首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Aim Our aim is to examine the historical breach of the geoclimatic barrier of the Rocky Mountains by the mountain pine beetle (Dendroctonus ponderosae Hopkins). This recent range expansion from west of the North American continental divide into the eastern boreal forest threatens to provide a conduit to naïve pine hosts in eastern North America. We examine the initial expansion events and determine potential mechanism(s) of spread by comparing spread patterns in consecutive years to various dispersal hypotheses such as: (1) meso‐scale atmospheric dispersal of insects from source populations south‐west of the Rocky Mountains in British Columbia (i.e. their historical range), (2) anthropogenic transport of infested plant material, and (3) spread of insect populations across adjacent stands via corridors of suitable habitat. Location British Columbia, Canada. Methods We explore potential mechanism(s) of invasion of the mountain pine beetle using spatial point process models for the initial 3 years of landscape‐level data collection, 2004–2006. Specifically, we examine observed patterns of infestation relative to covariates reflecting various dispersal hypotheses. We select the most parsimonious models for each of the initial 3 years of invasion using information criteria statistics. Results The initial range expansion and invasion of the beetle was characterized by aerial deposition along a strong north‐west to south‐east gradient, with additional aerial deposition and localized dispersal from persisting populations in following years. Main conclusions Following deposition of a wave front of mountain pine beetles parallel to the Rocky Mountains via meso‐scale atmospheric dispersal, the areas of highest intensity of infestations advanced up to 25 km north‐east towards jack pine (Pinus banksiana) habitat in a single year. There appeared to be no association between putative anthropogenic movement of infested materials and initial range expansion of the mountain pine beetle across the continental divide.  相似文献   

2.
Modeling the Expansion of an Introduced Tree Disease   总被引:10,自引:0,他引:10  
Pine wilt disease is caused by the introduced pinewood nematode, Bursaphelenchus xylophilus, for which the vector is the pine sawyer beetle, Monochamus alternatus. Native Japanese pines, black pine (Pinus thunbergii) and red pine (P. densiflora), are extremely sensitive to the nematode's infection, and the parasite has been expanding nationwide in the last few decades, despite intensive control efforts. To understand the parasite's range expansion in Japan, we modeled the dynamics of the pines and the beetle that disperses the nematode, using an integro-difference equation in a one-dimensional space. Based on field data collected in Japan, we investigated the dependence of the parasite's rate of range expansion on the eradication rate of the beetle, the initial pine density, and the beetle dispersal ability. Our model predicts several results. (1) The Allee Effect operates on beetle reproduction, and consequently the parasite cannot invade a pine stand, once the beetle density decreases below a threshold. (2) The distribution of the dispersal distance of the beetles critically affects the expansion rate of the disease. As the fraction of the beetles that travel over long distance increases from zero, the range expansion accelerates sharply. (3) However, too frequent long-range dispersal results in a failure of the parasite invasion due to the Allee Effect, suggesting the importance of correctly assessing the beetle's mobility to predict the speed of range expansion of the parasite. (4) As the eradication rate is increased, the range expansion speed decreases gradually at first and suddenly drops to zero at a specific value of the eradication rate. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Pine wilt disease is caused by the pinewood nematode Bursaphelenchus xylophilus, which is vectored by the Japanese pine sawyer beetle Monochamus alternatus. Due to their mutualistic relationship, according to which the nematode weakens and makes trees available for beetle reproduction and the beetle in turn carries and transmits the nematode to healthy pine trees, this disease has resulted in severe damage to pine trees in Japan in recent decades. Previous studies have worked on modeling of population dynamics of the vector beetle and the pine tree to explore spatial expansion of the disease using an integro-difference equation with a dispersal kernel that describes beetle mobility over space. In this paper, I revisit these previous models but retaining individuality: by considering mechanistic interactions at the individual level it is shown that the Allee effect, an increasing per-capita growth rate as population abundance increases, can arise in the beetle dynamics because of the necessity for beetles to contact pine trees at least twice to reproduce successfully. The incubation period after which a tree contacted by a first beetle becomes ready for beetle oviposition by later beetles is crucial for the emergence of this Allee effect. It is also shown, however, that the strength of this Allee effect depends strongly on biological mechanistic properties, especially on beetle mobility. Realistic individual-based modeling highlights the importance of how spatial scales are dealt with in mathematical models. The link between mechanistic individual-based modeling and conventional analytical approaches is also discussed.  相似文献   

