首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ribosomal protein L2 is a primary 23S rRNA binding protein in the large ribosomal subunit. We examined the contribution of the N- and C-terminal regions of Bacillus stearothermophilus L2 (BstL2) to the 23S rRNA binding activity. The mutant desN, in which the N-terminal 59 residues of BstL2 were deleted, bound to the 23S rRNA fragment to the same extent as wild type BstL2, but the mutation desC, in which the C-terminal 74 amino acid residues were deleted, abolished the binding activity. These observations indicated that the C-terminal region is involved in 23S rRNA binding. Subsequent deletion analysis of the C-terminal region found that the C-terminal 70 amino acids are required for efficient 23S rRNA binding by BstL2. Furthermore, the surface plasmon resonance analysis indicated that successive truncations of the C-terminal residues increased the dissociation rate constants, while they had little influence on association rate constants. The result indicated that reduced affinities of the C-terminal deletion mutants were due only to higher dissociation rate constants, suggesting that the C-terminal region primarily functions by stabilizing the protein L2-23S rRNA complex.  相似文献   

2.
V Kruft  U Kapp  B Wittmann-Liebold 《Biochimie》1991,73(7-8):855-860
The complete amino acid sequences of 3 proteins from the 50S subunit of Bacillus stearothermophilus ribosomes were determined by N-terminal sequence analysis and by sequencing of overlapping fragments obtained from enzymatic digestions and chemical cleavages. The proteins BstL28, BstL33 and BstL34, named according to the equivalent proteins in Escherichia coli ribosomes, consist of 60, 49, and 44 amino acid residues and have calculated molecular masses of 6811.0, 5908.6, and 5253.9 Da, respectively. They are highly basic with a content of positively charged residues ranging between 29% for L33 and 45% for L34. The 3 proteins were positioned in the 2-dimensional map of B stearothermophilus 50S ribosomal proteins. The electrophoretic mobilities confirm sizes and net charges deduced from the sequences.  相似文献   

3.
Ribosomal protein L5, a 5S rRNA binding protein in the large subunit, is composed of a five-stranded antiparallel beta-sheet and four alpha-helices, and folds in a way that is topologically similar to the ribonucleprotein (RNP) domain [Nakashima et al., RNA 7, 692-701, 20011. The crystal structure of ribosomal protein L5 (BstL5) from Bacillus stearothermophilus suggests that a concave surface formed by an anti-parallel beta-sheet and long loop structures are strongly involved in 5S rRNA binding. To identify amino acid residues responsible for 5S rRNA binding, we made use of Ala-scanning mutagenesis of evolutionarily conserved amino acids occurred at beta-strands and loop structures in BstL5. The mutation of Lys33 at the beta 1-strand caused a significant reduction in 5S rRNA binding. In addition, the Arg92, Phe122, and Glu134 mutations on the beta2-strand, the alpha3-beta4 loop, and the beta4-beta5 loop, respectively, resulted in a moderate decrease in the 5S rRNA binding affinity. In contrast, mutation of the conserved residue Pro65 at the beta2-strand had little effect on the 5S rRNA binding activity. These results, taken together with previous results, identified Lys33, Asn37, Gln63, and Thr90 on the beta-sheet structure, and Phe77 at the beta2-beta3 loop as critical residues for the 5S rRNA binding. The contribution of these amino acids to 5S rRNA binding was further quantitatively evaluated by surface plasmon resonance (SPR) analysis by the use of BIAcore. The results showed that the amino acids on the beta-sheet structure are required to decrease the dissociation rate constant for the BstL5-5S rRNA complex, while those on the loops are to increase the association rate constant for the BstL5-5S rRNA interaction.  相似文献   

4.
The ribosomal protein S28E from the archaeon Methanobacterium thermoautotrophicum is a component of the 30S ribosomal subunit. Sequence homologs of S28E are found only in archaea and eukaryotes. Here we report the three-dimensional solution structure of S28E by NMR spectroscopy. S28E contains a globular region and a long C-terminal tail protruding from the core. The globular region consists of four antiparallel beta-strands that are arranged in a Greek-key topology. Unique features of S28E include an extended loop L2-3 that folds back onto the protein and a 12-residue charged C-terminal tail with no regular secondary structure and greater flexibility relative to the rest of the protein. The structural and surface resemblance to OB-fold family of proteins and the presence of highly conserved basic residues suggest that S28E may bind to RNA. A broad positively charged surface extending over one side of the beta-barrel and into the flexible C terminus may present a putative binding site for RNA.  相似文献   

