首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hemoglobin Fannin-Lubbock was found in a 9-year-old Mexican-American female. The abnormal hemoglobin was detected as a fast-moving variant by electrophoresis on cellulose acetate at pH 8.4. Structural analysis indicated a substitution in the beta-chain of aspartic acid for glycine at position 119, a position involved in the alpha1beta1 contact of the hemoglobin tetramer. This contact between unlike chains is larger and undergoes a smaller shift during the process of oxygenation and deoxygenation that the alpha1beta2 contact (Perutz, M.F., Muirhead, H., Cox, J.M. and Goaman, L.C.G. (1968) Nature 219, 131-139). Mutations in this contact tend to cause slight or no changes in functional behavior. Apart from a mild anemia, the propositus did not exhibit any obvious clinical symptoms.  相似文献   

2.
Hemoglobins (Hbs) Austin and Waco were detected by their electrophoretic migration on cellulose acetate (pH 8.4) and citrate agar (pH 6.2). By these methods, both variants migrated between Hbs A and F. Globin chain analysis at pH 8.6 indicated that the mutant β chain of Hb Austin was faster moving than the βA chain; however, the mutant chain of Hb Waco was indistinguishable from the βA chain by this technique. The two variants were isolated by ion-exchange column chromatography. Sequence studies demonstrated a substitution of serine (Hb Austin) and lysine (Hb Waco) for arginine at position 40 in the β chain. These mutations involve an amino acid residue in the α1β2 contact region, which, before this report, had been considered invariant in all hemoglobin sequences. Hb Austin was found to exist as dimers when oxygenated and as tetramers when deoxygenated. The equilibrium constant (Kd) for the tetramer to dimer transition was approximately 300 × 10?6m, as calculated from sedimentation velocity studies. This variant also had high oxygen affinity, a much reduced heme-heme interaction, and a normal Bohr effect. The functional properties of Hb Waco were similar to those of Hb A.  相似文献   

3.
E Di Cera  C H Robert  S J Gill 《Biochemistry》1987,26(13):4003-4008
An allosteric model is presented that provides a simple explanation for the low population of triply ligated species, relative to the other species, in the oxygenation of human hemoglobin tetramers as found in high-concentration studies [Gill, S. J., Di Cera, E., Doyle, M. L., Bishop, G. A., & Robert, C. H. (1987) Biochemistry (preceding paper in this issue)]. The model is a quantitative interpretation of the Perutz mechanism [Perutz, M. F. (1970) Nature (London) 228, 726-739] and is based on a number of structural and thermodynamic findings so far reported in the analysis of hemoglobin properties. Human hemoglobin is assumed to exist in two quaternary states: the T or low-affinity state and the R or high-affinity state. An extreme chain heterogeneity in the T state is postulated so that oxygen binds only to the alpha chains. Nearest-neighbor interactions between the alpha chains may lead to cooperativity within the T state. The R state is noncooperative, and both the alpha and beta chains have equal oxygen affinity.  相似文献   

4.
Because Tyr35beta is located at the convergence of the alpha1beta1, alpha1beta2, and alpha1alpha2 interfaces in deoxyhemoglobin, it can be argued that mutations at this position may result in large changes in the functional properties of hemoglobin. However, only small mutation-induced changes in functional and structural properties are found for the recombinant hemoglobins betaY35F and betaY35A. Oxygen equilibrium-binding studies in solution, which measure the overall oxygen affinity (the p50) and the overall cooperativity (the Hill coefficient) of a hemoglobin solution, show that removing the phenolic hydroxyl group of Tyr35beta results in small decreases in oxygen affinity and cooperativity. In contrast, removing the entire phenolic ring results in a fourfold increase in oxygen affinity and no significant change in cooperativity. The kinetics of carbon monoxide (CO) combination in solution and the oxygen-binding properties of these variants in deoxy crystals, which measure the oxygen affinity and cooperativity of just the T quaternary structure, show that the ligand affinity of the T quaternary structure decreases in betaY35F and increases in betaY35A. The kinetics of CO rebinding following flash photolysis, which provides a measure of the dissociation of the liganded hemoglobin tetramer, indicates that the stability of the liganded hemoglobin tetramer is not altered in betaY35F or betaY35A. X-ray crystal structures of deoxy betaY35F and betaY35A are highly isomorphous with the structure of wild-type deoxyhemoglobin. The betaY35F mutation repositions the carboxyl group of Asp126alpha1 so that it may form a more favorable interaction with the guanidinium group of Arg141alpha2. The betaY35A mutation results in increased mobility of the Arg141alpha side chain, implying that the interactions between Asp126alpha1 and Arg141alpha2 are weakened. Therefore, the changes in the functional properties of these 35beta mutants appear to correlate with subtle structural differences at the C terminus of the alpha-subunit.  相似文献   