4.
Aim To understand how the biophysical environment influences patterns of infection by non‐native blister rust (caused by Cronartium ribicola) and mortality caused by native mountain pine beetles (Dendroctonus ponderosae) in whitebark pine (Pinus albicaulis) communities, to determine how these disturbances interact, and to gain insight into how climate change may influence these patterns in the future. Location High‐elevation forests in south‐west Montana, central Idaho, eastern and western Oregon, USA. Methods Stand inventory and dendroecological methods were used to assess stand structure and composition and to reconstruct forest history at sixty 0.1‐ha plots. Patterns of blister rust infection and mountain pine beetle‐caused mortality in whitebark pine trees were examined using nonparametric Kruskal–Wallis ANOVA, Mann–Whitney U‐tests, and Kolmogorov–Smirnov two‐sample tests. Stepwise regression was used to build models of blister rust infection and mountain pine beetle‐related mortality rates based on a suite of biophysical site variables. Results Occurrence of blister rust infections was significantly different among the mountain ranges, with a general gradient of decreasing blister rust occurrence from east to west. Evidence of mountain pine beetle‐caused mortality was identified on 83% of all dead whitebark pine trees and was relatively homogenous across the study area. Blister rust infected trees of all ages and sizes uniformly, while mountain pine beetles infested older, larger trees at all sites. Stepwise regressions explained 64% and 58% of the variance in blister rust infection and beetle‐caused mortality, respectively, indicating that these processes are strongly influenced by the biophysical environment. More open stand structures produced by beetle outbreaks may increase the exposure of surviving whitebark pine trees to blister rust infection. Main conclusions Variability in the patterns of blister rust infection and mountain pine beetle‐caused mortality elucidated the fundamental dynamics of these disturbance agents and suggests that the effects of climate change will be complex in whitebark pine communities and vary across the species’ range. Interactions between blister rust and beetle outbreaks may accelerate declines or facilitate the rise of rust resistance in whitebark pine depending on forest conditions at the time of the outbreak.  相似文献   

5.
Aim To assess the spatial patterns of forest expansion (encroachment and densification) for mountain pine (Pinus uncinata Ram.) during the last 50 years at a whole mountain range scale by the study of different topographic and socio‐economic potential drivers in the current context of global change. Location The study area includes the whole distributional area of mountain pine in the Catalan Pyrenees (north‐east Spain). This represents more than 80 municipalities, covering a total area of 6018 km2. Methods Forest cover was obtained by image reclassification of more than 200 pairs of aerial photographs taken in 1956 and 2006. Encroachment and densification were determined according to changes in forest cover, and were expressed as binary variables on a 150 × 150 m cell‐size grid. We then used logistic regression to analyse the effects of several topographic and socio‐economic variables on forest expansion. Results In the period analysed, mountain pine increased its surface coverage by 8898 ha (an increase of more than 16%). Mean canopy cover rose from 31.0% in 1956 to 55.6% in 2006. Most of the expansion was found on north‐facing slopes and at low altitudes. Socio‐economic factors arose as major factors in mountain pine expansion, as encroachment rates were higher in municipalities with greater population losses or weaker primary sector development. Main conclusions The spatial patterns of mountain pine expansion showed a good match with the main patterns of land‐use change in the Pyrenees, suggesting that land‐use changes have played a more important role than climate in driving forest dynamics at a landscape scale over the period studied. Further studies on forest expansion at a regional scale should incorporate patterns of land‐use changes to correctly interpret drivers of forest encroachment and densification.  相似文献   