5.
Human recombinant glycine N-methyltransferase (GNMT) unfolding by urea was studied by enzyme activity, size-exclusion chromatography, fluorescence spectroscopy, and circular dichroism. Urea unfolding of GNMT is a two-step process. The first transition is a reversible dissociation of the GNMT tetramer to compact monomers in 1.0-3.5M urea with enzyme inactivation. The compact monomers were characterized by Stokes radius (R(s)) of 40.7A equal to that of globular proteins with the same molecular mass as GNMT monomers, absence of exposure of tryptophan residues into solvent, and presence of about 50% of secondary structure of native protein. The second step of GNMT unfolding is a reversible transition of monomers from compact to a fully unfolded state with R(s) of 50A, exposed tryptophan residues, and disrupted secondary structure in 8M urea.  相似文献   

6.
Digestion of calf thymus H1 histone with thrombin cleaves the molecule at the sequence -(Pro)-Lys-Lys-Ala-, corresponding to a point approximately 122 residues from the N-terminus (about 56% along the molecule). The N-terminal fragment is shown by proton nuclear magnetic resonance (NMR) to possess the globular structure of the intact histome H1 molecule, whereas the C-terminal fragment appears to possess little or no structure. The N-terminal fragment separates into two peaks on an ion-exchange column, one of which is shown to originate from a single subfraction of calf thymus histone H1 and the other to originate from the other subfractions, by detailed comparison of the NMR spectra. It thus seems that the structure of the H1 histone in solution under physiological conditions consists of a globular head with a highly basic random coil tail. It is suggested that the globular head has a specific binding site on the subunit structure of the chromosome.  相似文献   

7.
The polypeptide fold of the 79-residue globular domain of chicken histone H5 (GH5) in solution has been determined by the combined use of distance geometry and restrained molecular dynamics calculations. The structure determination is based on 307 approximate interproton distance restraints derived from n.m.r. measurements. The structure is composed of a core made up of residues 3-18, 23-34, 37-60 and 71-79, and two loops comprising residues 19-22 and 61-70. The structure of the core is well defined with an average backbone atomic r.m.s. difference of 2.3 +/- 0.3 A between the final eight converged restrained dynamics structures and the mean structure obtained by averaging their coordinates best fitted to the core residues. The two loops are also well defined locally but their orientation with respect to the core could not be determined as no long range ([i-j[ greater than 5) proton-proton contacts could be observed between the loop and core residues in the two-dimensional nuclear Overhauser enhancement spectra. The structure of the core is dominated by three helices and has a similar fold to the C-terminal DNA binding domain of the cAMP receptor protein.  相似文献   

8.
A Trypanosoma cruzi cysteine protease inhibitor, termed chagasin, is the first characterized member of a new family of tight-binding cysteine protease inhibitors identified in several lower eukaryotes and prokaryotes but not present in mammals. In the protozoan parasite T.cruzi, chagasin plays a role in parasite differentiation and in mammalian host cell invasion, due to its ability to modulate the endogenous activity of cruzipain, a lysosomal-like cysteine protease. In the present work, we determined the solution structure of chagasin and studied its backbone dynamics by NMR techniques. Structured as a single immunoglobulin-like domain in solution, chagasin exerts its inhibitory activity on cruzipain through conserved residues placed in three loops in the same side of the structure. One of these three loops, L4, predicted to be of variable length among chagasin homologues, is flexible in solution as determined by measurements of (15)N relaxation. The biological implications of structural homology between chagasin and other members of the immunoglobulin super-family are discussed.  相似文献   

9.
Interpretation of sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis results for polypeptides which contain both collagenous and noncollagenous regions may be somewhat ambiguous since collagenous chains obey a different molecular weight vs mobility relationship than reduced globular proteins. In a recent study [Freytag, J. W., Noelken, M. E., and Hudson, B. G., 1979, Biochemistry18, 4761–4768], however, it was found that the α chains of calf skin collagen obeyed the same size-mobility relationship as reduced globular proteins when the number of residues was used as a measure of size. We extended that study over a broad size range and found the same result for 581 to 2104 residue polypeptides when 5% gels were used, and for 217 to 1052 residue polypeptides with 9% gels. On the other hand, SDS complexes of collagenous chains having fewer than 300 residues migrated considerably more slowly through 12.5% gels than their counter-parts from globular proteins. Also, SDS complexes of αs1-, β-, and γ2-casein which have 8.5, 16.7, and 20 mol% proline, respectively, had mobilities between those of SDS complexes of collagenous polypeptides and their reduced globular protein counterparts with the same number of residues. Our results indicate that SDS-polyacrylamide electrophoresis can be used to determine accurately the number of residues of collagenous polypeptides in the 217 to 2104 residue size range if appropriate gel concentrations are used. However, this conclusion does not apply to high-proline polypeptides in general.  相似文献   

