首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quinolinic acid increased the generation of lipid peroxidation products by isolated rat brain microvessels in vitro. The effect was inhibited both by a specific NMDA receptor antagonist D-2-amino-5-phosphonovaleric acid and by reduced glutathione (GSH). Furthermore, quinolinic acid displaced specific binding of [(3)H]-L-glutamate by cerebral microvessel membranes, particularly in the presence of NMDA receptor co-agonist (glycine) and modulator (spermidine). We conclude that quinolinic acid can cause potentially cytotoxic lipid peroxidation in brain microvessels via an NMDA receptor mediated mechanism.  相似文献   

2.
Excitotoxicity elicited by overactivation of N-methyl-D-aspartate receptors is a well-known characteristic of quinolinic acid-induced neurotoxicity. However, since many experimental evidences suggest that the actions of quinolinic acid also involve reactive oxygen species formation and oxidative stress as major features of its pattern of toxicity, the use of antioxidants as experimental tools against the deleterious effects evoked by this neurotoxin becomes more relevant. In this work, we investigated the effect of a garlic-derived compound and well-characterized free radical scavenger, S-allylcysteine, on quinolinic acid-induced striatal neurotoxicity and oxidative damage. For this purpose, rats were administered S-allylcysteine (150, 300 or 450 mg/kg, i.p.) 30 min before a single striatal infusion of 1 microl of quinolinic acid (240 nmol). The lower dose (150 mg/kg) of S-allylcysteine resulted effective to prevent only the quinolinate-induced lipid peroxidation (P < 0.05), whereas the systemic administration of 300 mg/kg of this compound to rats decreased effectively the quinolinic acid-induced oxidative injury measured as striatal reactive oxygen species formation (P < 0.01) and lipid peroxidation (P < 0.05). S-Allylcysteine (300 mg/kg) also prevented the striatal decrease of copper/zinc-superoxide dismutase activity (P < 0.05) produced by quinolinate. In addition, S-allylcysteine, at the same dose tested, was able to reduce the quinolinic acid-induced neurotoxicity evaluated as circling behavior (P < 0.01) and striatal morphologic alterations. In summary, S-allylcysteine ameliorates the in vivo quinolinate striatal toxicity by a mechanism related to its ability to: (a) scavenge free radicals; (b) decrease oxidative stress; and (c) preserve the striatal activity of Cu,Zn-superoxide dismutase (Cu,Zn-SOD). This antioxidant effect seems to be responsible for the preservation of the morphological and functional integrity of the striatum.  相似文献   

3.
The involvement of superoxide free radicals and lipid peroxidation in brain swelling induced by free fatty acids has been studied in brain slices and homogenates. The polyunsaturated fatty acids linoleic acid (18:2), linolenic acid (18:3), arachidonic acid (20:4), and docosahexaenoic acid (22:6) caused brain swelling concomitant with increases in superoxide and membrane lipid peroxidation. Palmitic acid (16:0) and oleic acid (18:1) had no such effect. Furthermore, superoxide formation was stimulated by NADPH and scavenged by the addition of exogenous superoxide dismutase in cortical slice homogenates. These in vitro data support the hypothesis that both superoxide radicals and lipid peroxidation are involved in the mechanism of polyunsaturated fatty acid-induced brain edema.  相似文献   

4.
Progressive compromise of antioxidant defenses and free radical-mediated lipid peroxidation, which is one of the major mechanisms of secondary traumatic brain injury (TBI), has also been reported in pediatric head trauma. In the present study, we aimed to demonstrate the effect of melatonin, which is a potent free radical scavenger, on brain oxidative damage in 7-day-old rat pups subjected to contusion injury. Whereas TBI significantly increased thiobarbituric acid reactive substances (TBARS) levels, there was no compensatory increase in the antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GPx) 24 hours after TBI in 7-day-old rats. Melatonin administered as a single dose of 5 mg/kg prevented the increase in TBARS levels in both non-traumatized and traumatized brain hemispheres. In conclusion, melatonin protects against oxidative damage induced by TBI in the immature brain.  相似文献   