6.
Theoretical studies of predator‐prey population dynamics have increasingly centered on the role of space and the movement of organisms. Yet, empirical studies have been slow to follow suit. Herein, we quantified the long‐range movement of a checkered beetle, Thanasimus dubius, which is an important predator of a pernicious forest pest, the southern pine beetle, Dendroctonus frontalis. Adult checkered beetles were marked and released at five sites and subsequently recaptured at traps baited with pine and pine beetle semiochemicals and located at distances up to 2 km away from the release point. While the pattern of recaptures‐with‐distance at each site provided a modest fit to a simple random‐diffusion model, there was a consistent discrepancy between observed and expected recaptures: a higher than expected proportion of beetles were recaptured at the more distant traps. To account for this deviation, we developed a model of diffusion that allowed for simple heterogeneity in the population of marked beetles; i.e., a slow and fast moving form of the checkered beetle. This model provided a significantly better fit to the data and formed the basis for our estimates of intra‐forest movement. We estimated that on average, one half of the checkered beetles dispersed at least 1.25 km, one third dispersed>2 km, and 5% dispersed>5 km. The source of the heterogeneous dispersal rates were partially due to differences in beetle size: smaller beetles (for both males and females) were more likely to be recaptured away from the release site than larger beetles. The southern pine beetle (prey for the checkered beetle) exhibited no significant heterogeneity in dispersal ability and provided a very good fit to the simple diffusion model. The only difference in dispersal between these two species was that checkered beetles were undergoing greater long‐distance dispersal than the pine beetles (the radius containing 95% of the dispersing individuals was 5.1 km for the checkered beetle and 2.3 km for the pine beetle). Data on the movement of these two species is used to evaluate a general model of spatial pattern formation in a homogeneous environment, and the potential of the checkered beetle as a biological control agent for the southern pine beetle.  相似文献   

7.
The mountain pine beetle Dendroctonus ponderosae Hopkins is a major native pest of Pinus Linnaeus (Pinaceae) in western North America. Host colonization by the mountain pine beetle is associated with an obligatory dispersal phase, during which beetles fly in search of a suitable host. Mountain pine beetles use stored energy from feeding in the natal habitat to power flight before host colonization and brood production. Lipids fuel mountain pine beetle flight, although it is not known whether other energy sources are also used during flight. In the present study, we compare the level of energy substrates, proteins, carbohydrates and lipids of individual mountain pine beetles flown on flight mills with unflown control beetles. We use a colorimetric method to measure the entire metabolite content of each individual beetle. The present study reveals that mountain pine beetles are composed of more protein and lipid than carbohydrate. Both female and male mountain pine beetles use lipids and carbohydrates as energy sources during flight. There is variation between sexes, however, in the energy substrates used for flight. Male mountain pine beetles use protein, in addition to lipids and carbohydrates, to fuel flight, whereas protein content is not different between flown and control females.  相似文献   

8.
Huapeng Chen 《Ecography》2014,37(4):344-356
This study documents the spatiotemporal patterns of mountain pine beetle infestations by applying a novel approach based on a landscape infestation dynamics conceptual model in combination with morphological spatial pattern analysis using the mountain pine beetle infested pine mortality data (1960–2010) collected by the annual British Columbia aerial overview survey. The pattern analysis at the provincial level reveals that the 1980s outbreak did not crash as originally thought. The current outbreak is most likely a result of the progressive buildup of the epidemic infestations during the transition period (1985–1995) under favourable weather conditions and substantially improved host resources. This is also true for the Northeast and Cariboo areas of the province specifically, even though the infestations in the Cariboo area remained at incipient‐epidemic levels during the transition period after the 1980s outbreak crashed in 1985. In the Southeast area, the current outbreak apparently continued from the outbreak that initiated in the late 1970s and early 1980s. The 1980s outbreak originated from multiple spatially separate locations whereas the current outbreak initiated from a single location in Tweedsmuir Provincial Park. The centralized and self‐amplifying buildup of the current outbreak implicates at least three substantial expansions that occurred in 2002, 2006, and 2008. This study suggests that at the provincial level, as well as for the Northeast and Southeast areas of the province, the current outbreak is declining but most likely will continue for many years given the ongoing and future warming climate and a large proportion of pines that remain in the habitats of mountain pine beetles. This study also suggests that dispersals, particularly long‐distance dispersal, may play a key role in driving the spread and expansion of the current outbreak although uncertainty remains due to the local dynamics of the beetle populations.  相似文献   

