首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lizard genus Kentropyx (Squamata: Teiidae) comprises nine species, which have been placed in three species groups (calcarata group, associated to forests ecosystems; paulensis and striata groups, associated to open ecosystems). We reconstructed phylogenetic relationships of Kentropyx based on morphology (pholidosis and coloration) and mitochondrial DNA data (12S and 16S), using maximum parsimony and Bayesian methods, and evaluated biogeographic scenarios based on ancestral areas analyses and molecular dating by Bayesian methods. Additionally, we tested the life‐history hypothesis that species of Kentropyx inhabiting open ecosystems (under seasonal environments) produce larger clutches with smaller eggs and that species inhabiting forest ecosystems (under aseasonal conditions) produce clutches with fewer and larger eggs, using Stearns’ phylogenetic‐subtraction method and canonical phylogenetic ordination to take in to account the effects of phylogeny. Our results showed that Kentropyx comprises three monophyletic groups, with K. striata occupying a basal position in opposition to previous suggestions of relationships. Additionally, Bayesian analysis of divergence time showed that Kentropyx may have originated at the Tertiary (Eocene/Oligocene) and the ‘Pleistocene Refuge Hypothesis’ may not explain the species diversification. Based on ancestral reconstruction and molecular dating, we argued that a savanna ancestor is more likely and that historical events during the Tertiary of South America promoted the differentiation of the genus, coupled with recent Quaternary events that were important as dispersion routes and for the diversification at populational levels. Clutch size and egg volume were not significantly different between major clades and ecosystems of occurrence, even accounting for the phylogenetic effects. Finally, we argue that phylogenetic constraints and phylogenetic inertia might be playing essential roles in life history evolution of Kentropyx.  相似文献   

2.
Kenneth M. Brown 《Oecologia》1981,50(3):380-385
Summary Foraging patterns were determined for three orbweaving spiders in several geographical locations varying in percent cover by herbaceous vegetation. Argiope trifasciata was the most common species in early successional habitats, while both Argiope aurantia and Araneus trifolium were more common in wetter, more herbaceous sites. Discriminant analysis revealed that web height selected for webs and body size were the variables that explained most of the variation among populations in foraging patterns. Argiope aurantia forages lowest in vegetation, A. trifasciata at intermediate heights, and A. trifolium near the top of the vegetation. The body size sequence is reversed.Web radius, spider size, and web height appear to explain much of the variation in abundance and size of prey in webs. Species foraging higher in the vegetation take more winged prey, while larger species foraging lower in the vegetation tend to take larger, jumping prey like acridids. Comparison of prey in webs with field estimates of potential prey suggests that orbweavers select large insect prey. Inferential evidence indicates that interspecific competition may be responsible for the divergence in foraging patterns among species reported here. However, field manipulative experiments have not yet indicated that competition among orb-weavers is severe.  相似文献   

3.
When giant water bugs (Heteroptera: Belostomatidae) encounter prey animals that are larger than they are themselves, they first hook the claw of their raptorial legs onto the animal, and then use all their legs to pin it. The claws of the raptorial legs in giant water bugs play an important role in catching larger prey, but the relationship between the claws, body lengths of predators, and prey size has not been fully investigated. To elucidate the functioning of claws in catching prey, we investigated prey body size relative to predator size in nymphs of two sympatric belostomatid giant water bug species, the vertebrate eater Kirkaldyia (=Lethocerus) deyrolli Vuillefroy and the invertebrate eater Appasus japonicus Vuillefroy, captured in rice fields. The younger nymphs of K. deyrolli caught preys that were larger than themselves, whereas those of A. japonicus caught preys that were smaller. Younger nymphs of K. deyrolli had claws that were curved more sharply than those of A. japonicus. The more curved claws of younger nymphs of K. deyrolli probably hook more easily onto larger vertebrates and thus this shape represents an adaptation for acquiring such prey.  相似文献   

