首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vasodilator effect of the ethanolic extract of leaves from Hancornia speciosa Gomes (HSE) was evaluated in superior mesenteric artery rings. HSE produced a concentration-dependent vasodilation (IC50 = 10.8 +/- 4.0 microg/mL) in arterial rings pre-contracted with phenylephrine, which was completely abolished in endothelium-denuded vessels. Endothelium-dependent vasodilation induced by HSE was strongly reduced by L-NAME (100 microM), a nitric oxide (NO) synthase inhibitor, but neither by atropine, a muscarinic receptor antagonist (1 microM), nor by indomethacin (10 microM), a cyclooxygenase inhibitor. In rings pre-contracted with 80 mM KCl, the vasodilator effect of HSE was shifted to the right and was completely abolished in the presence of L-NAME (100 microM). Similar effects were obtained in mesenteric rings pre-contracted with phenylephrine in the presence of KCl 25 mM alone or in addition to 100 microM L-NAME. In addition, BaCl2 (1 mM) dramatically reduced the vasodilation induced by HSE. Together, these findings led us to conclude that HSE induces an endothelium-dependent vasodilation in rat mesenteric artery, by a mechanism dependent on NO, on the activation of potassium channels and endothelium-derived hyperpolarizing factor release. Rutin, identified as a major peak in the HPLC fingerprint obtained for HSE, might contribute for the observed vasodilator effect, since it was able to induce an endothelium-dependent vasodilation in rat superior mesenteric arteries.  相似文献   

2.
Here we investigated the effect of the flavonoid galangin in isolated rat thoracic aortic rings. Galangin (0.1-100 microM) induced relaxation in rings pre-contracted with phenylephrine (PE 1 microM) or with KCl (100 mM) or pre-treated with the nitric oxide synthase inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME, 100 microM), the cyclooxygenase inhibitor indomethacin (10 microM) and the adenylate cyclase inhibitor, SQ 22,536 (100 microM). In another set of experiments, rat aortic rings were incubated with galangin (1-100 microM) and the contractile responses to PE (0.001-3 microM) or to KCl (60 mM) were evaluated. We also evaluated the effect of galangin (100 microM) on PE (10 microM)-induced contraction in a Ca2+-free medium. Galangin relaxed aortic rings with or without endothelium. Galangin effect was significantly inhibited by L-NAME. Galangin inhibited the contractile response to PE, either in presence or in absence of external calcium, and to KCl. In the end, we also found that galangin caused nitric oxide (NO) release from aortic rings and abolished the increase in [Ca2+]i triggered by PE or KCl in aortic smooth muscle cells, either in presence and in absence of external Ca2+. Our results suggest that galangin reduces the contractility of rat aortic rings through an endothelium-dependent mechanism, involving NO, and also through an endothelium-independent mechanism, inhibiting calcium movements through cell membranes.  相似文献   

3.
Sarmesin, [Sar1, Tyr(Me)4]angiotensinII], has been reported to be a competitive angiotensin II (AII) receptor antagonist in rat smooth muscle preparations (Scanlon et al., (1984), Life Science 34, 317-321). In the present study, sarmesin displaced AII from its binding sites in rat aortic smooth muscle cells and in a rabbit aorta membrane preparation (IC50 5 and 6 nM resp.; Ki 4.1 and 5.3 resp.) In rabbit aortic rings, sarmesin (0.003-3 microM) produced concentration-dependent contractions (ED50 89 nM) and this effect was inhibited by saralasin. No contraction was observed in the rat aorta up to 100 microM. In rabbit aortic rings, sarmesin, at the same concentrations that produced contraction, inhibited contractions induced by AII in a competitive manner (pA2 7, 26). These results indicate that, in rabbit aortic rings sarmesin is a partial agonist of AII receptors.  相似文献   

