首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The ultrastructure of the adductor muscle of the boring clam (Tridacna crocea) was investigated. The adductor was composed of opaque and translucent portions. The opaque portion contained smooth muscle cells; the translucent portion contained obliquely striated cells. Smooth muscle cells were classified, according to the statistically analyzed diameters of their thick myofilaments, into two types, S-1 and S-2. S-1 cells had thick myofilaments, 50–60 nm in diameter. S-2 cells had thick myofilaments of two sizes, about 55–65 nm and 85–100 nm in diameter, respectively. Obliquely striated muscle cells in the translucent portion were also classified into two types: O-1 cells, with thick myofilaments 30–35 nm in diameter, and O-2 cells, with myofilaments of 50–60 nm.  相似文献   

2.
The fine structure of the obliquely striated muscle cells of the longitudinal muscle of an annelid was investigated. The characteristics of myofilaments and cell components, such as sarcoplasmic reticular system (S.R.), T-systems and J-rods corresponded to those previously reported, but it was noted for the first time that the cells could be classified into two types with respect to the diameters of their thick myofilaments. In one type, the thick myofilaments were about 29 nm in diameter (A-type) and in the other they were about 41 nm in diameter (B-type). Most of the obliquely striated muscles described to date have been composed of a single type of cell, but we found two types of cell mixed together in the longitudinal muscle. The A-type cells with slender thick myofilaments were distributed mainly in the inner part of the muscle and the B-type cells with broader thick myofilaments were distributed in the outer part.  相似文献   

3.
The brachiopoda, Lingula unguis, has a pair of anterior adductors located in the center of the shell. Each muscle consists of an opaque and a translucent portion which is constructed of smooth and obliquely-striated muscle respectively. According to our ultrastructural observations, the opaque portion seems to have two types of cells. They differ only in the diameters of their thick myofilaments. The fine structure of their cell organelles resembles each other. We measured the diameters of the thick myofilaments in each type of cell to distinguish between the two cell types. About 500 measurements of myofilament diameters were made for each type of cell and statistically analyzed. For one type of cell, the distribution of diameters of the thick myofilaments fit a normal distribution curve with a peak at 37-60 nm. The distribution of diameters of the thick myofilaments for the other type fit a curve in which two normal distribution curves having peaks at 37-60 and 75-97 nm respectively partially overlapped. According to these results, we suggest that the opaque portion contains two types of cells, each having a different distribution of thick myofilament sizes.  相似文献   

4.
Muscles in the body wall, intestinal wall, and contractile hemolymphatic vessels (pseudohearts) of an oligochaete anelid (Eisenia foetida) were studied by electron microscopy. The muscle cells in all locations, except for the outer layer of the pseudohearts, are variants of obliquely striated muscle cells. Cells comprising the circular layer of the body wall possess single, peripherally located myofibrils that occupy most of the cytoplasm and surround other cytoplasmic organelles. The nuclei of the cells lie peripherally to the myofibrils. The sarcomeres consist of thin and thick myofilaments that are arranged in parallel arrays. In one plane of view, the filaments appear to be oriented obliquely to Z bands. Thin myofilaments measure 5–6 nm in diameter. Thick myofilaments are fusiform in shape and their width decreases from their centers (40–45 nm) to their tips (23–25 nm). The thin/thick filament ratio in the A bands is 10. The Z bands consist of Z bars alternating with tubules of the sarcoplasmic reticulum. Subsarcolemmal electron-dense plaques are found frequently. The cells forming the longitudinal layer of the body wall musculature are smaller than the cells in the circular layer and their thick filaments are smaller (31–33 nm centrally and 21–23 nm at the tips). Subsarcolemmal plaques are less numerous. The cells forming the heart wall inner layer, the large hemolymphatic vessels, and the intestinal wall are characterized by their large thick myofilaments (50–52 nm centrally and 27–28 nm at the tips) and abundance of mitochondria. The cells forming the outer muscular layer of the pseudohearts are smooth muscle cells. These cells are richer in thick filaments than vertebrate smooth muscle cells. They differ from obliquely striated muscle cells by possessing irregularly distributed electron-dense bodies for filament anchorage rather than sarcomeres and Z bands and by displaying tubules of smooth endoplasmic reticulum among the bundles of myofilaments. © 1995 Wiley-Liss, Inc.  相似文献   