4.
This study focuses on the predatory capacity of four sympatric species of web- building spiders that inhabit coffee plantations in Southern Mexico: Gasteracantha cancriformis, Cyclosa caroli, and the morphologically similar species pair Leucauge mariana and L. venusta which were considered as one species group. The retention capabilities of the webs of these species and the incidence of prey capture and consumption were measured using eight types of insect prey belonging to the orders Coleoptera (1 species), Hymenoptera (3), Diptera (2) Lepidoptera (1) and Homoptera (1). The different characteristics of each prey such as body weight, body size, defensive behaviour, etc., were recorded. The incidence of prey retention, capture and consumption were significantly higher in G. cancriformis than in any of the other species. The lowest rates of retention, capture and consumption were observed in C. caroli, while L. mariana/venusta were intermediate in their predatory capabilities. Significant negative correlations between prey size and percent consumption were detected in L. mariana/venusta and in G. cancriformis; in both cases, large prey were less likely to be immediately consumed than small prey items. The results can be interpreted in the light of the morphological characteristics of the spiders. G. cancriformis possesses long legs and a carapace and appeared to have few difficulties to manipulate all types of prey. In contrast, C. caroli showed lesser abilities to manipulate and subdue aggressive prey items, perhaps due to the short leg length and unprotected body of this species. The consumption of prey items may be related to the predatory strategy of each spider. G. cancriformis constructs a new web every morning and prey storage was never observed. The absence of prey storage behaviour could explain why this species consumes prey soon after capture. In contrast, C. caroli constructs a permanent web and stores captured prey on a stabilimentum that may explain the very low incidence of immediate consumption of prey observed in this species.  相似文献   

5.
Martin  A. J.  Seaby  R. M. H.  Young  J. O. 《Hydrobiologia》1994,273(2):67-75
The effect of predator and prey body size on the feeding success of the British lake-dwelling leeches Glossiphonia complanata and Helobdella stagnalis was examined in the laboratory, and any involvement of size difference between the leeches in allowing coexistence in the field assessed. G. complanata breeds in advance of H. stagnalis and maintains a body size advantage throughout their annual life-cycle. In experiments, conducted at 14 °C and a photoperiod of 16 hrs L: 8 hrs D, three size classes of leeches of each species were each exposed to each of three size classes of each of five prey species, viz. Tubifex sp., Chironomus sp., Asellus aquaticus, Lymnaea peregra and Potamopyrgus jenkinsi. For each prey species, three different types of experiments were performed: one leech exposed to four prey individuals; four leeches of the same species with sixteen prey; and two leeches of each species with sixteen prey. In the first experiment, all sizes of G. complanata were capable of feeding on all sizes of the prey types offered; the same was true for H. stagnalis with exceptions of feeding on large A. aquaticus and large L. peregra. For both species, but especially for G. complanata, there was a trend within each size class of leech for decreasing proportions of fed leeches with increasing prey size, and within each size class of prey for an increasing proportion of fed leeches with increasing leech size; however there were several exceptions to these trends. Both leeches fed extensively on Tubifex sp. but there were significant differences in the proportions feeding on other prey types; G. complanata fed more on A. aquaticus and the two snail species, and less on Chironomus, than H. stagnalis. The effect of increasing the number of leech individuals from one to four individuals, of the same or mixed species, had little effect on the proportion of leeches which had fed. It is concluded that large G. complanata will have access to large individuals of certain prey taxa denied H. stagnalis, which may lessen the intensity of interspecific competition.  相似文献   

6.
Summary The presence and extent of sexual dimorphisms in body form (size and shape) of adult macroteiid lizards were investigated. Males were significantly larger than females in the temperate species, Cnemidophorus tigris, and in the tropical species, Ameiva ameiva and C. ocellifer. Young adult C. tigris males grew faster than young adult females within and between reproductive seasons. Adult males of all species had larger heads than adult females of the same body size; this difference increased with body size. Moreover, male C. tigris were heavier than females of the same snout-vent length. The causes and consequences of the sexual dimorphisms were also examined. The possible causes of body size are especially numerous, and distinguishing the relative influences of the various causal selection factors on body size is problematical. Nevertheless, observational field data were used to tentatively conclude that intrasexual selection was the cause of larger body size of C. tigris males relative to females because (1) larger males won in male aggressive interactions, (2) the winning males gained access to more females by repelling competitors and by female acceptance, (3) larger males consequently had higher reproductive success, and (4) other hypothetical causes of larger male size were unsupported.  相似文献   