4.
We have recently described, in the mouse aorta, the vasodilator effect of angiotensin-(1-7) (Ang-(1-7)) was mediated by activation of the Mas Ang-(1-7) receptor and that A-779 and D-Pro7-Ang-(1-7) act as Mas receptor antagonists. In this work we show pharmacological evidence for the existence of a different Ang-(1-7) receptor subtype mediating the vasodilator effect of Ang-(1-7) in the aorta from Sprague-Dawley (SD) rats. Ang-(1-7) induced an endothelium-dependent vasodilator effect in aortic rings from SD rats which was inhibited by removal of the endothelium and by L-NAME (100 microM) but not by indomethacin (10 microM). The Ang-(1-7) receptor antagonist D-Pro7-Ang-(1-7) (0.1 microM) abolished the vasodilator effect of the peptide. However, the other specific Ang-(1-7) receptor antagonist, A-779 in concentrations up to 10 microM, did not affect vasodilation induced by Ang-(1-7). The Ang II AT1 and AT2 receptors antagonists CV11974 (0.01 microM) and PD123319 (1 microM), respectively, the bradykinin B2 receptor antagonist HOE 140 (1 microM) and the inhibitor of ACE captopril (10 microM) did not change the effect of Ang-(1-7). Our results show that in the aorta of SD rats, the vasodilator effect of Ang-(1-7) is dependent on endothelium-derived nitric oxide. This effect is mediated by the activation of Ang-(1-7) receptors sensitive to D-Pro7-Ang-(1-7), but not to A-779, which suggests the existence of a different Ang-(1-7) receptor subtype.  相似文献   

5.
Lo YC  Tsou HH  Lin RJ  Wu DC  Wu BN  Lin YT  Chen IJ 《Life sciences》2005,76(8):931-944
The vasorelaxation activities of MCPT, a newly synthesized xanthine derivative, were investigated in this study. In phenylephrine (PE)-precontracted rat aortic rings with intact endothelium, MCPT caused a concentration-dependent relaxation, which was inhibited by endothelium removed. This relaxation was also reduced by the presence of nitric oxide synthase inhibitor Nomega-nitro-L-arginine methylester (L-NAME, 100 microM), soluble guanylyl cyclase (sGC) inhibitors methylene blue (10 microM), 1 H-[1,2,4] oxidazolol [4,3-a] quinoxalin-1-one (ODQ, 1 microM), adenylyl cyclase (AC) blocker SQ 22536 (100 microM), ATP-sensitive K+ channel blocker (KATP) glibenclamide (1 microM), a Ca2+ activated K+ channels blocker tetraethylammonium (TEA, 10 mM) and a voltage-dependent potassium channels blocker 4-aminopyridine (4-AP, 100 microM). The vasorelaxant effects of MCPT together with IBMX (0.5 microM) had an additive action. In PE-preconstricted endothelium-denuded aortic rings, the vasorelaxant effects of MCPT were attenuated by pretreatments with glibenclamide (1 microM), SQ 22536 (100 microM) or ODQ (1 microM), respectively. MCPT enhanced cAMP-dependent vasodilator isoprenaline- and NO donor/cGMP-dependent vasodilator sodium nitroprusside-induced relaxation activities in endothelium-denuded aortic rings. In A-10 cell and washed human platelets, MCPT induced a concentration-dependent increase in intracellular cyclic GMP and cyclic AMP levels. In phosphodiesterase assay, MCPT displayed inhibition effects on PDE 3, PDE 4 and PDE 5. The inhibition % were 52 +/- 3.9, 32 +/- 2.6 and 8 +/- 1.1 respectively. The Western blot analysis on HUVEC indicated that MCPT increased the expression of eNOS. It is concluded that the vasorelaxation by MCPT may be mediated by the inhibition of phosphodiesterase, stimulation of NO/sGC/ cGMP and AC/cAMP pathways, and the opening of K+ channels.  相似文献   