9.
Environmental change has a wide range of ecological consequences, including species extinction and range expansion. Many studies have shown that insect species respond rapidly to climatic change. A mountain pine beetle epidemic of record size in North America has led to unprecedented mortality of lodgepole pine, and a significant range expansion to the northeast of its historic range. Our goal was to determine the spatial genetic variation found among outbreak population from which genetic structure, and dispersal patterns may be inferred. Beetles from 49 sampling locations throughout the outbreak area in western Canada were analysed at 13 microsatellite loci. We found significant north-south population structure as evidenced by: (i) Bayesian-based analyses, (ii) north-south genetic relationships and diversity gradients; and (iii) a lack of isolation-by-distance in the northernmost cluster. The north-south structure is proposed to have arisen from the processes of postglacial colonization as well as recent climate-driven changes in population dynamics. Our data support the hypothesis of multiple sources of origin for the outbreak and point to the need for population specific information to improve our understanding and management of outbreaks. The recent range expansion across the Rocky Mountains into the jack/lodgepole hybrid and pure jack pine zones of northern Alberta is consistent with a northern British Columbia origin. We detected no loss of genetic variability in these populations, indicating that the evolutionary potential of mountain pine beetle to adapt has not been reduced by founder events. This study illustrates a rapid range-wide response to the removal of climatic constraints, and the potential for range expansion of a regional population.  相似文献   

10.
Warmer climates are predicted to increase bark beetle outbreak frequency, severity, and range. Even in favorable climates, however, outbreaks can decelerate due to resource limitation, which necessitates the inclusion of competition for limited resources in analyses of climatic effects on populations. We evaluated several hypotheses of how climate impacts mountain pine beetle reproduction using an extensive 9‐year dataset, in which nearly 10,000 trees were sampled across a region of approximately 90,000 km2, that was recently invaded by the mountain pine beetle in Alberta, Canada. Our analysis supports the hypothesis of a positive effect of warmer winter temperatures on mountain pine beetle overwinter survival and provides evidence that the increasing trend in minimum winter temperatures over time in North America is an important driver of increased mountain pine beetle reproduction across the region. Although we demonstrate a consistent effect of warmer minimum winter temperatures on mountain pine beetle reproductive rates that is evident at the landscape and regional scales, this effect is overwhelmed by the effect of competition for resources within trees at the site level. Our results suggest that detection of the effects of a warming climate on bark beetle populations at small spatial scales may be difficult without accounting for negative density dependence due to competition for resources.  相似文献   

11.
Symbiont redundancy in obligate insect–fungal systems is thought to buffer the insect host against symbiont loss and to extend the environmental conditions under which the insect can persist. The mountain pine beetle is associated with at least three well-known and putatively obligate ophiostomatoid fungal symbionts that vary in their environmental tolerances. To better understand the spatial variation in beetle–fungal symbiotic associations, we examined the community composition of ophiostomatoid fungi associated with the mountain pine beetle as a function of latitude and elevation. The region investigated represents the leading edge of a recent outbreak of mountain pine beetle in western Canada. Using regression and principal components analysis, we identified significant spatial patterns in fungal species abundances that indicate symmetrical replacement between two of the three fungi along a latitudinal gradient and little variation in response to elevation. We also identified significant variation in the prevalence of pair-wise species combinations that occur within beetle galleries. Frequencies of pair-wise combinations were significantly different from what was expected given overall species abundances. These results suggest that complex processes of competitive exclusion and coexistence help determine fungal community composition and that the consequences of these processes vary spatially. The presence of three fungal symbionts in different proportions and combinations across a wide range of environmental conditions may help explain the success of mountain pine beetle attacks across a broad geographic range.  相似文献   