10.
The amino acid sequence of the first domain (positions 1-175) of Panulirus interruptus hemocyanin subunit a has been determined. The sequence of residues 1-158 (18-kDa fragment obtained by limited proteolysis) was derived from peptides obtained by digestion of this fragment with CNBr and trypsin and by subdigestion of these peptides with other enzymes. The peptides were sequences automatically or manually. The amino acid sequence has been fitted into the electron-density map at 0.32-nm resolution. The residues of domain 1 are folded into a large, mainly helical, globular part, containing one disulfide bridge, and a smaller part near the molecular twofold axis. The latter part consists of an alpha helix and a beta strand which contains a covalently attached carbohydrate moiety. The sites susceptible to limited proteolytic cleavage of the subunit are discussed. Comparison of the N-terminal sequence with those of other arthropod hemocyanins revealed, besides an N-terminal extension of five residues, the presence of a 21-residue loop (positions 22-42) in the crustacean sequences. This loop contains helix 1.2, a less defined region in the electron-density map. It is absent in chelicerate sequences. Strong evidence is presented that: (a) the structure of the first 21 residues (including helix 1.1) is the same in all arthropod hemocyanins with known amino acid sequence; (b) a stretch containing about 15 residues (including part of helix 1.3) following the 21-residue loop has a different structure in crustaceans and chelicerates; (c) the rest of domain 1 has the same structure again. It is shown that all conserved residues are in the contact region with the other two domains.  相似文献   

11.
M Ikura  G Barbato  C B Klee  A Bax 《Cell calcium》1992,13(6-7):391-400
The solution structure of Ca2+ ligated calmodulin and of its complex with a 26-residue peptide fragment of skeletal muscle myosin light chain kinase (skMLCK) have been investigated by multi-dimensional NMR. In the absence of peptide, the two globular domains of calmodulin adopt the same structure as observed in the crystalline form. The so-called 'central helix' which is observed in the crystalline state is disrupted in solution. 15N relaxation studies show that residues Asp78 through Ser81, located near the middle of this 'central helix', form a very flexible link between the two globular domains. In the presence of skMLCK target peptide, the peptide-protein complex adopts a globular ellipsoidal shape. The helical peptide is located in a hydrophobic channel that goes through the center of the complex and makes an angle of approximately 45 degrees with the long axis of the ellipsoid.  相似文献   

12.
Circular dichroism, infrared and proton magnetic resonance spectroscopy as well as microcalorimetry methods were used to investigate the intact proteins L7/L12 in solution and their different derivatives (L7 with oxidized residues of methionine, fragments 27--120, 1--73 and 74--120)- On the basis of the data obtained the following conclusions have been drawn: (a) there is no beta structure in the protein L7, (B) the N-terminal region of L7 forms a long alpha helix (c) the Phe-30 residue within the N-terminal region of L7 takes part in the dimerization, (d) the C-terminal of L7 is globular and (e) the Phe-54 residue is included in the hydrophobic core of the globular C-terminal region.  相似文献   

13.
14.
The 1H-n.m.r. spectra of human somatotropin (growth hormone) show perturbed peaks from individual aromatic and aliphatic apolar residues, characteristic of a specifically folded globular structure. The imidazole C-2-H resonances of the histidine residues (at positions 18, 21 and 151 in the somatotropin sequence) were individually resolved, and their titration behaviour in the pH range 1.2-11.5 was investigated. The imidazole C-2-H resonance of histidine-151 is assigned, by comparison of its titration behaviour in human somatotropin and desamido-somatotropin (Asn-152 leads to Asp-152). The C-2-H resonances of all three histidine residues are assigned, by comparison of their relative deuterium-exchange rates (determined by n.m.r.) and the relative tritium-exchange rates of the histidine residues (determined by tryptic digestion of tritiated human somatotropin and reversed-phase high-pressure liquid-chromatographic separation of the histidine-containing tryptic peptides). There is evidence that histidine-18 forms an ion-pair bond with a glutamic acid or aspartic acid residue. The globular structure does not appear to change from pH3 to 11.5, though there is evidence for an unfolding of a region of the structure (involving histidine-21 and a tyrosine residue) below pH3.  相似文献   