6.
We have determined that the methanolic extract of L. caulescens (MELc) produced a significant vasodilator effect in a concentration-dependent and endothelium-dependent manner. This relaxation was blocked by N(omega)-nitro-L-arginine methylester (L-NAME), indicating that MELc vasodilator properties are endothelium mediated due to liberation of nitric oxide (NO). In this paper we aimed to corroborate its mode of action. MELc effects on noradrenaline (NA)-induced contraction in isolated rat aortic thoracic rings with endothelium (+E), in the presence of atropine (0.1 microM) and 1-H-[1,2,4]-oxadiazolo-[4,3a]-quinoxalin-1-one (ODQ, 1 microM) were conducted. MELc relaxation curve was significantly shifted to the right in the presence of ODQ and atropine, thus confirming that its mode of action is related with activation of nitric oxide synthase (NOS) and the consequent increment in NO formation. Bio-guided study of MELc allowed the isolation of ursolic acid (UA, 50 mg) and ursolic-oleanolic acids mixture [UA/OA (7:3), 450 mg]. The relaxant effect of UA (0.038-110 microM) was evaluated in functional experiments. UA induced a significant relaxation in a concentration- and endothelium-dependent manner (IC(50)=44.15 microM) and did not produce a vasorelaxant effect on contraction evoked by KCl (80 mM). In addition, NA-induced contraction was significantly displaced to the right by UA (30 microM). In order to determine its mode of action, UA-induced relaxant effect was evaluated in the presence of atropine (0.1 microM), indomethacin (10 microM), L-NAME (100 microM) and ODQ (1 microM). Relaxation was blocked by L-NAME and ODQ. On the other hand, UA (3 microM) provoked a significant displacement to the left in the relaxation curve induced by sodium nitroprusside (SNP, 0.32 nM to 0.1 microM), but it was not significant in the presence of Carbamoyl choline (carbachol, 1 nM to 10 microM). These results indicate that UA-mediated relaxation is endothelium dependent, probably due to NO release, and the consequent activation of vascular smooth muscle soluble guanylate cyclase (sGC), a signal transduction enzyme that forms the second messenger cGMP.  相似文献   

7.
The vasodilator effect of the ethanolic extract of Mansoa hirsuta leaves (EEF) was assayed in rat aortic rings. EEF produced a concentration-dependent vasodilatation (pIC50=5.1±0.2), which was absent in endothelium-denuded vessels. The vasodilator effect of EEF was similar to a standardized ethanolic extract of Hancornia speciosa Gomes (pIC50=5.1±0.1). The endothelium-dependent vasodilatation induced by EEF was abolished by L-NAME (100 μM), a nitric oxide (NO) synthase inhibitor, but not by indomethacin (10 μM; pIC50=4.9±0.2), a cyclooxygenase inhibitor. The concentration–response curve of EEF was not modified by the addition of superoxide dismutase (SOD; 300 U/ml). In addition, EEF (50 μg/ml) displaced the 3-morpholino-sidnonimine (SIN-1; p<0.05) concentration–effect curve to the left, as well as SOD (300 U/ml). These findings lead us to conclude that EEF induces a NO- and endothelium-dependent vasodilatation in rat aortic preparations, and that this effect is, at least in some extent, due to an increase in the NO bioavailability as consequence of its antioxidant activity. The HPLC-DAD profile recorded for EEF indicates the presence of four major peaks with close retention times, exhibiting similar UV spectra with wavelength maxima compatible with heterogeneous proanthocyanidins.  相似文献   