5.
Cadmium is a well-known human carcinogen. Lipid peroxidation is involved in cadmium-related toxicity and carcinogenesis. Melatonin is an effective antioxidant and free radical scavenger. The potential protective effects of melatonin against cadmium-induced lipid peroxidation in hamster brain, heart, kidney, testes, lung, and liver were examined. Lipid peroxidation was induced by intraperitoneal injection of cadmium chloride [single dose of 1 mg/kg body weight (bw)]. To test whether melatonin would protect against the toxicity of the carcinogen, the melatonin was injected peritoneally at a dose of either 15 mg/kg bw or 5 mg/kg bw, 0.5 h before cadmium treatment and thereafter at 8 h intervals during the day in the 48 h interval following the cadmium injection. One group of hamsters received only a single melatonin injection (a dose of 15 mg/kg bw, 30 min prior to cadmium). Forty-eight hours after cadmium injection, lipid peroxidation increased in brain, heart, kidney, testes, and lung. Either multiple injections of melatonin at both the 5 and 15 mg/kg bw doses, or a single injection of 15 mg/kg bw, prevented the cadmium-related increases in lipid peroxidation in brain, heart and lung. Cadmium-induced lipid peroxidation in kidney was prevented by melatonin when it was given as a single dose of 15 mg/kg bw. Melatonin slightly, but not significantly, reduced cadmium-induced lipid peroxidation in testes. It is concluded that cadmium toxicity, at least with regard to the resulting lipid peroxidation, is reduced by administering melatonin. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Montaldo C  Cannas E  Dettori T  Congiu L  Atzori L 《Life sciences》2000,66(24):PL339-PL344
The effect of melatonin on hydrogen peroxide- induced broncho-and vasoconstriction was examined in vivo in the model of the isolated, perfused and ventilated lung. The administration of hydrogen peroxide (500 microM) to the perfusate caused a marked decrease in lung compliance, conductance and flow rate. The administration of melatonin (500 microM) to the perfusate 20 min before and during the hydroperoxide exposure did not cause any change in lung function. Exposure of lung microsomes to hydrogen peroxide (1-100 microM) did not induce any significant increase in malonaldehyde (MDA), an index of lipid peroxidation, and it was not affected by treatment with melatonin (500 microM). On the other hand, brain microsomes exposed to hydrogen peroxide (1-100 microM) give rise to increased levels of MDA, which were decreased by pre-treatment with melatonin (500 microM). The results suggest that melatonin may exert an antioxidant effect in conditions were lipid peroxidation is occurring. Its use may not be relevant in conditions where the mechanisms of the reactive oxygen species damage appears to be lipid peroxidation independent, such as the case of hydrogen peroxide induced broncho- and vasoconstriction.  相似文献   

7.
Excessive free iron and the associated oxidative damage are commonly related to carcinogenesis. Among the antioxidants known to protect against iron-induced oxidative abuse and carcinogenesis, melatonin and other indole compounds recently have received considerable attention. Indole-3-propionic acid (IPA), a deamination product of tryptophan, with a structure similar to that of melatonin, is present in biological fluids and is an effective free radical scavenger. The aim of the study was to examine the effect of IPA on experimentally induced oxidative changes in rat hepatic microsomal membranes. Microsomes were preincubated in presence of IPA (10, 3, 2, 1, 0.3, 0.1, 0.01 or 0.001 mM) and, then, incubated with FeCl(3) (0.2 mM), ADP (1.7 mM) and NADPH (0.2 mM) to induce oxidative damage. Alterations in membrane fluidity (the inverse of membrane rigidity) were estimated by fluorescence spectroscopy and lipid peroxidation by measuring concentrations of malondialdehyde+4-hydroxyalkenals (MDA+4-HDA). IPA, when used in concentrations of 10, 3 or 2 mM, increased membrane fluidity, although at these concentrations it did not influence lipid peroxidation significantly. The decrease in membrane fluidity due to Fe(3+) was completely prevented by preincubation in the presence of IPA at concentrations of 10, 3, 2 or 1 mM. The enhanced lipid peroxidation due to Fe(3+) was prevented by IPA only at the highest concentration (10 mM). It is concluded that Fe(3+)-induced rigidity and, to a lesser extent, lipid peroxidation in microsomal membranes may be reduced by IPA. However, IPA in high concentrations increase membrane fluidity. Besides melatonin, IPA may be used as a pharmacological agent to protect against iron-induced oxidative damage to membranes and, potentially, against carcinogenesis.  相似文献   