7.
The carabid beetle Pterostichus melanarius is a major natural enemy of pests, such as aphids and slugs in agricultural systems. Earthworms are a dominant non‐pest component of the diet of P. melanarius which help sustain the beetles during periods when the pest population is low or absent. In this study we wanted to test whether this predator exercises prey choice among different earthworm species or ecological groups. High levels of genetic diversity within morphological species of earthworm necessitated the development of primers that were specific not just to species but lineages and sub‐lineages within species as well. Gut samples from beetles were analysed using multiplex‐PCR and fluorescent‐labelled primers. Calibratory feeding trials were undertaken to calculate median detection times for prey DNA following ingestion. Extensive testing demonstrated that the primers were species‐specific, that detection periods were negatively related to amplicon size and that meal size had a highly significant effect on detection periods. Monte Carlo simulations showed that, in general, worms were being predated in proportion to their densities in the field with little evidence of prey choice, other than probable avoidance of the larger, deep‐living species. There was no evidence that epigeic species were being taken preferentially in comparison with endogeic species. There was also no evidence that defensive secretions by Allolobophora chlorotica reduced predation pressure on this species by P. melanarius. We concluded that any management system that increases earthworm densities generally, regardless of component species, is likely to be optimal for increasing numbers of this beneficial beetle predator.  相似文献   

8.
Richard Shine 《Oecologia》1986,69(2):260-267
Filesnakes (Acrochordus arafurae) are large (to 2 m), heavy-bodied snakes of tropical Australia. Sexual dimorphism is evident in adult body sizes, weight/length ratios, and body proportions (relative head and tail lengths). Dimorphism is present even in neonates. Two hypotheses for the evolution of such dimorphism are (1) sexual selection or (2) adaptation of the sexes to different ecological niches. The hypothesis of sexual selection is consistent with general trends of sexually dimorphic body sizes in snakes, and accurately predicts, for A. arafurae, that the larger sex (female) is the one in which reproductive success increases most strongly with increasing body size. However, the sexual dimorphism in relative head sizes is not explicable by sexual selection.The hypothesis of adaptation to sex-specific niches predicts differences in habitats and/or prey. I observed major differences between male and female A. arafurae in prey types, prey sizes and habitat utilization (shallow versus deep water). Hence, the sexual dimorphism in relative head sizes is attributed to ecological causes rather than sexual selection. Nonetheless, competition between the sexes need not be invoked as the selective advantage of this character divergence. It is more parsimonious to interpret these differences as independent adaptations of each sex to increase foraging success, given pre-existing sexually-selected differences in size, habitat or behavior. Data for three other aquatic snake species, from phylogenetically distant taxa, suggest that sexual dimorphism in food habits, foraging sites and feeding morphology, is widespread in snakes.  相似文献   

9.
The number of Miniopterus bat species on Madagascar and the nearby Comoros islands (Malagasy region) has risen from four to 11. These recently described cryptic taxa have been differentiated primarily based on molecular markers and associated a posteriori morphological characters that corroborate the different clades. Members of this Old World genus are notably conservative in morphology across their range. Several sites on Madagascar hold up to four small‐bodied taxa of this genus that are morphologically similar to one another, although they can be distinguished based on the tragus, an ear structure associated with echolocation. Miniopterus often emit species‐specific calls. In the present study, we analyze the bioacoustics of the 11 species of Miniopterus currently recognized from the Malagasy region, with an initial identification of the 87 recorded and collected individuals based on molecular markers and certain morphological characters. In most cases, bioacoustic parameters differentiate species and have taxonomic utility. Miniopterus griveaudi populations, which occur on three islands (Madagascar, Anjouan, and Grande Comore), showed no significant differences in peak echolocation frequencies. After running a discriminant function analysis based on five bioacoustic parameters, some mismatched assignments of Malagasy species were found, which include allopatric sister‐taxa and sympatric, phylogenetically not closely‐related species of similar body size. Because the peak echolocation frequencies of two species (Miniopterus sororculus and Miniopterus aelleni) were independent of body size, they were acoustically distinguishable from cryptic sympatric congeners. The small variation around the allometric relationship between body size and peak echolocation frequency of Malagasy Miniopterus species suggests that intraspecific communication rather than competition or prey detection may be the driver for the acoustic divergence of these two species. Our well‐defined echolocation data allow detailed ecological work to commence aiming to test predictions about the relative roles of competition, prey availability, and social communication on the evolution of echolocation in Malagasy Miniopterus species. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 284–302.  相似文献   