8.
Anethole is a naturally occurring aromatic oxidant, present in a variety of medicinal plant extracts, which is commonly used by the food and beverage industry. Despite its widespread occurrence and commercial use, there is currently little information regarding effects of this compound on the vasculature. Therefore the actions of anethole on the contractility of rat isolated aorta were compared with those of eugenol, and their respective isomeric forms, estragole and isoeugenol. In aortic rings precontracted with phenylephrine (PE; 1 microM), anethole (10(-6) M-10(-4) M) induced contraction in preparations possessing an intact endothelium, but not in endothelium-denuded tissues. At higher concentrations (10(-3) M-10(-2) M), anethole-induced concentration-dependent and complete relaxation of all precontracted preparations, irrespective of whether the endothelium was intact or not, an action shared by eugenol, estragole and isoeugenol. The contractile and relaxant effects of anethole in PE-precontracted preparations were not altered by L-NAME (10 microM) or indomethacin (10 microM), indicating that neither nitric oxide nor prostaglandins were involved in these actions. The mixed profile of effects was not confined to PE-mediated contraction, since similar responses were obtained to anethole when tissues were precontracted with 25 mM KCl. Anethole and estragole (10(-6)-10(-4) M), but not eugenol or isoeugenol, increased the basal tonus of endothelium-denuded aortic rings, an action that was abolished by VDCC blockers nifedipine (1 microM) and diltiazem (1 microM), or by withdrawal of extracellular Ca(2+). Our data suggest complex effects of anethole on isolated blood vessels, inducing contraction at lower doses, mediated via opening of voltage-dependent Ca(2+)-channels, and relaxant effects at higher concentrations that are shared by structural analogues.  相似文献   

9.
Xanthorrhizol, a bisabolene isolated from the medicinal plant Iostephane heterophylla, was assayed on rat thoracic aorta rings to elucidate its effect and likely mechanism of action, by measuring changes of isometric tension. Xanthorrhizol (1, 3, 10, 30 and 100 microg/mL) significantly inhibited precontractions induced by KCI-; (60mM), noradrenaline (10(-6) M) or CaCl2 (1.0 mM). Increasing concentrations of external calcium antagonized the inhibitory effect on KCl-induced contractions. The vasorelaxing effect of xanthorrhizol was not affected by indomethacin (10 microM) or L-NAME (100 microM) in intact rat thoracic aorta rings precontracted by noradrenaline, which suggested that the effect was not mediated through either endothelium-derived prostacyclin (PGI2) or nitric oxide release from endothelial cells. Endothelium removal did not affect the relaxation induced by xanthorrhizol on rat thoracic aorta rings, discarding the participation of any substance released by the endothelium. Xanthorrhizol inhibitory effect was greater on KCI- and CaCl2-induced contractions than on those induced by noradrenaline. Xanthorrhizol inhibitory effect in rat thoracic aorta is likely explained for interference with calcium availability by inhibiting calcium influx through both voltage- and receptor-operated channels.  相似文献   

10.
Mepivacaine is an aminoamide-linked local anesthetic with an intermediate duration that intrinsically produces vasoconstriction both in vivo and in vitro. The aims of this in-vitro study were to examine the direct effect of mepivacaine in isolated rat aortic rings and to determine the associated cellular mechanism with a particular focus on endothelium-derived vasodilators, which modulate vascular tone. In the aortic rings with or without endothelium, cumulative mepivacaine concentration-response curves were generated in the presence or absence of the following antagonists: N(ω)-nitro-L-arginine methyl ester [L-NAME], indomethacin, fluconazole, methylene blue, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one [ODQ], verapamil, and calcium-free Krebs solution. Mepivacaine produced vasoconstriction at low concentrations (1 × 10(-3) and 3 × 10(-3) mol/L) followed by vasodilation at a high concentration (1 × 10(-2) mol/L). The mepivacaine-induced contraction was higher in endothelium-denuded aortae than in endothelium-intact aortae. Pretreatment with L-NAME, ODQ, and methylene blue enhanced mepivacaine-induced contraction in the endothelium-intact rings, whereas fluconazole had no effect. Indomethacin slightly attenuated mepivacaine-induced contraction, whereas verapamil and calcium-free Krebs solution more strongly attenuated this contraction. The vasoconstriction induced by mepivacaine is attenuated mainly by the endothelial nitric oxide - cyclic guanosine monophosphate pathway. In addition, mepivacaine-induced contraction involves cyclooxygenase pathway activation and extracellular calcium influx via voltage-operated calcium channels.  相似文献   

