首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sevoflurane postconditioning is a potential clinical measure to protect myocardial. This experiment was designed to investigate the efficacy of sevoflurane postconditioning against ischemia-reperfusion injury. A total of 132 Japanese White Rabbits were enrolled into this study. They were underwent 15-, 30-, or 60-min left anterior descending coronary (LAD) artery occlusion, respectively. At the end of LAD artery occlusion, they randomly received a 5-min inhalation of air (control group), 1% sevoflurane (1% sev group), 2% sevoflurane (2% sev group), 4% sevoflurane (4% sev group) or an IV bolus injection of 5 mg/kg of NIM811 [a specific inhibitor of mitochondrial permeability transition pores (mPTP)]. Infarct size was determined after 2 h of reperfusion (triphenyltetrazolium chloride straining, percentage of risk area). The infarct sizes were significantly (P < 0.05) reduced after 15 min ischemia (5.5 ± 3.3%, 5.8 ± 3.6% vs. 20.3 ± 6.9% for 2% sev, 4% sev vs. control, respectively) and 30 min ischemia (23.5 ± 5.0%, 20.7 ± 5.9% vs. 50.9 ± 10.2%, for 2% sev, 4% sev vs. control, respectively; P < 0.05). However, it had no effect on infarct size after 60 min ischemia (64.1 ± 5.9%, 62.3 ± 7.6% vs. 72.7 ± 9.2% for 2% sev, 4% sev vs. control, respectively, P > 0.05).The efficacy of sevoflurane postconditioning gradually weakened with increasing ischemia duration and disappears after 60 min ischemia in rabbits in vivo.  相似文献   

2.
Myocardial ischemia-reperfusion (IR) injury is a major contributor to the morbidity and mortality associated with coronary artery disease. Muscular exercise is a countermeasure to protect against IR-induced cardiac injury in both young and old animals. Specifically, regular bouts of endurance exercise protect the heart against all levels of IR-induced injury. Proposed mechanisms to explain the cardioprotective effects of exercise include alterations in coronary circulation, expression of endoplasmic reticulum stress proteins, increased cyclooxygenase-2 activity, induction of myocardial heat shock proteins, improved cardiac antioxidant capacity, and/or elevation of ATP-sensitive potassium channels on both the sarcolemmal and the mitochondrial inner membranes. Moreover, it seems possible that other, yet to be defined, mechanisms of exercise-induced cardioprotection may also exist. Of the known putative cardioprotective mechanisms, current evidence suggests that elevated myocardial levels of antioxidants and increased expression of sarcolemmal ATP-sensitive potassium channels are both contributors to exercise-induced cardioprotection against IR injury. At present, it is unclear if these two protective mediators act independently or interact to contribute to exercise-induced cardioprotection. Understanding the molecular basis for exercise-induced cardioprotection will provide the required knowledge base to develop therapeutic approaches to protect the heart during an IR insult.  相似文献   

3.
杨黄恬  唐朝枢 《生理学报》2007,59(5):540-541
Worldwide, coronary heart disease (CHD) causes approximately one-third of all deaths in men and one-quarter of all deaths in women and represents a significant threat to public health. The global burden of CHD in terms of disability- adjusted life years (DALY) or “healthy years of life lost” is projected to increase from around 47 million DALY globally in 1990 to 82 million in 202^[1].[第一段]  相似文献   

4.
5.
Emerging evidence indicates that exercise training can provide significant protection against myocardial ischemia-reperfusion injury. In this brief review, we provide a synthesis of current literature in the field and summarize the findings to date. Our intent is to identify the unique elements of cardioprotection acquired by exercise, and to illustrate what distinguishes this physiological acquisition of cardioprotection from all other known types of acquired cardioprotection. Finally, we point to future directions for research in this exciting area.  相似文献   

6.