5.
A W Lee  M Karplus  C Poyart  E Bursaux 《Biochemistry》1988,27(4):1285-1301
The relationship in hemoglobin between cooperativity (dependence of the Hill constant on pH0 and the Bohr effect (dependence of the mean oxygen affinity on pH) can be described by a statistical thermodynamic model [Szabo, A., & Karplus, M. (1972) J. Mol. Biol. 72, 163-197; Lee, A., & Karplus, M. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 7055-759]. In this model, salt bridges and other interactions serve to couple tertiary and quaternary structural changes. To test and refine the model, it is applied to the analysis of the pH dependence of the tetramer Adair constants corrected for statistical factors (K4i', i = 1-4). Attention is focused on the proton release of the first (delta H1+ = alpha log K41'/alpha pH) and last (delta H4+ = alpha log K44'/alpha pH) oxygenation steps, where K4i' are the Adair constants corrected for statistical factors. Measurements of delta H1+ and delta H4+ under carefully controlled conditions are reported, and good agreement between the model calculation and these experimental results is obtained. The salt bridges are found to be partially coupled to the ligation state in the deoxy quaternary structure; it is shown that a Monod-Wyman-Changeux-type model, in which the salt bridges are coupled only to quaternary structural change, is inconsistent with the data for delta H1. The significance of the present analysis for an evaluation of the Perutz mechanism [Perutz, M.F. (1970) Nature (London) 228, 726-734, 734-739] and other models for hemoglobin cooperativity is discussed.  相似文献   

6.
Haptoglobin is a transport glycoprotein which removes free hemoglobin from the circulation of vertebrates. In human populations haptoglobin is polymorphic due to three alleles, Hp alpha 1F, Hp alpha 1S and Hp alpha 2. The Hp alpha 2 allele is roughly twice the length of the Hp alpha 1 alleles and is the product of a partial gene duplication possibly resulting from an unequal crossover event in a heterozygous genotype Hp alpha 1F/Hp alpha 1S. In the study described here we compare the cDNA encoding Hp alpha 1S to that encoding Hp alpha 2FS . Both have a leader sequence followed by the genotypic alpha chain sequence, a beta sequence and an untranslated sequence in the 3' end. The cDNA encoding Hp alpha 2FS is composed of alpha 1F and alpha 1S domains differing by four nucleotide replacements. Hp alpha 1S cDNA contains the same replacement site mutations found in the alpha 1S domain of Hp alpha 2FS , indicating that this coding region has sustained few, if any, mutations since its incorporation into the Hp alpha 2FS gene.  相似文献   

7.
S K Soni  L A Kiesow 《Biochemistry》1977,16(6):1165-1170
The transition from deoxy to oxystructure of hemoglobin A (Hb) is accompanied by the breaking of the salt bridges formed by C-terminal residues in deoxy-Hb. This, in turn, changes the state of the heme. The switch between these different allosteric forms can be followed by changes in the optical absorbance spectra (Perutz, M. F., Ladner, J. E., Simon, S. R., and Ho, C. (1974), Biochemistry 13, 2163). Using difference spectroscopy in the soret region, pH-dependent spectral changes of Hb and its derivatives (carbamylated at both the alpha-NH2 groups, alpha2cbeta2c; N-ethylsuccinimide hemoglobin, NES-Hb) in their deoxy and carbonmonoxy forms were measured. From these measurements, the pK values of histidine-146beta and valine-1alpha in deoxy-Hb were determined to be 8.6 +/- 0.2 and 7.7 +/- 0.1, respectively. In carbonmonoxy-Hb a pK value of 6.3 +/- 0.1 was found.  相似文献   