11.
The effect of apigenin, isolated from Apium graveolens, on the contraction of rat thoracic aorta was studied. Apigenin inhibited the contraction of aortic rings caused by cumulative concentrations of calcium (0.03-3 mM) in high potassium (60 mM) medium, with an IC50 of about 48 microM. After pretreatment it also inhibited norepinephrine (NE, 3 microM)-induced phasic and tonic contraction in a concentration (35-140 microM)-dependent manner with an IC50 of 63 microM. At the plateau of NE-induced tonic contraction, addition of apigenin caused relaxation. This relaxing effect of apigenin was not antagonized by indomethacin (20 microM) or methylene blue (50 microM), and still existed in endothelial denuded rat aorta or in the presence of nifedipine (2-100 microM). Neither cAMP nor cGMP levels were changed by apigenin. Both the formation of inositol monophosphate caused by NE and the phasic contraction induced by caffeine in the Ca(2+)-free solution were unaffected by apigenin. 45Ca2+ influx caused by either NE or K+ was inhibited by apigenin concentration-dependently. It is concluded that apigenin relaxes rat thoracic aorta mainly by suppressing the Ca2+ influx through both voltage- and receptor-operated calcium channels.  相似文献   

12.
The present work examined the effect of chronic oral administration of quercetin, a flavonoid antioxidant, on blood glucose, vascular function and oxidative stress in STZ-induced diabetic rats. Male Wistar-Kyoto (WKY) rats were randomized into euglycemic, untreated diabetic, vehicle (1% w/v methylcellulose)-treated diabetic, which served as control, or quercetin (10mgkg(-1) body weight)-treated diabetic groups and treated orally for 6 weeks. Quercetin treatment reduced blood glucose level in diabetic rats. Impaired relaxations to endothelium-dependent vasodilator acetylcholine (ACh) and enhanced vasoconstriction responses to alpha(1)-adrenoceptor agonist phenylephrine (PE) in diabetic rat aortic rings were restored to euglycemic levels by quercetin treatment. Pretreatment with N(omega)-nitro-l-arginine methyl ester (l-NAME, 10microM) or methylene blue (10microM) completely blocked but indomethacin (10microM) did not affect relaxations to ACh in aortic rings from vehicle- or quercetin-treated diabetic rats. PE-induced vasoconstriction with an essentially similar magnitude in vehicle- or quercetin-treated diabetic rat aortic rings pretreated with l-NAME (10microM) plus indomethacin (10microM). Quercetin treatment reduced plasma malonaldehyde (MDA) plus 4-hydroxyalkenals (4-HNE) content as well as increased superoxide dismutase activity and total antioxidant capacity in diabetic rats. From the present study, it can be concluded that quercetin administration to diabetic rats restores vascular function, probably through enhancement in the bioavailability of endothelium-derived nitric oxide coupled to reduced blood glucose level and oxidative stress.  相似文献   