10.
Ecological theory suggests that prey size should increase with predator size, but this trend may be masked by other factors affecting prey selection, such as environmental constraints or specific prey preferences of predator species. Owls are an ideal case study for exploring how predator body size affects prey selection in the presence of other factors due to the ease of analyzing their diets from owl pellets and their widespread distributions, allowing interspecific comparisons between variable habitats. Here, we analyze various dimensions of prey resource selection among owls, including prey size, taxonomy (i.e., whether or not particular taxa are favored regardless of their size), and prey traits (movement type, social structure, activity pattern, and diet). We collected pellets of five sympatric owl species (Athene noctua, Tyto alba, Asio otus, Strix aluco, and Bubo bubo) from 78 sites across the Mediterranean Levant. Prey intake was compared between sites, with various environmental variables and owl species as predictors of abundance. Despite significant environmental impacts on prey intake, some key patterns emerge among owl species studied. Owls select prey by predator body size: Larger owls tend to feed on wider ranges of prey sizes, leading to higher means. In addition, guild members show both specialization and generalism in terms of prey taxa, sometimes in contrast with the expectations of the predator–prey body size hypothesis. Our results suggest that while predator body size is an important factor in prey selection, taxon specialization by predator species also has considerable impact.  相似文献   

11.
The hawk owl genus Ninox is unique among raptorial birds in that it includes three species in which males are substantially larger than females. This is a reversal of the normal pattern observed in both diurnal and nocturnal raptorial birds in which females are larger. Interestingly, these three Ninox species also are both the largest of the 22 species in the genus and the only species that exhibit the striking behaviour of ‘prey holding’ in which large (> 600 g) mammalian or avian prey is captured at night and held with body parts intact, and draped below a roost for the entire day without being consumed. Because explanations of the evolution of large male size suggest that it results from competition among males, the adaptive significance of prey holding was studied in a wild population of powerful owl Ninox strenua. Prey holding is largely confined to breeding males and its occurrence varies significantly across the breeding cycle, being most frequent during incubation and brooding. The study did not clearly resolve whether prey holding is a form of food storage or territorial display; however, both functions can select for large male body size and therefore play a significant role in the evolution of nonreversed size dimorphism. Although female‐only incubation and brooding is typical of Ninox owls and other owl species, prey holding appears to occur only in the large Ninox species because of the unique combination of large body size, large prey size, separate sex roles, and obligate cavity nesting. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 284–292.  相似文献   

12.
We compare and contrast the long-time dynamical properties of two individual-based models of biological coevolution. Selection occurs via multispecies, stochastic population dynamics with reproduction probabilities that depend nonlinearly on the population densities of all species resident in the community. New species are introduced through mutation. Both models are amenable to exact linear stability analysis, and we compare the analytic results with large-scale kinetic Monte Carlo simulations, obtaining the population size as a function of an average interspecies interaction strength. Over time, the models self-optimize through mutation and selection to approximately maximize a community potential function, subject only to constraints internal to the particular model. If the interspecies interactions are randomly distributed on an interval including positive values, the system evolves toward self-sustaining, mutualistic communities. In contrast, for the predator–prey case the matrix of interactions is antisymmetric, and a nonzero population size must be sustained by an external resource. Time series of the diversity and population size for both models show approximate 1/f noise and power-law distributions for the lifetimes of communities and species. For the mutualistic model, these two lifetime distributions have the same exponent, while their exponents are different for the predator–prey model. The difference is probably due to greater resilience toward mass extinctions in the food-web like communities produced by the predator–prey model.   相似文献   