Background  

Ischemic postconditioning (IPO) has been demonstrated to attenuate ischemia/reperfusion (I/R) injury in the heart and brain, its roles to liver remain to be defined. The study was undertaken to determine if IPO would attenuate liver warm I/R injury and its protective mechanism.  相似文献   

7.
Atorvastatin (ATV) limits infarct size (IS) by activating Akt and ecto-5-nucleotidase, which generates adenosine. Activated Akt and adenosine activate endothelial nitric oxide synthase (eNOS). When given orally, high doses (10 mg/kg) are needed to achieve full protection. We determined whether dipyridamole (DIP), by preventing the reuptake of adenosine, has a synergistic effect with ATV in reducing myocardial IS. In this study, rats received 3-days of the following: water, ATV (2 mg.kg(-1).day(-1)), DIP (6 mg.kg(-1).day(-1)), or ATV + DIP. In addition, rats received 3-days of the following: aminophylline (Ami; 10 mg.kg(-1).day(-1)) or Ami + ATV + DIP. Rats underwent 30 min of myocardial ischemia followed by 4 h of reperfusion (IS protocol), or hearts were explanted for immunoblotting. As a result, IS in the controls was 34.0 +/- 2.8% of the area at risk. ATV (33.1 +/- 2.1%) and DIP (30.5 +/- 1.5%) did not affect IS, whereas ATV + DIP reduced IS (12.2 +/- 0.5%; P < 0.001 vs. each of the other groups). There was no difference in IS between the Ami alone (48.1 +/- 0.8%) and the Ami + ATV + DIP (45.8 +/- 2.9%) group (P = 0.422), suggesting that Ami completely blocked the protective effect. Myocardial adenosine level in the controls was 30.6 +/- 3.6 pg/microl. ATV (51.0 +/- 4.9 pg/microl) and DIP (51.5 +/- 6.8 pg/microl) caused a small increase in adenosine levels, whereas ATV + DIP caused a greater increase in adenosine levels (66.4 +/- 3.1 pg/microl). ATV and DIP alone did not affect myocardial Ser473 phosphorylated-Akt and Ser1177 phosphorylated-eNOS levels, whereas ATV + DIP significantly increased them. In conclusion, low-dose ATV and DIP had synergistic effects in reducing myocardial IS and activation of Akt and eNOS. This combination may have a potential benefit in augmenting the eNOS-mediated pleiotropic effects of statins.  相似文献   

8.
Guo Y  Yang T  Lu J  Li S  Wan L  Long D  Li Q  Feng L  Li Y 《Life sciences》2011,88(13-14):598-605
AimsGinsenoside Rb1 could prevent ischemic neuronal death and focal cerebral ischemia, but its roles to liver warm I/R injury remain to be defined. We determined if Rb1 would attenuate warm I/R injury in mice.Main methodsMice were divided into sham, I/R, Rb1 + I/R (Rb1 postconditioning, 20 mg/kg, i.p. after ischemia), sham + L-NAME, I/R + L-NAME, and Rb1 + I/R + L-NAME groups using 60 min of the liver median and left lateral lobes ischemia. Serum levels of alanine aminotransferase (ALT) were measured and morphology changes of livers were evaluated. Contents of nitric oxide (NO) and nitric oxide synthase (NOS), malondialdehye (MDA) and activity of superoxide dismutase (SOD) were measured. Expressions of Akt, p-Akt, iNOS, HIF-1alpha, tumor necrosis factor-a (TNF-α) and intercellular adhesion molecule-1 (ICAM-1) were also determined by western blot or immunohistochemistry.Key findingsRb1 postconditioning attenuated the dramatically functional and morphological injuries. The levels of ALT were significantly reduced in Rb1 group (p < 0.05). Rb1 upregulated the concentrations of NO, iNOS in serum, iNOS, and activity of SOD in hepatic tissues (p < 0.05), while it dramatically reduced the concentration of MDA (p < 0.05). Protein expressions of p-Akt, iNOS and HIF-1alpha were markedly enhanced in Rb1 group. Protein and mRNA expressions of TNF-α and ICAM-1 were markedly suppressed by Rb1 (p < 0.05).SignificanceWe found that Rb1 postconditioning could protect liver from I/R injury by upregulating the content of NO and NOS, and also HIF-1alpha protein expression. These protective effects could be abolished by L-NAME. These findings suggested Rb1 may have the therapeutic potential through ROS-NO-HIF pathway for management of liver warm I/R injury.  相似文献   