8.
H Monyer  D M Hartley  D W Choi 《Neuron》1990,5(2):121-126
We studied the protective efficacy of novel 21-aminosteroids against several forms of neuronal injury in murine cortical cell cultures. Concentrations of 200 nM to 20 microM partially attenuated the damage induced by glucose deprivation, combined oxygen-glucose deprivation, or exposure to NMDA; maximal protection was less than that produced by NMDA antagonists, but the combination of a 21-aminosteroid plus an NMDA antagonist produced a greater benefit than either drug alone. 21-Aminosteroid addition did not attenuate NMDA-induced whole-cell current, but did block almost all of the damage induced by exposure to iron, a protective action consistent with inhibition of free radical-mediated lipid peroxidation. Lipid peroxidation may be a downstream event mediating a portion of the injury triggered by excess stimulation of NMDA receptors.  相似文献   

9.
Methylmalonic acidemia and propionic acidemia are organic acidemias biochemically characterized by predominant tissue accumulation of methylmalonic acid (MMA) and propionic acid (PA), respectively. Affected patients present predominantly neurological symptoms, whose pathogenesis is not yet fully established. In the present study we investigated the in vitro effects of MMA and PA on important parameters of lipid and protein oxidative damage and on the production of reactive species in synaptosomes from cerebrum of developing rats. Synaptosomes correspond to nerve terminals that have been used to investigate toxic properties of compounds on neuronal cells. The in vivo effects of intrastriatal injection of MMA and PA on the same parameters and on enzymatic antioxidant defenses, were also studied. MMA-induced in vitro and in vivo lipid peroxidation and protein oxidative damage. Furthermore, the lipid oxidative damage was attenuated or prevented, pending on the doses utilized, by the free radical scavengers α-tocopherol, melatonin and by the NMDA glutamate receptor antagonist MK-801, implying the involvement of reactive species and glutamate receptor activation in these effects. In addition, 2′,7′-dichlorofluorescein diacetate oxidation was significantly increased in synaptosomes by MMA, reinforcing that reactive species generation is elicited by this organic acid. We also verified that glutathione peroxidase activity was inhibited by intrastriatal MMA injection. In contrast, PA did not induce any significant effect on all parameters examined in vitro and in vivo, implying a selective action for MMA. The present data demonstrate that oxidative stress is induced by MMA in vitro in nerve terminals and in vivo in striatum, suggesting the participation of neuronal cells in MMA-elicited oxidative damage.  相似文献   

10.
Inhibitory effects of calcium antagonists, efonidipine (NZ-105), nicardipine, nifedipine, nimodipine and flunarizine, on mitochondrial swelling induced by lipid peroxidation or arachidonic acid in the rat brain in vitro were investigated. Mitochondrial swelling and lipid peroxidation induced by FeSO4 and ascorbic acid system showed a close and significant relationship. Mitochondrial swelling and lipid peroxidation induced by FeSO4 and ascorbic acid were inhibited by all of calcium antagonists tested. The order of inhibition was: flunarizine>nicardipine>efonidipine>nimodipine>nifedipine. This result suggests that calcium antagonists tested have antiperoxidant activities resulting in protection of mitochondrial membrane damage and that each moiety of these structures would play an important role in appearance of anti-peroxidant activities. Furthermore, flunarizine and efonidipine inhibited mitochondrial swelling induced by arachidonic acid, which is not associated with lipid peroxidation. In contrast, nicardipine, nifedipine, and nimodipine did not inhibited this swelling. It is possible that flunarizine and efonidipine could directly interact with mitochondrial membrane. In conclusion, it is capable that calcium antagonists tested may protect from the membrane damage induced by lipid peroxidation and that flunarizine and efonidipine could stabilize the membrane, which is attributed to a direct interaction with the membrane.  相似文献   