13.
Studies on predation by the wolf (Canis lupus) have often reported contradictory results about the role of prey density and vulnerability on wolf prey use. We investigated dietary response and prey selection by wolves in a high-density and multi-species ungulate community, analysing scats collected over a period of 11 years in the Casentinesi Forests, Italy. The second most abundant species, wild boar (Sus scrofa), was found to be the main wolf prey, and we did not observe any dietary response of wolves to variations in the density of either primary or secondary prey species. Selection patterns were uniform throughout the study period. Wolves strongly selected for wild boar piglets, while roe deer (Capreolus capreolus) fawns and adults, red deer (Cervus elaphus) adults and fallow deer (Dama dama) adults were avoided. Wolf preference for wild boar was inversely density dependent. Within each species, juveniles were preferred to adults. Medium-sized, young individuals of both wild boar and roe deer were optimal prey, although with different selection patterns related to the different anti-predator strategies adopted by each prey species. The results of this study suggest that in productive ecosystems with high density and high renewal rates of prey, selection patterns by wolves are determined by prey vulnerability, which is connected to prey age and body size. The different patterns of wild boar versus cervids use by wolf across Europe seems to be related to their relative abundances, while the strong selection of wild boar in Italian Apennines with respect to the more frequent avoidance in central-eastern Europe is better explained by higher piglet productivity and smaller body size of adults boar in Mediterranean temperate forests.  相似文献   

14.
Abstract.
  • 1 Three aspects of prey utilization are documented in a guild of spider-hunting pompilid wasps at a Breckland heath site: female phenology, size, and microhabitat utilization.
  • 2 Twenty-four species were present at the site, 59% of the British fauna. Ten species individually represented more than 1% of the guild.
  • 3 Pompilid abundance peaked in early July and mid-late August. Anoplius viaticus had a different life-history from other common guild members, making its inclusion in the guild questionable.
  • 4 Most species represented by large samples occurred in all microhabitats and time intervals, and all species overlapped in size with all other species except A. viaticus. Arachnospila anceps was numerically dominant in all microhabitats and most time intervals.
  • 5 Mean pair-wise overlaps in phenology and microhabitat utilization were significantly lower than predicted by null models, consistent with the idea that interspecific competition has been important in determining guild structure.
  • 6 Female size is highly correlated with prey size, but the distribution of mean female sizes did not generally differ from null expectations.
  • 7 Interpretation of comparisons with null models is problematic, particularly because it is difficult to quantify evolutionary ‘favourability’ of different resource states. Null models are currently of limited use because the patterns expected to result from key processes such as competition are uncertain in multi-dimensional systems.
  相似文献   

15.
A phylogenetic analysis of combined morphological, chemical and ITS/5.8S sequence data reveals that species of Ateleia are often more genetically than morphologically divergent, and that species thought to be most closely related morphologically are distant relatives within the genus. Ateleia shows niche conservatism, with most species confined to seasonally dry tropical forest in Central America and the Caribbean, and fewer species in the same biome in South America. Four independent transitions to wet forests may have occurred in the genus. The estimated ages of Ateleia lineages spanning Central and South America are either older or younger than the estimated age of closure of the Isthmus of Panama. The older dates clearly suggest that over‐water dispersal is responsible for the distribution of Ateleia that includes the Caribbean Islands. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 162 , 39–53.  相似文献   

16.
Synopsis We examined the diets of 12 morphologically diverse syngnathid species in shallow seagrass-dominated marine waters of south-western Australia to determine whether they differed among species that varied in body form, size and snout morphology, and in particular whether species with long snouts ingested more mobile prey. Although all species consume mainly small crustaceans, the dietary compositions of these species often vary markedly. We suggest that these differences are related to factors that influence both their foraging capabilities and/or locations. Those species with long snouts (e.g. the common seadragon Phyllopteryx taeniolatus and long-snouted pipefish Vanacampus poecilolaemus) consume far more relatively mobile prey than species with short snouts. Species with short snouts (e.g. the pug-nosed pipefish Pugnaso curtirostris and Macleays crested pipefish Histiogamphelus cristatus) mainly consume slow moving prey. Spotted pipefish, Stigmatopora argus, and wide-bodied pipefish, Stigmatopora nigra, restrict their diets to planktonic copepods, probably because their small gape size limits their ability to feed on alternative larger prey. Both the short-snouted seahorse, Hippocampus breviceps, and West Australian seahorse, Hippocampus subelongatus, ingest mainly slow-moving prey, even though the latter species possesses a moderately long snout. This may reflect the fact that seahorses are weak swimmers that anchor themselves to vegetation or the substrate with a strongly prehensile tail and rarely venture into open water to pursue mobile prey. In contrast, the relatively large P. taeniolatus, which resides above, rather than within, the macrophyte canopy, consumes mysids, which aggregate in open water above the seabed. Those pipefishes with characters that imply relatively enhanced mobility, such as well developed caudal fins and non-prehensile tails, are trophically diverse, suggesting that they are able to feed either on the sediment or phytal surfaces or in the water column.  相似文献   