9.
Cardioprotection by intermittent high-altitude (IHA) hypoxia against ischemia-reperfusion (I/R) injury is associated with Ca(2+) overload reduction. Phospholamban (PLB) phosphorylation relieves cardiac sarcoplasmic reticulum (SR) Ca(2+)-pump ATPase, a critical regulator in intracellular Ca(2+) cycling, from inhibition. To test the hypothesis that IHA hypoxia increases PLB phosphorylation and that such an effect plays a role in cardioprotection, we compared the time-dependent changes in the PLB phosphorylation at Ser(16) (PKA site) and Thr(17) (CaMKII site) in perfused normoxic rat hearts with those in IHA hypoxic rat hearts submitted to 30-min ischemia (I30) followed by 30-min reperfusion (R30). IHA hypoxia improved postischemic contractile recovery, reduced the maximum extent of ischemic contracture, and attenuated I/R-induced depression in Ca(2+)-pump ATPase activity. Although the PLB protein levels remained constant during I/R in both groups, Ser(16) phosphorylation increased at I30 and 1 min of reperfusion (R1) but decreased at R30 in normoxic hearts. IHA hypoxia upregulated the increase further at I30 and R1. Thr(17) phosphorylation decreased at I30, R1, and R30 in normoxic hearts, but IHA hypoxia attenuated the depression at R1 and R30. Moreover, PKA inhibitor H89 abolished IHA hypoxia-induced increase in Ser(16) phosphorylation, Ca(2+)-pump ATPase activity, and the recovery of cardiac performance after ischemia. CaMKII inhibitor KN-93 also abolished the beneficial effects of IHA hypoxia on Thr(17) phosphorylation, Ca(2+)-pump ATPase activity, and the postischemic contractile recovery. These findings indicate that IHA hypoxia mitigates I/R-induced depression in SR Ca(2+)-pump ATPase activity by upregulating dual-site PLB phosphorylation, which may consequently contribute to IHA hypoxia-induced cardioprotection against I/R injury.  相似文献   

10.
The present study was undertaken to investigate the protective effect of H2S against myocardial ischemia-reperfusion (I/R) injury and its possible mechanism by using isolated heart perfusion and patch clamp recordings. Rat isolated hearts were Langendorff-perfused and subjected to a 30-minute ischemia insult followed by a 30-minute reperfusion. The heart function was assessed by measuring the LVDP, +/-dP/dt max, and the arrhythmia score. The results showed that the treatment of hearts with a H2S donor (40 micromol/L NaHS) during reperfusion resulted in significant improvement in heart function compared with the I/R group (LVDP recovered to 85.0% +/- 6.4% vs. 35.0% +/- 6.1%, +dP/dt max recovered to 80.9% +/- 4.2% vs. 43.0% +/- 6.4%, and -dP/dt max recovered to 87.4% +/- 7.3% vs. 53.8% +/- 4.9%; p < 0.01). The arrhythmia scores also improved in the NaHS group compared with the I/R group (1.5 +/- 0.2 vs. 4.0 +/- 0.4, respectively; p < 0.001). The cardioprotective effect of NaHS during reperfusion could be blocked by an ATP-sensitive potassium channel (K ATP) blocker (10 micromol/L glibenclamide). In single cardiac myocytes, NaHS increased the open probability of K ATP channels from 0.07 +/- 0.03 to 0.15 +/- 0.08 after application of 40 mumol/L NaHS and from 0.07 +/- 0.03 to 0.36 +/- 0.15 after application of 100 mumol/L NaHS. These findings provide the first evidence that H2S increases the open probability of K ATP in cardiac myocytes, which may be responsible for cardioprotection against I/R injury during reperfusion.  相似文献   