15.
Membrane-bound proteases are involved in various regulatory functions. Our previous study indicated that the N-terminal region of an open reading frame, PH1510 (residues 16-236, designated as 1510-N) from the hyperthermophilic archaeon Pyrococcus horikoshii, is a serine protease with a catalytic Ser-Lys dyad that specifically cleaves the C-terminal hydrophobic residues of a membrane protein, the stomatin-homolog PH1511. In humans, an absence of stomatin is associated with a form of hemolytic anemia known as hereditary stomatocytosis, but the function of stomatin is not fully understood. Here, we report the crystal structure of 1510-N in dimeric form. Each active site of 1510-N is rich in hydrophobic residues, which accounts for the substrate-specificity. The monomer of 1510-N shows structural similarity to one monomer of Escherichia coli ClpP, an ATP-dependent tetradecameric protease. But, their oligomeric forms are different. Major contributors to dimeric interaction in 1510-N are the alpha7 helix and beta9 strand, both of which are missing from ClpP. While the long handle region of ClpP contributes to the stacking of two heptameric rings, the corresponding L2 loop of 1510-N is disordered because the region has little interaction with other residues of the same molecule. The catalytic Ser97 of 1510-N is in almost the same location as the catalytic Ser97 of E.coli ClpP, whereas another residue, Lys138, presumably forming the catalytic dyad, is located in the disordered L2 region of 1510-N. These findings suggest that the binding of the substrate to the catalytic site of 1510-N induces conformational changes in a region that includes loop L2 so that Lys138 approaches the catalytic Ser97.  相似文献   

16.
The crystal structure of the eubacteria Mycoplasma genitalium ORF MG438 polypeptide, determined by multiple anomalous dispersion and refined at 2.3 A resolution, reveals the organization of S subunits from the Type I restriction and modification system. The structure consists of two globular domains, with about 150 residues each, separated by a pair of 40 residue long antiparallel alpha-helices. The globular domains correspond to the variable target recognition domains (TRDs), as previously defined for S subunits on sequence analysis, while the two helices correspond to the central (CR1) and C-terminal (CR2) conserved regions, respectively. The structure of the MG438 subunit presents an overall cyclic topology with an intramolecular 2-fold axis that superimposes the N and the C-half parts, each half containing a globular domain and a conserved helix. TRDs are found to be structurally related with the small domain of the Type II N6-adenine DNA MTase TaqI. These relationships together with the structural peculiarities of MG438, in particular the presence of the intramolecular quasi-symmetry, allow the proposal of a model for S subunits recognition of their DNA targets in agreement with previous experimental results. In the crystal, two subunits of MG438 related by a crystallographic 2-fold axis present a large contact area mainly involving the symmetric interactions of a cluster of exposed hydrophobic residues. Comparison with the recently reported structure of an S subunit from the archaea Methanococcus jannaschii highlights the structural features preserved despite a sequence identity below 20%, but also reveals important differences in the globular domains and in their disposition with respect to the conserved regions.  相似文献   

17.
From our topological arrangement model of prostaglandin I(2) synthase (PGIS) created by homology modeling and topology studies, we hypothesized that the helix F/G loop of PGIS contains a membrane contact region distinct from the N-terminal membrane anchor domain. To provide direct experimental data we have explored the relationship between the endoplasmic reticulum (ER) membrane and the PGIS F/G loop using a constrained synthetic peptide to mimic PGIS residues 208-230 cyclized on both ends through a disulfide bond with added Cys residues. The solution structure and the residues important for membrane contact of the constrained PGIS F/G loop peptide were investigated by high-resolution 1H two-dimensional nuclear magnetic resonance (2D NMR) experiments and a spin label incorporation technique. Through the combination of 2D NMR experiments in the presence of dodecylphosphocholine (DPC) micelles used to mimic the membrane environment, complete 1H NMR assignments of the F/G loop segment have been obtained and the solution structure of the peptide has been determined. The PGIS F/G loop segment shows a defined helix turn helix conformation, which is similar to the three-dimensional crystallography structure of P450BM3 in the corresponding region. The orientation and the residues contacted with the membrane of the PGIS F/G loop were evaluated from the effect of incorporation of a spin-labeled 12-doxylstearate into the DPC micelles with the peptide. Three residues in the peptide corresponding to the PGIS residues L217 (L11), L222 (L16), and V224 (V18) have been demonstrated to contact the DPC micelles, which implies that the residues are involved in contact with the ER membrane in the native membrane-bound PGIS. These results provided the first experimental evidence to localize the membrane contact residues in the F/G loop region of microsomal P450 and are valuable to further define and understand the membrane topology of PGIS and those of other microsomal P450s in the native membrane environment.  相似文献   