12.
Aim Bark beetle outbreaks have recently affected extensive areas of western North American forests, and factors explaining landscape patterns of tree mortality are poorly understood. The objective of this study was to determine the relative importance of stand structure, topography, soil characteristics, landscape context (the characteristics of the landscape surrounding the focal stand) and beetle pressure (the abundance of local beetle population eruptions around the focal stand a few years before the outbreak) to explain landscape patterns of tree mortality during outbreaks of three species: the mountain pine beetle, which attacks lodgepole pine and whitebark pine; the spruce beetle, which feeds on Engelmann spruce; and the Douglas‐fir beetle, which attacks Douglas‐fir. A second objective was to identify common variables that explain tree mortality among beetle–tree host pairings during outbreaks. Location Greater Yellowstone ecosystem, Wyoming, USA. Methods We used field surveys to quantify stand structure, soil characteristics and topography at the plot level in susceptible stands of each forest type showing different severities of infestation (0–98% mortality; n= 129 plots). We then used forest cover and beetle infestation maps derived from remote sensing to develop landscape context and beetle pressure metrics at different spatial scales. Plot‐level and landscape‐level variables were used to explain outbreak severity. Results Engelmann spruce and Douglas‐fir mortality were best predicted using landscape‐level variables alone. Lodgepole pine mortality was best predicted by both landscape‐level and plot‐level variables. Whitebark pine mortality was best – although poorly – predicted by plot‐level variables. Models including landscape context and beetle pressure were much better at predicting outbreak severity than models that only included plot‐level measures, except for whitebark pine. Main conclusions Landscape‐level variables, particularly beetle pressure, were the most consistent predictors of subsequent outbreak severity within susceptible stands of all four host species. These results may help forest managers identify vulnerable locations during ongoing outbreaks.  相似文献   

13.
Climate change and the outbreak ranges of two North American bark beetles   总被引:2,自引:0,他引:2  
Abstract
  • 1 One expected effect of global climate change on insect populations is a shift in geographical distributions toward higher latitudes and higher elevations. Southern pine beetle Dendroctonus frontalis and mountain pine beetle Dendroctonus ponderosae undergo regional outbreaks that result in large‐scale disturbances to pine forests in the south‐eastern and western United States, respectively.
  • 2 Our objective was to investigate potential range shifts under climate change of outbreak areas for both bark beetle species and the areas of occurrence of the forest types susceptible to them.
  • 3 To project range changes, we used discriminant function models that incorporated climatic variables. Models to project bark beetle ranges employed changed forest distributions as well as changes in climatic variables.
  • 4 Projected outbreak areas for southern pine beetle increased with higher temperatures and generally shifted northward, as did the distributions of the southern pine forests.
  • 5 Projected outbreak areas for mountain pine beetle decreased with increasing temperature and shifted toward higher elevation. That trend was mirrored in the projected distributions of pine forests in the region of the western U.S. encompassed by the study.
  • 6 Projected outbreak areas for the two bark beetle species and the area of occurrence of western pine forests increased with more precipitation and decreased with less precipitation, whereas the area of occurrence of southern pine forests decreased slightly with increasing precipitation.
  • 7 Predicted shifts of outbreak ranges for both bark beetle species followed general expectations for the effects of global climate change and reflected the underlying long‐term distributional shifts of their host forests.
  相似文献   

14.
We examined the historical record of mountain pine beetle (Dendroctonus ponderosae Hopkins) activity within Yellowstone National Park, Wyoming, for the 25-years period leading up to the 1988 Yellowstone fires (1963–86) to determine how prior beetle activity and the resulting tree mortality affected the spatial pattern of the 1988 Yellowstone fires. To obtain accurate estimates of our model parameters, we used a Markov chain Monte Carlo method to account for the high degree of spatial autocorrelation inherent to forest fires. Our final model included three statistically significant variables: drought, aspect, and sustained mountain pine beetle activity in the period 1972–75. Of the two major mountain pine beetle outbreaks that preceded the 1988 fires, the earlier outbreak (1972–75) was significantly correlated with the burn pattern, whereas the more recent one (1980–83) was not. Although regional drought and high winds were responsible for the large scale of this event, the analysis indicates that mountain pine beetle activity in the mid-1970s increased the odds of burning in 1988 by 11% over unaffected areas. Although relatively small in magnitude, this effect, combined with the effects of aspect and spatial variation in drought, had a dramatic impact on the spatial pattern of burned and unburned areas in 1988.  相似文献   