11.
Free radicals and reactive oxygen species (ROS) participate in physiological and pathological processes in the thyroid gland. Bivalent iron cation (ferrous, Fe(2+)), which initiates the Fenton reaction (Fe(2+) + H2O2 --> Fe(3+) + *OH + OH(-)) is frequently used to experimentally induce oxidative damage, including that caused by lipid peroxidation. Lipid peroxidation is involved in DNA damage, thus indirectly participating in the early steps of carcinogenesis. In turn, melatonin is a well-known antioxidant and free radical scavenger. The aim of the study was to estimate the effect of melatonin on basal and iron-induced lipid peroxidation in homogenates of the porcine thyroid gland. In order to determine the effect of melatonin on the auto-oxidation of lipids, thyroid homogenates were incubated in the presence of that indoleamine in concentrations of 0.0, 0.00001, 0.0001, 0.001, 0.01, 0.1, 0.25, 0.5, 1.0, 2.5, or 5.0 mM. To study melatonin effects on iron-induced lipid peroxidation, the homogenates were incubated in the presence of FeSO(4) (40 microM) plus H2O2 (0.5 mM), and, additionally, in the presence of melatonin in the same concentrations as above. The degree of lipid peroxidation was expressed as the concentration of malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA) per mg protein. Melatonin, in a concentration-dependent manner, decreased lipid peroxidation induced by Fenton reaction, without affecting the basal MDA + 4-HDA levels. In conclusion, melatonin protects against iron + H2O2-induced peroxidation of lipids in the porcine thyroid. Thus, the indoleamine would be expected to prevent pathological processes related to oxidative damage in the thyroid, cancer initiation included.  相似文献   

12.
Oxidative stress is the cause of neurodegenerative disorders such as Lou Gehrig’s disease, Parkinson’s disease, and Huntington’s disease; one practical way to prevent and manage neurodegenerative diseases is through the eating of food rich in antioxidants (dietary means). This present study sought to compare the ability of aqueous extract of sour tea (Hibiscus sabdariffa, calyx) and green tea (Camellia sinensis) to prevent some pro-oxidant [Fe (II), sodium nitroprusside, quinolinic acid]-induced lipid peroxidation in rat’s brain in vitro. Aqueous extracts of both teas were prepared (1 g tea in 100 ml of hot water). Thereafter, the ability of the extracts to prevent 25 μM FeSO4, 7 μM sodium nitroprusside, and 1 mM quinolinic acid-induced lipid peroxidation in isolated rat’s brain tissue preparation was determined in vitro. Subsequently, the total phenol content, reducing power, Fe (II) chelating and OH radical scavenging ability were determined. The results of the study revealed that both teas significantly (P < 0.05) inhibit lipid peroxidation in basal and pro-oxidant-induced lipid peroxidation in the rat’s brain homogenates in a dose-dependent manner. Also, the teas had high total phenol content [sour (13.3 mg/g); green (24.5 mg/g)], reducing power, and Fe (II) chelating and OH radical scavenging ability (except sour tea). However, green tea had a significantly higher (P < 0.05) ability to inhibit lipid peroxidation in both the basal and pro-oxidant-induced lipid peroxidation in rat’s brain homogenates in vitro. Therefore, it is obvious from the study that both teas had high antioxidant properties and could inhibit Fe2+, sodium nitroprusside, and quinolinic acid-induced lipid peroxidation in brain. However, green tea had a higher inhibitory effect, which may probably be due to its high total phenol content, reducing power, Fe (II) chelating ability, and OH radical scavenging ability.  相似文献   