18.
Mycobacterium tuberculosis is able to establish a non-replicating state and survive in an intracellular habitat for years. Resuscitation of dormant M. tuberculosis bacteria is promoted by resuscitation-promoting factors (Rpfs), which are secreted from slowly replicating bacteria close to dormant bacteria. Here we report the crystal structure of a truncated form of RpfB (residues 194-362), the sole indispensable Rpf of the five Rpfs encoded in this bacterium genome. The structure, denoted as ΔDUFRpfB, exhibits a comma-like shape formed by a lysozyme-like globular catalytic domain and an elongated G5 domain, which is widespread among cell surface binding proteins. The G5 domain, whose structure was previously uncharacterised, presents some peculiar features. The basic structural motif of this domain, which represents the tail of the comma-like structure, is a novel super-secondary-structure element, made of two β-sheets interconnected by a pseudo-triple helix. This intricate organisation leads to the exposure of several backbone hydrogen-bond donors/acceptors. Mutagenesis analyses and solution studies indicate that this protein construct as well as the full-length form are elongated monomeric proteins. Although ΔDUFRpfB does not self-associate, the exposure of structural elements (backbone H-bond donors/acceptors and hydrophobic side chains) that are usually buried in globular proteins is typically associated with adhesive properties. This suggests that the RpfB G5 domain has a cell-wall adhesive function, which allows the catalytic domain to be properly oriented for the cleavage reaction. Interestingly, sequence comparisons indicate that these structural features are also shared by G5 domains involved in biofilm formation.  相似文献   

19.
M Ikura  S Spera  G Barbato  L E Kay  M Krinks  A Bax 《Biochemistry》1991,30(38):9216-9228
Heteronuclear 2D and 3D NMR experiments were carried out on recombinant Drosophila calmodulin (CaM), a protein of 148 residues and with molecular mass of 16.7 kDa, that is uniformly labeled with 15N and 13C to a level of greater than 95%. Nearly complete 1H and 13C side-chain assignments for all amino acid residues are obtained by using the 3D HCCH-COSY and HCCH-TOCSY experiments that rely on large heteronuclear one-bond scalar couplings to transfer magnetization and establish through-bond connectivities. The secondary structure of this protein in solution has been elucidated by a qualitative interpretation of nuclear Overhauser effects, hydrogen exchange data, and 3JHNH alpha coupling constants. A clear correlation between the 13C alpha chemical shift and secondary structure is found. The secondary structure in the two globular domains of Drosophila CaM in solution is essentially identical with that of the X-ray crystal structure of mammalian CaM [Babu, Y., Bugg, C. E., & Cook, W.J. (1988) J. Mol. Biol. 204, 191-204], which consists of two pairs of a "helix-loop-helix" motif in each globular domain. The existence of a short antiparallel beta-sheet between the two loops in each domain has been confirmed. The eight alpha-helix segments identified from the NMR data are located at Glu-6 to Phe-19, Thr-29 to Ser-38, Glu-45 to Glu-54, Phe-65 to Lys-77, Glu-82 to Asp-93, Ala-102 to Asn-111, Asp-118 to Glu-127, and Tyr-138 to Thr-146. Although the crystal structure has a long "central helix" from Phe-65 to Phe-92 that connects the two globular domains, NMR data indicate that residues Asp-78 to Ser-81 of this central helix adopt a nonhelical conformation with considerable flexibility.  相似文献   

20.
S4 is one of the first proteins to bind to 16S RNA during assembly of the prokaryotic ribosome. Residues 43-200 of S4 from Bacillus stearothermophilus (S4 Delta41) bind specifically to both 16S rRNA and to a pseudoknot within the alpha operon mRNA. As a first step toward understanding how S4 recognizes and organizes RNA, we have solved the structure of S4 Delta41 in solution by multidimensional heteronuclear nuclear magnetic resonance spectroscopy. The fold consists of two globular subdomains, one comprised of four helices and the other comprised of a five-stranded antiparallel beta-sheet and three helices. Although cross-linking studies suggest that residues between helices alpha2 and alpha3 are close to RNA, the concentration of positive charge along the crevice between the two subdomains suggests that this could be an RNA-binding site. In contrast to the L11 RNA-binding domain studied previously, S4 Delta41 shows no fast local motions, suggesting that it has less capacity for refolding to fit RNA. The independently determined crystal structure of S4 Delta41 shows similar features, although there is small rotation of the subdomains compared with the solution structure. The relative orientation of the subdomains in solution will be verified with further study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号