8.
Venous blood was obtained from five sickle cell trait donors with relatively high hemoglobin S concentrations (40% of total hemoglobin) and five donors with unusually low hemoglobin S concentrations (25 to 30%). A fraction of cells with 15 to 20% reticulocytes was isolated from the blood and incubated with [3H]leucine in a medium supporting protein synthesis for various times from 1.25 to 60 min. Previous studies showed an imbalance in globin chain synthesis in reticulocytes of "low hemoglobin S" donors which suggested the presence of an alpha-thalassemia gene; reticulocytes of "high hemoglobin S" donors had balanced globin chain synthesis (DeSimone, J., Kleve, L., Longley, M.A., and Shaeffer, J. (1974) Biochem. Biophys. Res. Commun. 59, 564-569). In the present study the soluble phase of the 3H-labeled reticulocytes was examined by electrophoresis on strips of cellulose acetate. The tetramer hemoglobins A and S were separated from each other and from a small pool of free, newly synthesized alpha and beta chains. Kinetics of labeling studies showed that the free alpha and beta chains were intermediates in tetramer hemoglobin assembly. The distribution of radioactivity between the alpha and beta chains of each of the electrophoretically isolated components were determined by separation of their globin chains on CM-cellulose columns. After 5 min of 3H-labeling of the reticulocytes from donors with 40% hemoglobin S the ratio of newly synthesized alpha chains to beta chains in the tetramer hemoglobins A and S ranged from 0.37 to 0.58. This ratio increased with longer labeling times. Almost all of the radioactivity of the free chain intermediates was in the alpha chain. These results confirmed the presence of a significant pool of newly synthesized alpha chains and a normal pattern of hemoglobin assembly in which initially unlabeled alpha chains combined with labeled beta chains when the cells were exposed to [3H]leucine. Conversely, in the reticulocytes of donors with 25 to 30% hemoglobin S the ratio of newly synthesized alpha chains to beta chains in the completed hemoglobins A and S ranged from 0.96 to 1.37 and remained unchanged throughout the 3H-labelling period. The radioactivity of the free alpha chain pool was substantially less that the total radioactivity of the betaA and betaS chain pools. These results confirmed the existence of a decreased pool size of soluble alpha chain intermediates and a pattern of hemoglobin assembly consistent with the presence of the alpha-thalassemia gene.  相似文献   

9.
B R Premachandra 《Biochemistry》1986,25(11):3455-3462
The equilibrium binding of hemoglobin to isolated band 3 protein exhibited positive cooperativity [Hill coefficient = 1.65 +/- 0.1; total number of binding sites at pH 6.6 in 5 mM sodium phosphate buffer = 32 500 +/- 940 pmol/mg; Ka = (3.0 +/- 0.5) X 10(5) M-1]. The binding was reversible and ionic in nature as the bound hemoglobin was readily displaced by KCl, ATP, and 2,3-diphosphoglycerate, the latter two being more effective than KCl on a molar basis. The ratio of the interaction of hemoglobin to band 3 protein per se was 1:1, whereas the band 3 preparation as a whole (protein + lipids) was 3:1. Saturating levels of glyceraldehyde-3-phosphate dehydrogenase blocked only 33% of the total binding sites which were localized at the cytoplasmic segment; the remaining 67% was localized in lipids by their extraction with acetone. Reconstitution of acetone-extracted band 3 with phospholipid liposomes indicated phosphatidylserine as the binding site. The positive cooperativity in binding to acetone-extracted band 3 was increased (Hill constant = 2.1 +/- 0.1) compared to the band 3 preparation. After separation of the alpha and beta chains of hemoglobin, only the alpha chain binds to band 3 with positive cooperativity to an extent of 45-50% of native hemoglobin with similar affinity. The binding capacity of p-(hydroxymercuri)benzoate (HMB) derivatives of hemoglobin and its alpha chain was less than that of native hemoglobin, whereas HMB-beta chain or beta chain did not bind.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The reconstitution of hemoglobin F from isolated alpha and gamma chains was studied. An equimolar amounts of the alpha and gamma chains were mixed and incubated in 10 mM potassium phosphate buffer, pH 7.0, at 25 degrees C. Formation of hemoglobin F in the mixture was measured by separating hemoglobins on a cation exchange HPLC. Time courses of the formation of Hb F were independent of the protein concentration and could be analyzed on an exponential process with a first-order rate constant of (2.0 +/- 0.4) x 10(-3) h-1. Under the experimental conditions the isolated gamma chain existed as tetramer dominantly. These results suggest that the overall reaction of the reconstitution of hemoglobin F is limited by the dissociation step of the self-associated gamma chain.  相似文献   