13.
In the present study we investigated the effect of intrastriatal administration of 150 nmol quinolinic acid to young rats on critical enzyme activities of energy production and transfer, as well as on 14CO2 production from [1-14C]acetate at distinct periods after quinolinic acid injection. We observed that quinolinic acid injection significantly inhibited complexes II (50%), III (46%) and II-III (35%), as well as creatine kinase (27%), but not the activities of complexes I and IV and citrate synthase in striatum prepared 12 h after treatment. In contrast, no alterations of these enzyme activities were observed 3 or 6 h after quinolinic acid administration. 14CO2 production from [1-14C]acetate was also significantly inhibited (27%) by quinolinic acid in rat striatum prepared 12 h after injection. However, no alterations of these activities were observed in striatum homogenates incubated in the presence of 100 microm quinolinic acid . Pretreatment with the NMDA receptor antagonist MK-801 and with creatine totally prevented all inhibitory effects elicited by quinolinic acid administration. In addition, alpha-tocopherol plus ascorbate and the nitric oxide synthase inhibitor l-NAME completely abolished the inhibitions provoked by quinolinic acid on creatine kinase and complex III. Furthermore, pyruvate pretreatment totally blocked the inhibitory effects of quinolinic acid injection on complex II activity and partially prevented quinolinic acid-induced creatine kinase inhibition. These observations strongly indicate that oxidative phosphorylation, the citric acid cycle and cellular energy transfer are compromised by high concentrations of quinolinic acid in the striatum of young rats and that these inhibitory effects were probably mediated by NMDA stimulation.  相似文献   

14.
Phenylhydrazine and iron overload result in augmented oxidative damage and an increased likelihood of cancer. Melatonin is a well known antioxidant and free radical scavenger. The aim of this study was to determine whether melatonin would protect against phenylhydrazine-induced oxidative damage to cellular membranes and to evaluate the possible role of iron in this process. Changes in lipid peroxidation and microsomal membrane fluidity were estimated after the treatment of rats with phenylhydrazine (15 mg/kg body weight, daily, 7 days) alone and melatonin or ascorbic acid (15 mg/kg body weight, two times daily, 8 days), or their combination. Additionally, lipid peroxidation was measured in liver homogenates from untreated and melatonin or ascorbic acid-treated rats in vivo and exposed to iron in vitro. Melatonin, but not ascorbic acid, reduced phenylhydrazine-induced lipid peroxidation in vivo in spleen (3.16+/-0.06 vs. 3.83+/-0.12 nmol/mg protein, P<0.05) and plasma (7. 73+/-0.52 vs. 9.96+/-0.71 nmol/ml, P<0.05) and attenuated the decrease in hepatic microsomal membrane fluidity (1/polarization, 3. 068+/-0.007 vs. 3.027+/-0.008, P<0.05). In vitro exposure to iron significantly enhanced the lipid peroxidation in liver homogenates from untreated (3.34+/-0.75 vs. 1.25+/-0.28, P<0.05) or ascorbic acid-treated rats (2.72+/-0.39 vs. 0.88+/-0.06, P<0.05) but not from melatonin-treated rats (1.49+/-0.55 vs. 0.68+/-0.20, NS). It is concluded that free radical mechanisms are involved in the toxicity of phenylhydrazine and that the antioxidant melatonin, but not ascorbic acid, reduces the toxic affects of phenylhydrazine in vivo and of iron in vitro in cell membranes. Therefore, melatonin co-treatment in conditions of iron overload may prove beneficial.  相似文献   