11.
Administration of propofol at the time of reperfusion has shown to protect the heart from ischemia and reperfusion (I/R) injury. The aim of the present study was to investigate the molecular mechanism underling the cardioprotective effect of propofol against myocardial I/R injury (MIRI) in vivo and in vitro. Rat heart I/R injury was induced by ligation of the left anterior descending (LAD) artery for 30 min followed by 2-hr reperfusion. Propofol pretreatment (0.01 mg/g) was performed 10 min before reperfusion. In vitro MIRI was investigated in cultured cardiomyocytes H9C2 following hypoxia/reoxygenation (H/R) injuries. Propofol pretreatment in vitro was achieved in the medium supplemented with 25 μmol/L propofol before H/R injuries. Propofol pretreatment significantly increased miRNA-451 expression, decreased HMGB1 expression, reduced infarct size, and I/R-induced cardiomyocyte apoptosis in rat hearts undergoing I/R injuries. Knockdown of miRNA-451 48 hr before I/R injury was found to increase HMGB1 expression, infarct size, and I/R-induced cardiomyocyte apoptosis in rat hearts in the presence of propofol pretreatment. These in vivo findings were reproduced in vivo that knockdown of miRNA-451 48 hr before H/R injuries increased HMGB1 expression and H/R-induced apoptosis in cultured H9C2 supplemented with propofol. In addition, luciferase activity assays and gain-of-function studies found that propofol could decrease HMGB1, the target of miRNA-541. Taken together our findings provide a first demonstration that propofol-mediated cardioprotection against MIRI is dependent of microRNA-451/HMGB1. The study provides a novel target to prevent I/R injury during propofol anesthesia.  相似文献   

12.
Bromelain (Br), a proteolytic enzyme extracted from the stem of the pineapple, is known to possess anti-inflammatory activity and has been shown to reduce blood viscosity, prevent the aggregation of blood platelets, and improve ischemia-reperfusion (I/R) injury in a skeletal muscle model. We investigated the capacity of Br to limit myocardial injury in a global I/R model. Adult male Sprague-Dawley rats were divided into two groups: control (PBS) and Br at 10 mg/kg in PBS administered via intraperitoneal injection (twice/day) for 15 consecutive days. On day 16, the hearts were excised and subjected to 30 min of global ischemia followed by 2 h of reperfusion. Br treatment showed higher left ventricular functional recovery throughout reperfusion compared with the controls [maximum rate of rise in intraventricular pressure (dP/dt max), 2,225 vs. 1,578 mmHg/s at 2 h reperfusion]. Aortic flow was also found to be increased in Br treatment when compared with that in untreated rats (11 vs. 1 ml). Furthermore, Br treatment reduced both the infarct size (34% vs. 43%) and the degree of apoptosis (28% vs. 37%) compared with the control animals. Western blot analysis showed an increased phosphorylation of both Akt and FOXO3A in the treatment group compared with the control. These results demonstrated for the first time that Br triggers an Akt-dependent survival pathway in the heart, revealing a novel mechanism of cardioprotective action and a potential therapeutic target against I/R injury.  相似文献   

13.
Ischemia-reperfusion (I/R) injury is a multifactorial process triggered when an organ is subjected to transiently reduced blood supply. The result is a cascade of pathological complications and organ damage due to the production of reactive oxygen species following reperfusion. The present study aims to evaluate the role of activated calcium-sensing receptor (CaR)-cystathionine γ-lyase (CSE)/hydrogen sulfide (H2S) pathway in I/R injury. Firstly, an I/R rat model with CSE knockout was constructed. Transthoracic echocardiography, TTC and HE staining were performed to determine the cardiac function of rats following I/R Injury, followed by TUNEL staining observation on apoptosis. Besides, with the attempt to better elucidate how CaR-CSE/H2S affects I/R, in-vitro culture of human coronary artery endothelial cells (HCAECs) was conducted with gadolinium chloride (GdCl3, a CaR agonist), H2O2, siRNA against CSE (siCSE), or W7 (a CaM inhibitor). The interaction between CSE and CaM was subsequently detected. Plasma oxidative stress indexes, H2S and CSE, and apoptosis-related proteins were all analyzed following cell apoptosis. We found that H2S elevation led to the improvement whereas CSE knockdown decreased cardiac function in rats with I/R injury. Moreover, oxidative stress injury in I/R rats with CSE knockout was aggravated, while the increased expression of H2S and CSE in the aortic tissues resulted in alleviated the oxidative stress injury. Moreover, increased H2S and CSE levels were found to inhibit cell apoptotic ability in the aortic tissues after I/R injury, thus attenuating oxidative stress injury, accompanied by inhibited expression of apoptosis-related proteins. In HCAECs following oxidative stress treatment, siCSE and CaM inhibitor were observed to reverse the protection of CaR agonist. Coimmunoprecipitation assay revealed the interaction between CSE and CaM. Taken together, all above-mentioned data provides evidence that activation of the CaR-CSE/H2S pathway may confer a potent protective effect in cardiac I/R injury.  相似文献   