13.
This work aimed to functionally characterize the mechanisms underlying the relaxation induced by bradykinin (BK) in the rat carotid artery. Vascular reactivity experiments, using standard muscle bath procedures, showed that BK (0.1 nmol/L-3 mumol/L) induced relaxation of phenylephrine-pre-contracted rings in a concentration-dependent manner. Endothelial removal strongly attenuated BK-induced relaxation. HOE-140, the selective antagonist of bradykinin B(2) receptors concentration-dependently reduced the relaxation induced by BK. Pre-incubation of endothelium-intact rings with L-NAME (100 micromol/L), a non-selective nitric oxide synthase (NOS) inhibitor, L-NAME (100 micromol/L), a selective inhibitor of the eNOS or 7-nitroindazole (100 micromol/L), the selective inhibitor of nNOS, reduced BK-induced relaxation. Conversely, 1400 W (10 nmol/L), a selective inhibitor of iNOS, did not alter the relaxation induced by BK. Surprisingly, indomethacin (10 micromol/L) a non-selective inhibitor of cyclooxygenase (COX) increased BK-induced relaxation in endothelium-intact but not denuded rings. Neither SQ29548 (3 micromol/L), a competitive antagonist of PGH(2)/TXA(2) receptors nor AH6809 (10 micromol/L), an antagonist of PGF(2alpha) receptors significantly altered the relaxation induced by BK in endothelium-intact rings. The combination of SQ29548 and AH6809 increased BK-induced relaxation. The present study shows that the vasorelaxant action displayed by BK in the rat carotid is mediated by endothelial B(2) receptors and the activation of the NO pathway. The major finding of this work is that it demonstrated functionally that endothelial-derived vasoconstrictor prostanoids (probably PGH(2), TXA(2) and PGF(2alpha)) counteract the vasorelaxant action displayed by BK.  相似文献   

14.
白细胞介素-2引起离体大鼠主动脉环舒张及其作用机制   总被引:20,自引:2,他引:18  
Cao CM  Ye S  Yu H  Xu QS  Ye ZG  Shen YL  Lu Y  Xia Q 《生理学报》2003,55(1):19-23
本文旨在研究白细胞介素-2(interleukin-2,IL-2)以离体大鼠胸主动脉环收缩张力的作用及其可能机制。采用累积加药法,检测IL-2对去氧肾上腺素(PE)和KCl预收缩的胸主动脉环收缩张力的影响。结果表明,IL-2(1、10、100、1000U/ml)对PE(10μmol/L)预收缩的内皮完整血管环产生浓度依赖性的舒张作用,而对KCl (120mmol/L)预收缩的血管无作用,去除内皮后,IL-2的舒张作用被取消。用一氧化氮合酶抑制剂L-NAME(0.1mmol/L)和鸟苷酸环化酶抑制剂亚甲蓝(10μmol/L)预处理,均可阻断IL-2的舒张血管作用。用环氧合酶抑制剂吲哚美辛(Indo,10μmol/L)预处理可阻断IL-2的血管舒张作用。从上述观察结果推论,IL-2通过NO-鸟苷酸环化酶和环氧合酶途径产生内皮依赖的血管舒张作用。  相似文献   

15.
In vitro extracellular Mg(2+) concentration ([Mg(2+)](0)) produces endothelium-dependent and endothelium-independent relaxations in rat aorta in a concentration-dependent manner. These relaxant effects of Mg(2+) on intact rat aortic rings, but not denuded rat aortic rings, were suppressed by either N(G)-monomethyl-L-arginine (L-NMMA), N(omega)-nitro-L-arginine methyl ester (L-NAME), or methylene blue. The inhibitory effects of L-NMMA and L-NAME could be reversed partly by L-arginine. [Mg(2+)](0)-induced dilatation in vivo in rat mesenteric arterioles and venules was almost completely inhibited by N(G)-nitro-L-arginine and L-NMMA. Removal of extracellular Ca(2+) concentration ([Ca(2+)](0)) or buffering intracellular Ca(2+) concentration in endothelial cells, with 10 microM 1, 2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM, markedly attenuated the relaxant effects of Mg(2+). Mg(2+) produced nitric oxide (NO) release from the intact aortic rings in a concentration-dependent manner. Removal of [Ca(2+)](0) diminished the increased NO release induced by elevated levels of [Mg(2+)](0). In vivo infusion of increasing doses (1-30 microM/min) of MgSO(4), directly into the femoral veins of anesthetized rats, elicited significant concentration-dependent sustained increases in serum total Mg and concomitant decreases in arterial blood pressure. Before and after employment of various doses of MgSO(4), intravenous administration of either L-NMMA (10 mg/kg) or L-NAME (10 mg/kg) increased (i.e., reversed) the MgSO(4)-lowered blood pressure markedly, and intravenous injection of L-arginine restored partially the increased blood pressure effects of both L-NMMA and L-NAME. Our results suggest that 1) small blood vessels are very dependent on NO release for Mg(2+) dilatations and 2) the endothelium-dependent relaxation induced by extracellular Mg(2+) is mediated by release of endothelium-derived relaxing factor-NO from the endothelium, and requires Ca(2+) and formation of guanosine 3',5'-cyclic monophosphate.  相似文献   