15.
Principal components analysis, followed by K-means cluster analysis, was used to detect variations in the timing and magnitude of Pinus contorta Dough ex Loud. growth releases attributed to mountain pine beetle outbreaks in 31 stands of central British Columbia. Four major growth release patterns were identified from 1970 to 2000. Variations in the timing of growth releases among clustered stands corresponded well to aerial survey data indicating the timing of beetle outbreaks in the study area. Redundancy analysis was used to determine how variations in the timing and magnitude of growth releases attributed to beetle outbreaks changed with variations in climate or stand conditions over the study area. The first RDA axis, which accounted for 39% of the variations in growth patterns among stands, was significantly (P〈0.05) correlated with gradients in the percentage of pine in stands killed by mountain pine beetle, summer aridity, variation in summer precipitation, distance from initial infestation site, average pine age, and maximum August temperatures. The second RDA axis explained 6% of the variations and was significantly correlated with gradients in the beetle climate suitability index, extreme cold month temperatures, and site index. Comparisons of growth release patterns with aerial survey data and redundancy analyses indicated that dendrochronological techniques are useful for identifying mountain pine beetle outbreaks in central British Columbia, particularly among stands that had a density high enough to produce a growth release signal. Provided future studies account for interannual weather fluctuations, identification of growth increases due to stand thinning caused by beetle outbreaks will be useful for reconstructing the history of beetle outbreaks over much longer time periods.  相似文献   

16.
  1. Southern pine beetle, Dendroctonus frontalis, has expanded its range further into the northeastern United States. This expansion threatens rare and ecologically valuable interior and coastal pitch pine barrens.
  2. Pitch pine barrens restoration and southern pine beetle infestation suppression often involve leaving downed dead wood that saproxylic insects can exploit.
  3. Semiochemical-baited traps were used to investigate the response of bark beetles and woodborers to restoration treatments at Rocky Point State Forest and the Albany Pine Bush Preserve, examples of coastal and interior pitch pine forests, respectively.
  4. A total of 29,598 saproxylic insects from 116 species of bark beetles and woodborers were captured at Rocky Point State Forest, while 23,117 individuals from 67 species were captured at Albany Pine Bush Preserve.
  5. Ips spp. were abundant at both sites with 28%–47% and 42%–74% of total collections at Rocky Point State Forest and Albany Pine Bush Preserve, respectively.
  6. Ips grandicollis did not respond to treatments at either site. However, Ips pini was found in higher numbers in thinned blocks in Rocky Point State Forest.
  相似文献   

17.
Abstract Invasive species have potentially devastating effects on ecological communities and ecosystems. To understand the invasion process of exotic forest pests in South Korea, we reviewed four major species of exotic forest pests: the pine needle gall midge (Thecodiplosis japonensis), pine wilt disease caused by the pine wood nematode (Bursaphelenchus xylophilus), the fall webworm (Hyphantria cunea) and the black pine bast scale (Matsucoccus thunbergianae). We consider their biology, ecology, invasion history, dispersal patterns and related traits, and management as exotic species. Among these species, the dispersal process of fall webworm was linear, showing a constant range expansion as a function of time, whereas the other three species showed biphasic patterns, rapidly increasing dispersal speed after slow dispersal at the early invasion stage. Moreover, human activities accelerated their expansion, suggesting that prevention of the artificial movement of damaged trees would be useful to slow expansion of exotic species. We believe that this information would be useful to establish management strategies for invasion species.  相似文献   