14.
15.
16.
Ischemic preconditioning (IP) may protect the lung from ischemia-reperfusion (I/R) injury following cardiopulmonary by-pass and lung or heart transplantation. The present study was undertaken to investigate the role of ATP-dependent potassium channels (K(ATP)) in IP in the isolated buffer-perfused rat lung (IBPR) under conditions of elevated pulmonary vasoconstrictor tone (PVT). Since pulmonary arterial perfusion flow and left atrial pressure were constant, changes in pulmonary arterial pressure (PAP) directly reflect changes in pulmonary vascular resistance (PVR). When compared to control value, the pulmonary vasodilator responses to histamine and acetylcholine (ACh) following 2 h of hypothermic ischemia were significantly attenuated, whereas the pulmonary vasodilator response to sodium nitroprusside (SNP) was not altered. IP in the form of two cycles of 5 min of ischemia and reperfusion applied prior to the two-hour interval of ischemia, prevented the decrease in the pulmonary vasodilator responses to histamine and ACh. Pretreatment with glybenclamide (GLB) or HMR-1098, but not 5-hydroxydecanoic acid (5-HD), prior to IP abolished the protective effect of IP. In contrast, GLB or 5-HD did not significantly alter the pulmonary vasodilator response to histamine without IP pretreatment. The present data demonstrate that IP prevents impairment of endothelium-dependent vasodilator responses in the rat pulmonary vascular bed. The present data further suggest that IP may alter the mediation of the pulmonary vasodilator response to histamine and thereby trigger a mechanism dependent on activation of sarcolemmal, and not mitochondrial, K(ATP) channels to preserve endothelial-dependent vasodilator responses and protect against I/R injury in the lung.  相似文献   

17.
目的研究血红素加氧酶-1(hemeoxygenase-1,HO-1)在缺血后处理(ischemic postconditioning,IPO)抗肺缺血再灌注损伤中的作用机制及其对STAT-3蛋白表达的影响。方法 40只SD雄性大鼠(250-280 g)随机分为假手术组(S)、缺血再灌注组(IR)、缺血后处理组(IPO)及缺血后处理+HO-1抑制剂组(IPO+ZnPP)。称重法计算缺血肺组织干/湿比(W/D),试剂盒检测缺血肺组织MDA水平及MPO与HO-1活性,Western Blot检测HO-1,p-STAT-3蛋白表达水平。结果与S组比较,IR组大鼠W/D、MDA、MPO、HO-1活性及蛋白表达水平均显著增加,而p-STAT-3蛋白表达水平显著降低,IPO可以逆转上述变化,而HO-1特异性抑制剂可以消除IPO对上述指标的影响。结论 IPO可以通过促进HO-1活性及蛋白表达的增加从而激活STAT-3信号通路而发挥抗肺缺血再灌注损伤作用。  相似文献   

18.
Transient episodes of ischemic preconditioning (PC) render myocardium protected against subsequent lethal injury after ischemia and reperfusion. Recent studies indicate that application of short, repetitive ischemia only during the onset of reperfusion after the lethal ischemic event may obtain equivalent protection. We assessed whether such ischemic postconditioning (Postcon) is cardioprotective in pigs by limiting lethal injury. Pentobarbital sodium-anesthetized, open-chest pigs underwent 30 min of complete occlusion of the left anterior descending coronary artery and 3-h reflow. PC was elicited by two cycles of 5-min occlusion plus 10-min reperfusion before the 30-min occlusion period. Postcon was elicited by three cycles of 30-s reperfusion, followed by 30-s reocclusion, after the 30-min occlusion period and before the 3-h reflow. Infarct size (%area-at-risk using triphenyltetrazolium chloride macrochemistry; means +/- SE) after 30 min of ischemia was 26.5 +/- 5.2% (n = 7 hearts/treatment group). PC markedly limited myocardial infarct size (2.8 +/- 1.2%, n = 7 hearts/treatment group, P < 0.05 vs. controls). However, Postcon had no effect on infarct size (37.8 +/- 5.1%, n = 7 hearts/treatment group). Within the subendocardium, Postcon increased phosphorylation of Akt (74 +/- 12%) and ERK1/2 (56 +/- 10%) compared with control hearts subjected only to 30-min occlusion and 15-min reperfusion (P < or = 0.05), and these changes were not different from the response triggered by PC (n = 5 hearts/treatment group). Phosphorylation of downstream p70S6K was also equivalent in PC and Postcon groups. These data do not support the hypothesis that application of 30-s cycles of repetitive ischemia during reperfusion exerts a protective effect on pig hearts subjected to lethal ischemia, but this is not due to a failure to phosphorylate ERK and Akt during early reperfusion.  相似文献   