16.
The effects of human urotensin II (hUII) on the vascular tone of different animal species has been studied extensively. However, little has been reported on the vasoactive effects of rat urotensin (rUII) in murine models. The aim of the present study was to investigate the effects of rUII on vasoreactivity in rat basilar arteries. Basilar arteries from adult male Wistar rats (300–350 g) were isolated, cut in rings, and mounted on a small vessel myograph to measure isometric tension. rUII concentrations were studied in both resting and depolarized state. To remove endothelial nitric oxide effects from the rUII response, we treated selected arterial rings with Nω-nitro-L-arginine methyl ester (L-NAME). 10 μM rUII produced a potent vasoconstrictor response in rat basilar arteries with intact endothelium, while isometric forces remained unaffected in arterial rings treated with lower rUII concentrations. Although L-NAME did not have a significant effect on 10 μM rUII-evoked contraction, it slightly increased arterial ring contraction elicited by 1 μM rUII. In depolarized arteries, dose-dependent rUII increased depolarization-induced contractions. This effect was suppressed by L-NAME. Our results show that the rat basilar artery has a vasoconstrictor response to rUII. The most potent vasoconstrictor effect was produced by lower doses of rUII (0.1 and 1 μM) in depolarized arteries with intact endothelium. This effect could facilitate arterial vasospasm in vascular pathophysiological processes such as subarachnoid hemorrhage and hypertension, when sustained depolarization and L-type Ca2+ channel activation are present.  相似文献   

17.
Li J  Ren Y  Dong X  Zhong G  Wu S  Tang C 《Peptides》2003,24(4):563-568
The effects of proadrenomedullin N-terminal 20 peptide (PAMP) and adrenotensin (ADT) on adrenomedullin (ADM)-induced vasodilation were investigated in aortic rings from rat. ADM (10(-9) to 10(-7)M) relaxed the aorta preconstricted with phenylephrine in a concentration-dependent manner. Denudation of endothelium or pretreatment with nitric oxide synthase (NOS) inhibitor, L-NAME, attenuated the vasodilatory action of ADM. ADM-induced vasorelaxation in the aortic rings with endothelium was converted to contraction by PAMP, but not by ADT. The ADM-induced vasodilation was not affected by PAMP in aorta rings without endothelium or in intact aortic rings pretreated with L-NAME. ADM-stimulated nitrite production and NOS activity of the aortas, which was inhibited by PAMP, ADT or PAMP plus ADT. ADM, PAMP, and ADT increased the cyclic adenosine monophosphate (cAMP) contents in vascular tissue. The combination of ADM with PAMP or ADT caused a smaller increase in cAMP level as compared with that of PAMP or ADT alone. These results show that ADM-induced endothelium-dependent vasodilation could be converted to vasoconstriction in the presence of PAMP, probably through a NO-dependent pathway. There was no indication that cAMP was involved in the converting effect of PAMP on ADM vasodilator action.  相似文献   

18.
The structure of the prenylated flavanonol, floranol (1=(2R,3R)-3,5,7-trihydroxy-2-(2-hydroxyphenyl)-6-methoxy-8-(3-methylbut-2-enyl)-4H-1-benzopyran-4-one), isolated from the roots of Dioclea grandiflora (Fabaceae), was unambiguously determined by X-ray analysis. The compound was tested for vasorelaxant activity. In endothelium-containing aortic rings, floranol (1) induced a concentration-dependent vasodilator effect in vessels precontracted with 0.1 microM phenylephrine with an IC(50) value of 19.9+/-2.4 microM. The removal of endothelium or pretreatment of vessels with the NO-synthase inhibitor L-NAME did not change the IC(50) and E(max) values for floranol-induced vasorelaxation. We conclude that floranol (1) should be acting directly in the rat-aorta smooth muscle cells to produce its vasorelaxant effect. The structure-activity relationship was discussed in terms of the 3-D floranol structure determined by X-ray crystallography.  相似文献   