18.
Mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, Scolytinae), is a significant forest disturbance agent with a widespread distribution in western North America. Population success is influenced by temperatures that drive phenology and ultimately the adult emergence synchrony required to mass attack and kill host trees during outbreaks. In addition to lifestage‐specific developmental rates and thresholds, oviposition timing can be a source of variance in adult emergence synchrony, and is a critical aspect of mountain pine beetle phenology. Adaptation to local climates has resulted in longer generation times in southern compared to northern populations in common gardens, and the role of oviposition rate in these differences is unclear. Oviposition rates and fecundity in a northern population have been described, although data are lacking for southern populations. We assessed southern mountain pine beetle oviposition rates and fecundity in a range of temperatures using a non‐destructive technique that included frequent X‐ray imaging. We found that oviposition rate and fecundity vary independently such that a female with high oviposition rate did not necessarily have high fecundity and vice versa. Observed fecundity within the 30‐day experimental period was lowest at the lowest temperature, although estimated potential fecundity did not differ among temperatures. Females at varying temperatures have the potential to lay similar numbers of eggs, although it will take longer at lower temperatures. Southern mountain pine beetle reared in Pinus strobiformis Engelm. (Pinaceae) had a higher upper threshold for oviposition, a similar lower threshold, and slightly greater potential fecundity compared to a northern population reared in Pinus contorta Douglas. A comparison of modeled oviposition rates between the two populations, which could be influenced by host tree, suggests that differences in oviposition rate do not explain observed differences in total generation time. Our oviposition model will facilitate development of a phenology model for southern mountain pine beetle populations.  相似文献   

19.
Aim To infer future changes in the distribution of isolated relict tree populations at the limit of a species’ geographical range, a deep understanding of the regeneration niche and the spatial pattern of tree recruitment is needed. Location A relict Pinus uncinata population located at the south‐western limit of distribution of the species in the Iberian System of north‐eastern Spain. Methods Pinus uncinata individuals were mapped within a 50 × 40‐m plot, and their size, age and reproductive status were estimated. Data on seed dispersal were obtained from a seed‐release experiment. The regeneration niche of the species was assessed based on the associations of seedling density with substrate and understorey cover. The spatial pattern of seedlings was described using point‐pattern (Ripley's K) and surface‐pattern (correlograms, Moran's I) analyses. Statistical and inverse modelling were used to characterize seedling clustering. Results Pine seedlings appeared aggregated in 6‐m patches. Inverse modelling estimated a longer mean dispersal distance (27 m), which corresponded to the size of a large cluster along the north to north‐eastward direction paralleled by an eastward trend of increasing seedling age. The two spatial scales of recruitment were related to two dispersal processes. The small‐scale clustering of seedlings was due to local seed dispersal in open areas near the edge of Calluna vulgaris mats: the regeneration niche. The long‐range expansion might be caused by less frequent medium‐distance dispersal events due to the dominant north‐westerly winds. Main conclusions To understand future range shifts of marginal tree populations, data on seed dispersal, regeneration niche and spatial pattern of recruitment at local scales should be obtained. The monitoring of understorey communities should be a priority in order to predict correctly shifts in tree species range in response to global warming.  相似文献   

20.
Bark beetle epidemics result in tree mortality across millions of hectares in North America. However, few studies have quantified impacts on carbon (C) cycling. In this study, we quantified the immediate response and subsequent trajectories of stand‐level aboveground tree C stocks and fluxes using field measurements and modeling for a location in central Idaho, USA that experienced an outbreak of mountain pine beetle (Dendroctonus ponderosae Hopkins). We measured tree characteristics in lodgepole pine (Pinus contorta) plots spanning a range of structure and mortality conditions. We then initialized the forest vegetation simulator, an individual tree‐based model, with these measurements and simulated the response of aboveground production of C fluxes as well as trajectories of C stocks and fluxes in the coming decades. Mountain pine beetles killed up to 52% of the trees within plots, with more larger trees killed. C stocks in lodgepole pine were reduced by 31–83% following the outbreak, and plot‐level C fluxes decreased 28–73%. Modeled C stocks increased nearly continuously following the infestation, recovering to preoutbreak levels in 25 years or less. Simulated aboveground tree C fluxes increased following the immediate postoutbreak decrease, then subsequently declined. Substantial variability of C stocks and fluxes among plots resulted from the number and size of killed and surviving trees. Our study illustrates that bark beetle epidemics alter forest C cycling unlike stand‐replacement wildfires or clear‐cut harvests, due in part to incomplete mortality coupled with the preference by beetles for larger trees. The dependency of postoutbreak C stocks and fluxes on stand structure suggests that C budget models and studies in areas experiencing mountain pine beetle disturbances need to include size distribution of trees for the most accurate results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号