppression and a decrease in chlorophyll content and photosynthetic rate caused by the cold stress. In addition, EBR also decreased malondialdehyde content and O2 ·? production rate induced by the cold stress, and increased the activities of superoxide dismutase, guaiacol peroxidase, catalase, and ascorbate peroxidase, and proline content. The results of the present study suggest that exogenous EBR could improve cold tolerance of eggplant by regulating photosynthesis and antioxidative systems.  相似文献   

16.
We studied the effects of temperature, carbon dioxide and abscisic acid on mung bean (Vigna radiata). Plants were grown under 26/22°C or 32/28°C (16?h?light/8?h?dark) at 400 or 700?μmol?mol?1 CO2 and received ABA application of 0 or 100?μl (10?μg) every other day for three weeks, after eight days of initial growth, in growth chambers. We measured 24 parameters. As individual factors, in 16 cases temperature; in 8 cases CO2; in 9 cases ABA; and as interactive factors, in 4 cases, each of temperature?×?CO2, and CO2?×?ABA; and in 2 cases, temperature?×?ABA were significant. Higher temperatures increased growth, aboveground biomass, growth indices, photochemical quenching (qP) and nitrogen balance index (NBI). Elevated CO2 increased growth and aboveground biomass. ABA decreased growth, belowground biomass, qP and flavonoids; increased shoot/root mass ratio, chlorophyll and NBI; and had little role in regulating temperature–CO2 effects.

Abbreviations: AN: net CO2 assimilation; E: transpiration; Fv/Fm: maximum quantum yield of PSII; gs: stomatal conductance; LAR: leaf area ratio; LMA: leaf mass per area; LMR: leaf mass ratio;φPSII: effective quantum yield of PSII; qNP: non-photochemical quenching; qP: photochemical quenching; SRMR: shoot to root mass ratio; WUE: water use efficiency  相似文献   


17.
To understand how light quality influences plant photosynthesis, we investigated chloroplastic ultrastructure, chlorophyll fluorescence and photosynthetic parameters, Rubisco and chlorophyll content and photosynthesis-related genes expression in cucumber seedlings exposed to different light qualities: white, red, blue, yellow and green lights with the same photosynthetic photon flux density of 100 μmol m?2 s?1. The results revealed that plant growth, CO2 assimilation rate and chlorophyll content were significantly reduced in the seedlings grown under red, blue, yellow and green lights as compared with those grown under white light, but each monochromatic light played its special role in regulating plant morphogenesis and photosynthesis. Seedling leaves were thickened and slightly curled; Rubisco biosynthesis, expression of the rca, rbcS and rbcL, the maximal photochemical efficiency of PSII (Fv/Fm) and quantum yield of PSII electron transport (ФPSII) were all increased in seedlings grown under blue light as compared with those grown under white light. Furthermore, the photosynthetic rate of seedlings grown under blue light was significantly increased, and leaf number and chlorophyll content of seedlings grown under red light were increased as compared with those exposed to other monochromatic lights. On the contrary, the seedlings grown under yellow and green lights were dwarf with the new leaves etiolated. Moreover, photosynthesis, Rubisco biosynthesis and relative gene expression were greatly decreased in seedlings grown under yellow and green light, but chloroplast structural features were less influenced. Interestingly, the Fv/Fm, ФPSII value and chlorophyll content of the seedlings grown under green light were much higher than those grown under yellow light.  相似文献   

18.
Drought is the major constraint in arid regions throughout the world and identification of drought-resistant plants is therefore of crucial importance. Since young seedling stage is especially sensitive to water stress, the present work analyzed the physiological behavior of seedling from Acacia arabica issued from a dry area, grown under controlled environmental conditions and subjected to progressive soil drying. Although soil gravimetric water content (g H2O g?1 soil dry weight) dropped from 80 % to less than 35 %, most plants remained alive until the end of the water stress. Seedlings were able to efficiently close their stomata to reduce water losses and accumulated high amounts of proline. Despite osmotic adjustment, turgor pressure decreased in stressed plants and could explain the stress-induced inhibition of plant growth. Decrease in net photosynthesis was related to stress-induced decrease in stomatal conductance and not to any impact on chlorophyll concentration or fluorescence-related parameter: both PSII efficiency and photochemical quenching remained unaffected by water stress while drought-induced increase in non-photochemical quenching should be regarded as a strategy to avoid over-energisation of the photosynthetic apparatus. Instantaneous water use efficiency increased in stressed plants comparative to controls. Oxidative stress estimated by malondialdehyde concentration was recorded only at the end of the treatment, suggesting that stressed plants remained able to cope with reactive oxygen species. Water stress induced an increase in anthocyanins, while aglycone flavonols decreased. Those compounds were not involved in the management of oxidative stress. It is concluded that A. arabica is a promising drought-resistant plant species for rehabilitation of dry areas.  相似文献   

19.
The heat sensitivity of photochemical processes was evaluated in the common bean (Phaseolus vulgaris) cultivars A222, A320, and Carioca grown under well-watered conditions during the entire plant cycle (control treatment) or subjected to a temporal moderate water deficit at the preflowering stage (PWD). The responses of chlorophyll fluorescence to temperature were evaluated in leaf discs excised from control and PWD plants seven days after the complete recovery of plant shoot hydration. Heat treatment was done in the dark (5 min) at the ambient CO2 concentration. Chlorophyll fluorescence was assessed under both dark and light conditions at 25, 35, and 45°C. In the dark, a decline of the potential quantum efficiency of photosystem II (PSII) and an increase in minimum chlorophyll fluorescence were observed in all genotypes at 45°C, but these responses were affected by PWD. In the light, the apparent electron transport rate and the effective quantum efficiency of PSII were reduced by heat stress (45°C), but no change due to PWD was demonstrated. Interestingly, only the A222 cultivar subjected to PWD showed a significant increase in nonphotochemical fluorescence quenching at 45°C. The common bean cultivars had different photochemical sensitivities to heat stress altered by a previous water deficit period. Increased thermal tolerance due to PWD was genotype-dependent and associated with an increase in potential quantum efficiency of PSII at high temperature. Under such conditions, the genotype responsive to PWD treatment enhanced its protective capacity against excessive light energy via increased nonphotochemical quenching.  相似文献   

20.
Brassinosteroids (Brs) are a newly recognized group of active steroidal hormones that occur at low concentrations in all plant parts and one of the active and stable forms is 24-epibrassinolide (EBR). We investigated the effect of EBR on tomato (Lycopersicon esculentum Mill.) and its mechanism when seedlings were exposed to low temperature and poor light stress conditions. Leaves of stress-tolerant ‘Zhongza9’ and stress-sensitive ‘Zhongshu4’ cultivars were pre-treated with spray solutions containing either 0.1 μM EBR or no EBR (control). The plants were then transferred to chambers where they were exposed to low temperatures of 12 °C/6 °C (day/night) under a low light (LL) level of 80 μmol?·?m?2?·?s?1. Exogenous application of EBR significantly increased the antioxidant activity of superoxide dismutase, catalase and peroxidase, and decreased the rate of O2?·?? formation and H2O2 and malondialdehyde contents. Additionally, the ATP synthase β subunit content was increased by exogenous hormone application. Based on these results, we conclude that exogenous EBR can elicit synergism between the antioxidant enzyme systems and the ATP synthase β subunit so that scavenging of reactive oxygen species becomes more efficient. These activities enable plants to cope better under combined low temperature and poor light stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号