11.
I M Russu  C Ho 《Biochemistry》1986,25(7):1706-1716
The contribution of the carboxyl-terminal histidines of the beta chains, beta 146(HC3), to the alkaline Bohr effect of human normal adult hemoglobin has been shown by this laboratory to depend upon the solvent composition. Using high-resolution proton nuclear magnetic resonance spectroscopy, we have found that the pKa value of the beta 146-histidine is 8.0 in the deoxy form, while in the carbonmonoxy form it ranges from 7.1 to 7.85 depending upon the concentration of inorganic phosphate and chloride ions present. These conclusions have been questioned by Perutz and co-workers on the basis of biochemical, structural, and proton nuclear magnetic resonance studies of mutant and enzymatically or chemically modified hemoglobins [Perutz, M. F., Kilmartin, J. V., Nishikura, K., Fogg, J. H., Butler, P. J., & Rollema, H. S. (1980) J. Mol. Biol. 138, 649-670; Kilmartin, J. V., Fogg, J. H., & Perutz, M. F. (1980) Biochemistry 19, 3189-3193; Perutz, M. F., Gronenborn, A. M., Clore, G. M., Fogg, J. H., & Shih, D. T.-b. (1985) J. Mol. Biol. 183, 491-498]. In this work, we use proton nuclear magnetic resonance spectroscopy to assess the effects of structural modifications on the histidyl residues and on the overall conformation of the hemoglobin molecule in solution. The structural perturbations investigated all occur within the tertiary domains around the carboxyl-terminal region of the beta chain as follows: Hb Cowtown (beta 146His----Leu); Hb Wood (beta 97His----Leu); Hb Malm? (beta 97His----Gln); Hb Abruzzo (beta 143His----Arg). Our results demonstrate that the conformational effects of single-site structural modifications upon the conformation and dynamics of hemoglobin depend strongly on their location in the three-dimensional structure of the protein molecule and also on their chemical nature. Furthermore, in normal hemoglobin, the spectral properties of several surface histidyl residues are found to depend, in the ligated state, upon the nature of the ligand. Our present findings do not support the recent spectral assignments proposed by Perutz et al. (1985) for the proton resonances of the beta 146- and beta 97-histidines and their suggestion that the enzymatic removal of the carboxyl-terminal beta 146-histidyl residues induces a conformational equilibrium for the beta 97-histidines in the des-beta 146His hemoglobin molecule in the carbonmonoxy form.  相似文献   

12.
Up until now it has been assumed that the protease-binding property of alpha1-protease inhibitor (alpha1PI) was destroyed by acid starch gel electrophoresis (pH 4.9). Analyses on acid starch gel blocks for pH and conductivity changes during and following a typical electrophoretic run showed that it was unlikely that the separating alpha1PI would be exposed to pH values lower than 6.2, and that the allele products, following the passage of the buffer front, were in an environment of constant pH(6.3), extremely low conductivity and high field strength. These results strongly suggested the likelihood that alpha1-PI would be chemically and physically unchanged as a result of exposure to acid starch gel electrophoresis. In order to test this likelihood, human serum was electrophoretically separated in acid starch gel and following electrophoresis, was immersed in 0.1 M diethylbarbiturate buffer, pH 8.6, containing 20 mug/ml of pancreatic elastase. The pH-adjusted (8.15) and elastase-impregnated starch gel layer was superimposed on hemoglobin-agar for 2.5 h at 37 degrees C followed by immersion of the hemoglobin-agar layer in 1% NaCl overnight, distilled water for 2 h, drying under filter paper and staining. The results showed zones of undigested hemoglobin indicating, unequivocally, that the separated alpha1PI allele products are capable of forming complexes with proteases and that alpha1PI is not inactivated following exposure to acid starch gel electrophoresis. Densitometric analysis of the transparent stained zones on a clear agar gel background offers an alternative to analysis of the acid starch gel-separated zones by antigen-antibody crossed electrophoresis and as such is suitable for identification of alpha1-protease inhibitor phenotypes. Further, the method is specific for alpha1PI and a densitometric scan provides direct information relative to the protease-binding capacity of the sample as well as the contribution of each alpha1PI allele product to that capacity.  相似文献   

13.
The solution conformation of alpha 1-antitrypsin from human blood plasma was studied by the circular dichroism (CD) probe. The CD spectra revealed in this glycoprotein approximately 16-20% of alpha-helix, the rest of the main polypeptide chain possessing the pleated sheet (beta) and the aperiodic structures. The conformation was stable between pH 4.7 and 8.8. Reversible change in conformation was observed at pH 10.3, and more dratic denaturation occurred at pH 11.6. The environment of the side chain chromophores was strongly affected by acid at pH 2.5, whereas the main chain conformation was changed slightly. A drastic change in the CD spectra, indicating denaturation, was observed in 3.5 M guanidine hydrochloride. Sodium dodecyl sulfate was effective in disorganizing the tertiary structure and in enhancing the helix content. The phenylalanine band fine structure was observed in the native protein and also after denaturation with acid, guanidine hydrochloride and sodium dodecyl sulfate.  相似文献   