19.
Brief episodes of myocardial ischemia-reperfusion applied early in reperfusion may attenuate the reperfusion injury, strategy called ischemic postconditioning (IPO). Our objective was to examine the effects of IPO compared with ischemic preconditioning (IP) on postischemic myocardial dysfunction in spontaneously hypertensive rats (SHR). Isolated hearts from SHR and normotensive WKY rats were subjected to the following protocols: (1) Ischemic control (IC): global ischemia 20 min (GI20) and reperfusion 30 min (R). (2) IPO: three cycles of R30sec–IG30sec at the onset of R; (3) IP: a cycle of IG5–R10 previous to GI20, (4) IPO in the presence of chelerythrine, an inhibitor of protein kinase C (PKC). Systolic and diastolic function were assessed through developed pressure (LVDP) and end diastolic pressure (LVEDP), respectively. Lipid peroxidation was estimated by thiobarbituric reactive substance (TBARS) concentration. IPO significantly improved postischemic dysfunction. At the end of R, LVDP recovered to 87 ± 7% in WKY and 94 ± 7% in SHR vs. 55 ± 11% and 58 ± 12% in IC hearts. LVEDP reached values of 24 ± 6 mmHg for WKY and 24 ± 3 mmHg for SHR vs. 40 ± 8 and 42 ± 5 mmHg in IC hearts. Similar protection was achieved by IP. TBARS contents of SHR hearts were significantly diminished by IP and IPO. PKC inhibition aborted the protection of myocardial function and attenuated the diminution of lipid peroxidation conferred by IPO. These data show that IPO was as effective as IP in improving the postischemic dysfunction of hearts from SHR hearts, and that this cardioprotection appears to be associated with a diminution of ROS-induced damage involving the PKC activation.  相似文献   

20.
目的:观察骨骼肌缺血后处理(RPostC)、心肌的缺血后处理(MPostC)对缺血/再灌注心肌保护作用是否存在差异以及两者联合后作用是否叠加。方法:健康新西兰大白兔3O只,随机分为5组(n=6):缺血对照组(Con)、假手术组(sham)、心肌缺血后处理组(MPostC)和肢体缺血后处理组(RPostC)及心肌缺血后处理联合肢体缺血后处理组(MPostC+RPostC)。采用开胸结扎冠状动脉左室支45 min,再灌注120min方法制作缺血/再灌注模型,采用短暂结扎双侧髂外动脉固定部位5 min造成骨骼肌短暂缺血。以Evans蓝标记心肌缺血区范围,以TTC法检测梗死心肌范围,并分别于缺血前、后及再灌注1、2 h测定血浆磷酸肌酸激酶(CPK)活性和乳酸脱氢酶(LDH)含量。结果:和Con组相比,MPostC和RPostC组心肌梗死范围均明显降低(P<0.05);MPostC联合RPostC组心肌梗死范围与MPostC或RPostC组相比,均进一步降低(均P<0.05)。但MPostC组及RPostC组之间心肌坏死范围未见统计学差异。再灌注120 min末血浆CPK活性及LDH含量也显示相似趋势。结论:骨骼肌缺血后处理及心肌后处理对缺血/再灌注心肌均具有明显保护作用;且两者作用可以叠加;但骨骼肌和心肌后处理之间保护作用未显示统计学差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号