15.
Increased iron stores are associated with free radical generation and carcinogenesis. Lipid peroxidation is involved in DNA damage, thus indirectly participating in the early steps of tumor initiation. Melatonin and structurally related indoles are effective in protecting against oxidative stress. The aim of the study was to compare the relative efficacies of melatonin, N-acetylserotonin (NAS), indole-3-propionic acid (IPA), and 5-hydroxy-indole-3-acetic acid (5HIAA) in altering basal and iron-induced lipid peroxidation in homogenates of hamster testes. To determine the effect of the indoles on the autoxidation of lipids, homogenates were incubated in the presence of each agent in concentrations of 0.0, 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1.0, 2.0, 2.5, or 5.0 mM. To study their effects on induced lipid peroxidation, homogenates were incubated with FeSO(4) (30 microM + H(2)O(2) (0.1 mM) + each of the indoles in the same concentrations as above. The degree of lipid peroxidation was expressed as concentrations of malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA) per mg protein. The indoles decreased both basal and iron-related lipid peroxidation in a concentration-dependent manner. Melatonin reduced basal MDA + 4-HDA levels when used at the concentrations of 0.25 mM or higher, and prevented iron-induced lipid peroxidation at concentrations of 1.0, 2.0, 2.5, or 5.0 mM. The lowest effective concentrations of NAS required to lower basal and iron-related lipid peroxidation were 0.05 mM and 0.25 mM, respectively. IPA, only when used in the highest concentrations of 2.5 mM or 5 mM inhibited basal lipid peroxidation levels and it was ineffective on the levels of MDA + 4-HDA due to iron damage. 5HIAA reduced basal lipid peroxidation when used at concentrations of 0.25 mM or higher, and it prevented iron-induced lipid peroxidation only at the highest applied concentration (5 mM). In conclusion, melatonin and related indoles at pharmacological concentrations protect against both the autoxidation of lipids as well as induced peroxidation of lipids in testes. In doing so, these agents would be expected to reduce testicular cancer that is initiated by products of lipid peroxidation.  相似文献   

16.
The in vitro effects of several flavonoids on nonenzymatic lipid peroxidation in the rat brain mitochondria was studied. The lipid peroxidation was indexed by measuring the MDA production using the 2-thiobarbituric acid TBA test. The flavonoids, apigenin, flavone, flavanone, hesperidin, naringin, and tangeretin promoted the ascorbic acid-induced lipid peroxidation, the extent of which depended upon the concentration of the flavonoid and ascorbic acid. The other flavonoids studied, viz., quercetin, quercetrin, rutin, taxifolin, myricetin, myricetrin, phloretin, phloridzin, diosmetin, diosmin, apiin, hesperetin, naringenin, (+)-catechin, morin, fisetin, chrysin, and 3-hydroxyflavone, all showed varying extents of inhibition of the nonenzymatic lipid peroxidation, induced by either ascorbic acid or ferrous sulfate. The flavonoid aglycones were more potent in their antiperoxidative action than their corresponding glycosides. Structure-activity analysis revealed that the flavonoid molecule with polyhydroxylated substitutions on rings A and B, a 2,3-double bond, a free 3-hydroxyl substitution and a 4-keto moiety, would confer upon the compound potent antiperoxidative properties.  相似文献   

17.
Pablos, Marta I., Russel J. Reiter, Jin-Ing Chuang, GenaroG. Ortiz, Juan M. Guerrero, Ewa Sewerynek, Maria T. Agapito, DanielaMelchiorri, Richard Lawrence, and Susan M. Deneke. Acutely administered melatonin reduces oxidative damage in lung and brain induced by hyperbaric oxygen. J. Appl.Physiol. 83(2): 354-358, 1997.Hyperbaric oxygenexposure rapidly induces lipid peroxidation and cellular damage in avariety of organs. In this study, we demonstrate that the exposure ofrats to 4 atmospheres of 100% oxygen for 90 min is associated withincreased levels of lipid peroxidation products [malonaldehyde(MDA) and 4-hydroxyalkenals (4-HDA)] and withchanges in the activities of two antioxidative enzymes[glutathione peroxidase (GPX) and glutathione reductase (GR)], as well as in the glutathione status in the lungs and in the brain. Products of lipid peroxidation increased after hyperbaric hyperoxia, both GPX and GR activities were decreased, and levels oftotal glutathione (reduced+oxidized) and glutathione disulfide (oxidized glutathione) increased in both lung and brain areas (cerebralcortex, hippocampus, hypothalamus, striatum, and cerebellum) but not inliver. When animals were injected with melatonin (10 mg/kg) immediatelybefore the 90-min hyperbaric oxygen exposure, all measurements ofoxidative damage were prevented and were similar to those in untreatedcontrol animals. Melatonin's actions may be related to a variety ofmechanisms, some of which remain to be identified, including itsability to directly scavenge free radicals and its induction ofantioxidative enzymes via specific melatonin receptors.