14.
Computer simulations of Gelin and Karplus ((1977) Proc. Natl. Acad. Sci. U.S.A. 74, 801-805) suggest that in hemoglobin upon ligation the penultimate tyrosyl residues of the subunits are not expelled from the hydrophobic pockets described in the crystals between the helices E and F (Perutz, M.F. (1970) Nature 228, 726-737). This implies that both the liganded and unliganded conformations of hemoglobin may be affected by mutations involving such residues. Investigation of the conformational behavior of liganded and unliganded hemoglobin Osler was conducted measuring the functional properties, the subunits dissociation, the CD and electronic spectra, the protons absorption upon interaction with polyanions, and the reactivity of the -SH groups of the protein. The results suggest that both the liganded and unliganded conformations of the system are affected by the mutation, confirming the anticipations of Gelin and Karplus on the relevance of tyrosine at beta 145 for both allosteric states of hemoglobin.  相似文献   

15.
Total hemolysates of Synbranchus marmoratus Bloch, 1795 captured at four different sites in the State of S?o Paulo, Brazil, showed two different hemoglobin phenotypes when submitted to agar-starch gel electrophoresis on glass slides in basic buffer. Phenotype I was characterized by 3 hemoglobin bands. When the total hemolysate was submitted to cellulose acetate electrophoresis in basic buffer containing 6 M urea and beta-mercaptoethanol, Phenotype I showed four globins of the alpha 1, alpha 2, beta and gamma types, with 11.9 +/- 1.9 g% total hemoglobin, 45.3 +/- 3.6% globular volume, and 26.8 +/- 4.4% mean corpuscular hemoglobin concentration (MCHC). Phenotype II showed three groups of hemoglobins, with a total of up to 12 hemoglobin bands. When the total hemolysate was submitted to cellulose acetate electrophoresis in basic buffer containing 6 M urea and beta-mercaptoethanol, phenotype II showed five types of globins, denoted types alpha 1, alpha 2, gamma 1, gamma 2 and beta, having electrophoretic positions different from those of Phenotype I globins, with 18.1 +/- 3.3% total hemoglobin, 47.9 +/- 6.4% globular volume, and 37.8 +/- 4.4% MCHC. The distribution of the specimens having the two hemoglobin phenotypes is associated with the different geomorphological provinces of the State of S?o Paulo, suggesting the existence of at least two populational groups of Synbranchus marmoratus.  相似文献   

16.
Previous studies have demonstrated that human plasma alpha 2-macroglobulin (alpha 2 M) possesses a single subunit chain (Mr approximately 185,000) when incubated with dodecyl sulfate and dithiothreitol at 37 degrees C and analyzed by dodecyl sulfate-gel electrophoresis. The present study details the observation that heating alpha 2 M to 90 degrees C under identical conditions produces at least two additional polypeptide chains, termed bands II and III, with apparent molecular weights of 125,00 and 62,000. The generation of these fragments is enhanced by increasing the time of incubation. The appearance of band II composition of the buffer, dodecyl sulfate concentrations, or alpha 2 M protein concentration in the incubation mixture. The electrophoretic bands II and III of alpha 2 M have dissimilar 125I-labeled tryptic peptide digests and also differ in their amino acid composition. The heat-induced fragmentation of alpha 2M is not affected by the inclusion of a variety of low molecular weight protease inhibitors, suggesting that the appearance of bands II and III is not due to enzyme-catalyzed hydrolysis. When the subunit chain of alpha 2M is first cleaved by trypsin into the previously described Mr = 85,000 derivative, neither band II nor III material, nor other lower molecular weight products are generated by heat treatment. Furthermore, preincubation of alpha 2M with methylamine prevents fragmentation of the subunit chain. These results indicate that these fragments are neither pre-existing subunits of alpha 2M nor derivatives formed prior to treatment for gel analysis. These data provide evidence that a covalent bond in the alpha 2M molecule is unusually susceptible to heat-induced cleavage.  相似文献   