19.
Estrogens could play a cardiovascular protective role not only by means of systemic effects but also by means of direct effects on vascular structure and function. We have studied the acute effects and mechanisms of action of 17-beta-estradiol on vascular tone of rabbit isolated carotid artery. 17-Beta-estradiol (10, 30, and 100 microM) elicited concentration-dependent relaxation of 50 mM KCl-induced active tone in male and female rabbit carotid artery. The stereoisomer 17-alpha-estradiol showed lesser relaxant effects in male rabbits. Endothelium removal did not modify relaxation induced by 17-beta-estradiol. The NO synthase inhibitor L-NAME (100 microM) only reduced significantly relaxation produced by 30 microM 17-beta-estradiol. Relaxation was not modified by the estrogen receptor antagonist ICI 182,780 (1 microM), the protein synthesis inhibitor cycloheximide (1 microM), and the selective K(+) channel blockers charybdotoxin (0.1 microM) and glibenclamide (1 microM). CaCl(2) (30 microM -10 mM) induced concentration-dependent contraction in rabbit carotid artery depolarized by 50 mM KCl in Ca(2+) free medium. Preincubation with 17-beta-estradiol (3, 10, 30, or 100 microM) or the L-type Ca(2+) channel blocker nicardipine (0.01, 0.1, 1, or 10 nM) produced concentration-dependent inhibition of CaCl(2)-induced contraction. In conclusion, 17-beta-estradiol induces endothelium-independent relaxation of rabbit carotid artery, which is not mediated by classic estrogen receptor and protein synthesis activation. The relaxant effect is due to inhibition of extracellular Ca(2+) influx to vascular smooth muscle, but activation of K(+) efflux is not involved. Relatively high pharmacological concentrations of estrogen causing relaxation preclude acute vasoactive effects of plasma levels in the carotid circulation.  相似文献   

20.
In the present work the effect of the aqueous fraction of the ethanolic extract of the leaves (AFL) of Cissampelos sympodialis Eichl. was investigated in the rat aorta. In the presence of functional endothelium, AFL produced concentration-dependent contractions (EC50 value of 76.6 +/- 17.8 micrograms/ml). In the absence of functional endothelium, the concentration-response curves to AFL were significantly shifted to the left (EC50 values of 1.3 +/- 0.9 micrograms/ml) without modification of its maximal contractile effect. In the presence of L-NAME (300 microM) and of indomethacin (10 mM), the concentration-response curves produced by AFL were also shifted to the left (EC50 values of 21.8 +/- 6.2 and 24.3 +/- 13.2 micrograms/ml, respectively). The treatment of the aortas with L-NAME (300 microM) plus indomethacin (10 microM) produced a significant shift to the left of the concentration-dependent curves of AFL (EC50 value of 4.9 +/- 2.2 micrograms/ml), similar to that observed in the absence of the vascular endothelium. In addition, AFL-induced contraction was abolished in the presence of prazosin (1 microM), and significantly shifted to the right in the presence of yohimbine (EC50 value of 723.6 +/- 76.4 micrograms/ml). Thus, based on these results, it can be concluded that contractions induced by AFL in the rat aorta were due to activation of alpha-adrenoceptors. Furthermore, these results also showed that the AFL-induced contractions were modulated by the endothelium, via the release of NO and of a cyclooxygenase-derived relaxant product. Finally, it can be concluded that the contractile effects of AFL on vascular smooth muscle may play an important role in the hypertensive effects of this plant in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号