  相似文献   

18.
Structural relationship between the antioxidant melatonin and the non-benzodiazepine hypnotic zolpidem (ZPD) suggests possible direct antioxidant and neuroprotective properties of this compound. In the present work, these effects were analyzed for zolpidem and four of its synthesis intermediates. In vitro assays include lipid peroxidation and protein oxidation studies in liver and brain homogenates. Intracellular antioxidant effects were analyzed by evaluation of free radical formation prevention in HT-22 hippocampal cells treated with glutamate 10mM and measured by flow cytometer DCF fluorescence. The neuroprotective effect of these compounds was evaluated as neuronal death prevention of HT-22 cells treated with the same concentration of glutamate. Zolpidem was found to prevent induced lipid peroxidation in rat liver and brain homogenates showing figures similar to melatonin, although it failed to prevent protein oxidation. ZPD-I was the most effective out of the several zolpidem intermediates studied as it prevented lipid peroxidation with an efficiency higher than melatonin or zolpidem and with an effectiveness similar to estradiol and trolox. ZPD-I prevents protein oxidation, which trolox is known to be unable to prevent. When cellular experiments were undertaken, ZPD-I prevented totally the increase of intracellular free radicals induced by glutamate 10mM in culture medium for 12h, while zolpidem and ZPD-III partially prevented this increase. Also the three compounds protected hippocampal neurons from glutamate-induced death in the same conditions, being their comparative efficacy, ZPD-III > ZPD-I = ZPD.  相似文献   

19.
The protective effect of melatonin against lipopolysaccharide (LPS)-induced oxidative damage was examined in vitro. Lung, liver, and brain malonaldehyde (MDA) plus 4-hydroxyalkenals (4-HDA) concentrations were measured as indices of induced membrane peroxidative damage. Homogenates of brain, lung, and liver were incubated with LPS at concentrations of either 1, 10, 50, 200, or 400μg/ml for 1 h and, in another study, LPS at a concentration of 400 μg/ml for either 0, 15, 30, or 60 min. Melatonin at increasing concentrations from 0.01–3 mM either alone or together with LPS (400μg/ml) was used. Liver, brain, and lung MDA + 4-HDA levels increased after LPS at concentrations of 10, 50, 200 or 400 μg/ml; this effect was concentration-dependent. The highest levels of lipid peroxidation products were observed after tissues were incubated with an LPS concentration of 400 μg/ml for 60 min; in liver and lung this effect was totally suppressed by melatonin and partially suppressed in brain in a concentration-dependent manner. In addition, melatonin alone was effective in brain at concentrations of 0.1 to 3 mM, in lung at 2 to 3 mM, and in liver at 0.1 to 3 mM; in all cases, the inhibitory effects of melatonin on lipid peroxidation were always directly correlated with the concentration of melatonin in the medium. The results show that the direct effect of LPS on the lipid peroxidation following endotoxin exposure is markedly reduced by melatonin.  相似文献   

20.
Oxygen free radicals damage cells through peroxidation of membrane lipids. Gastrointestinal mucosal membranes were found to be resistant to in vitro lipid peroxidation as judged by malonaldehyde and conjugated diene production and arachidonic acid depletion. The factor responsible for this in this membrane was isolated and chemically characterised as the nonesterified fatty acids (NEFA), specifically monounsaturated fatty acid, oleic acid. Authentic fatty acids when tested in vitro using liver microsomes showed similar inhibition. The possible mechanism by which NEFA inhibit peroxidation is through iron chelation and iron-fatty acid complex is incapable of inducing peroxidation. Free radicals generated independent of iron was found to induce peroxidaton of mucosal membranes. Gastrointestinal mucosal membranes were found to contain unusually large amount of NEFA. Circulating albumin is known to contain NEFA which was found to inhibit iron induced peroxidation whereas fatty acid free albumin did not have any effect. Addition of individual fatty acids to this albumin restored its inhibitory capacity among which monounsaturated fatty acids were more effective. These studies have shown that iron induced lipid peroxidation damage is prevented by the presence of nonesterified fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号