17.
Human fibrinogen was clotted under conditions that promote latent factor XIII activity and in the presence of a radioactive substitute cross-linking donor ([14C]glycine ethyl ester). The labeled fibrin was reduced and alkylated in the presence of 6 M guanidinium chloride. After dialysis and freeze-drying, the preparation was separated into its constituent polypeptide subunits by chromatography on (carboxymethyl)cellulose in the presence of 8 M urea. Under the incorporation conditions used, the radioactivity was limited to gamma chains (one donor molecule/chain) and alpha chains (two donor molecules/chain). The labeled alpha chains were digested with cyanogen bromide and fractionated on Sephadex G-50. All the radioactivity was found in a fragment previously designated H alpha CNI, the largest of the cyanogen bromide fragments in the alpha chain. The fragment was further fragmented by digestion with plasmin, trypsin, chymotrypsin, and/or staphylococcal protease. The incorporated radioactivity was found to reside in equal amounts at two different sites located 38 residues apart. These were determined to be positions 88 and 126 in H alpha CNI, which correspond to glutamine-328 and glutamine-366 in the alpha chain.  相似文献   

18.
Properties of Hb Wood (beta-97(FG4)His leads to Leu), a high oxygen affinity hemoglobin with reduced hemeheme interaction, were examined in its nitric oxide liganded form. The reactivity of the beta-93 thiol groups and the electron paramagnetic resonance (EPR) spectrum were examined to determine what effect the amino acid substitution, which occurs at the alpha1beta2 interface, would have on inositol hexaphosphate induced transition of this form of the tetramer. Binding of inositol hexaphosphate (IHP) in a 1:1 stoichiometry was demonstrated. In spite of apparently normal interaction with IHP, there was little or no change in the reactivity of the beta-93 thiol groups and in the electron paramagnetic resonance (EPR) spectrum as contrasted with the marked changes characteristic of normal hemoglobin (HbA). In contrast with NO-HbA, there was also no development of the EPR hyperfine structure in NO-Hb Wood with increased protonation of the protein at pH below 7.0. Taken together with the observations of Henry and Banerjee ((1973), J. Mol. Biol. 73, 469) on the development of NO-Hb EPR hyperfine structure and of Perutz et al. (1974a), Biochemistry 13, 2174) on changes in thiol reactivity with the R leads to T transition, the results suggest that IHP or H+ cannot switch NO-Hb Wood to the T conformation. Since the atomic structures of met- and deoxyhemoglobin offer no indication that His-97 plays any special part in the allosteric mechanism (M. E. Perutz, personal communication), it appears that the replacement of His-97 by Leu reduces the stability of the T structure relative to that of R.  相似文献   

19.
Hb Hasharon has an electrophoretic mobility similar to that of Hb S in cellulose acetate and a mobility between Hb S and C at acid pH. In high-performance liquid chromatography, Hb Hasharon shows a distinct chromatographic profile and retention time. The origin of this variant is a mutation in codon 47 (GAC --> CAC) of the alpha2-globin gene, resulting in the replacement of asparagine by histidine during the translation process. Ten blood samples from individuals suspected of being Hb Hasharon carriers were analyzed. In addition to classic laboratory tests and high-performance liquid chromatography, molecular analysis by polymerase chain reaction with restriction fragment length polymorphism designed in the laboratory was performed to confirm this mutation. The study of these cases showed that a combination of classical and molecular methodologies is necessary in the diagnosis of hemoglobinopathies for a correct hemoglobin mutant identification. The accurate identification of hemoglobin variants is essential for genetic counseling and choice of therapy.  相似文献   

20.
Hemoglobin Fort Gordon, alpha2beta2145 Tyr replaced by Asp (HC2), has been observed in a 20-year-old black male with compensatory erythrocytosis. The variant was readily identified by electrophoresis and chromatography, and comprised about 30% of the red cell hemoglobin. The substitution was identified through analyses of tryptic peptides of various digests of the isolated beta chain. The oxygen affinity of whole blood was increased; two components were observed one of which had a greatly increased affinity for oxygen and a markedly reduced subunit cooperativity. It appears that the Tyr replaced by Asp substitution resembles the Tyr replaced by His substitution in hemoglobin Bethesda (Bunn, H. F. et al. (1972) J. Clin. Invest. 51, 2299-2309; Olson, J. S. and Gibson, G. H. (1972) J Biol. Chem. 247, 3662-3670; Adamson et al. (1972) J. Clin. Invest. 51, 2883-2888) in that both inhibit the quarternary change of the oxy to the deoxy conformation, resulting in greatly altered functional properties. Studies of a few members of the family were negative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号