17.
Yunger JA 《Oecologia》2004,139(4):647-654
Predation directly changes the demographics of prey, generally through a numerical decrease. An indirect effect of predators is alteration of movements and spatial patterns of prey. The relationship between these direct and indirect effects can be tested by excluding predators. Home range size of white-footed mice (Peromyscus leucopus) decreased and home range overlaps increased in the absence of predators. Home range size and overlaps of meadow voles (Microtus pennsylvanicus) did not change despite an increase in vole density. P. leucopus had significantly lower interspecific home range overlaps with M. pennsylvanicus than intraspecific overlaps. The changes in P. leucopus spatial behavior may be an indirect effect of predator exclusion resulting from the increase in M. pennsylvanicus densities.  相似文献   

18.
The feeding ecology of a multi-species community of shrews inhabiting secondary forest and cacao-coffee plantations in the Tai National Park (Ivory Coast) was investigated. A total of 553 shrews were captured and 194 alimentary tracts were examined. Ten species were found, includingSylvisorex megalura and nine species ofCrocidura, forming a series with respect to body size. New ecological data on these little known African species are presented. All species of shrews ate a wide diversity of arthropods, with Coleoptera, Araneae, Formicidae and Diplopoda making the largest dietary contributions. Lumbricidae were eaten by two species.C. obscurior had an exceptionally long intestine for its size but there was no evidence of dietary specialisation in this or other shrew species. All species investigated ate predominantly small prey and there was no correlation between size of prey items consumed and body mass of shrew species. There was little evidence of resource partitioning amongst the shrews, despite differences in body size.  相似文献   

19.

Reef sharks may be ecologically redundant, such that other mesopredatory fishes compensate for their functions when they decline in number, preventing trophic cascades. Oral jaw gape, hereafter referred to as gape, determines maximum prey size in many piscivores and therefore affects the size structure of prey assemblages. Here, we examine whether gape and maximum prey size differ between five species of reef shark and 21 species of teleost (n?=?754) using data collected from 38 reefs in the Indo-Pacific. Sharks displayed relatively small gape dimensions compared to most teleost species and, at smaller sizes, the giant trevally Caranx ignobilis and other teleosts may be able to consume larger prey than similar-sized sharks. However, ecological redundancy between reef sharks and teleosts appears to decline at larger sizes, such that the grey reef shark Carcharhinus amblyrhynchos, for example, may be capable of consuming larger prey than any other reef predator at its largest sizes, regardless of prey body shape. Moreover, sharks may be able to consume proportionally larger prey as they grow, in contrast to reef teleosts, which may largely be limited by their gapes to ever-smaller prey as a proportion of their body size. Our results also suggest that reef sharks may be unable to swallow whole prey that are >?36% of their length, consistent with gut-content studies. Conservation of reef ecological function may therefore depend not only on the protection of sharks but also particular size classes and key components of the mesopredatory guild.

  相似文献   

20.
Craig D. James 《Oecologia》1991,85(4):553-561
Summary The diets of five syntopic species of Ctenotus were examined over a two-year period on a 60 ha spinifex grassland site in central Australia. The aims of the study were to test predictions that termites were an important part of the food web for syntopic Ctenotus in spinifex grasslands, and to examine seasonal changes in prey use and dietary overlap between the species. Environmental conditions during the first season of the study were dry resulting in generally low invertebrate abundance. In contrast the second season was relatively moist and overall invertebrate abundance was higher than in the first season. Diets of five species of Ctenotus contained a range of terrestrial prey although one species (C. pantherinus) was relatively termite-specialized at all times. Dietary overlap at the ordinal level between the species was generally higher during dry periods when prey abundance was low, and higher for species-pairs that were similar in body size. During the driest period of the study most species of Ctenotus ate a high proportion of termite prey which accounted for the high dietary overlap. However, each species of Ctenotus consumed different genera or foraging guilds of termites. The results suggest that most of these lizards were opportunistic in their selection of prey but that during dry periods when prey are scarce, termites may play a significant role in supporting a high -diversity of Ctenotus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号