5.
Matsuno A  Ishida H  Hori H 《Tissue & cell》1993,25(3):325-332
The ultrastructure of the opaque portion of the adductor muscle in the pecten Chlamys nobilis was investigated. The opaque portion was composed of smooth muscle cells that contained thin and thick filaments. The thick filaments were classified into two kinds, thinner and thicker, according to the statistical analysis of diameters. They were also classified as being shorter and longer, when isolated native filaments were examined. The thick filaments may consequently be classified into two kinds: thinner and shorter filaments, and thicker and longer ones. The thinner and shorter filaments were about 26.5 nm in diameter and 7.5 mum in length, and the thicker and longer ones were about 42.0 nm in diameter and 13.0 mum in length, respectively. A regular periodicity was apparent on the surface of the core after removal of myosin molecules from its surface. The periodicity seemed similar for the two kinds of thick filament.  相似文献   

6.
Summary The cytochemistry and ultrastructure of intracytoplasmic filaments of pulmonary lymphatic endothelial cells of neonatal rabbits were studied by comparison with myofilaments of the peribronchial and pulmonary vascular smooth muscle cells. Two types of endothelial filaments were observed: thin filaments (diameter: 50 Å) which lie close to the abluminal cell membrane; and thick filaments (diameter: 90 Å) which are dispersed throughout the cell cytoplasm.Following heavy meromyosin (HMM) treatment, characteristic arrowhead complexes formed in the thin lymphatic endothelial filaments as well as in the actin filaments of the smooth muscle cells. There was no detectable reaction of HMM with the thick filaments.After incubation with EDTA, the thin filaments were labile, and the thick filaments became the major filamentous component in the endothelial cells. In smooth muscle cells, the actin myofilaments were also labile while the 100 Å filaments were stable.These observations support the hypothesis that the actin-like thin endothelial lymphatic filaments form part of a contractile system, while the thick filaments constitute a plastic cell skeleton. The significance of the contractile system in lymphatic endothelial cells might lie in a mechanism for the active regulation of the endothelial intercellular junctions and gaps and hence the permeability of the lymphatic endothelial cell lining.This study was supported by The Council for Tobacco Research—U.S.A. The authors thank Professor Robert C. Rosan, M.D. (Saint-Louis University—U.S.A.) for expert advice. R. Renwart, B. Emanuel and R. Jullet for technical, G. Pison and St. Ons for photographical and N. Tyberghien for secretarial assistance.  相似文献   

7.
Matsuno A  Hirota S 《Tissue & cell》1989,21(6):863-874
Four muscular systems of the Tetraclita squamosa barnacle were observed by means of an electron microscope and it was revealed that these systems each bore different types of muscle cells. The four systems were the adductor (A), the lateral scutal depressor (LSD), the ventral scutal depressor (VSD), and the tergal depressor (TD). The A-system included cross stiated muscle cells which showed long sarcomeres (about 10 mum) and rather disordered arrays of myofilaments. The LSD-system included cross striated muscles which had medium length sarcomeres (about 6.7 mum) and rather ordered myofilamental arrays. The VSD-system was constructed of cross striated muscle cells which bore shorter sarcomeres (4.6 mum) than the previous three systems and ordered myofilamental arrays. This last type of cell also bore well-developed sarcoplasmic reticular systems. The TD-system included smooth muscle cells which showed rather ordered arrays of myofilaments and dense-bodies. Each muscular system, as described above, included to its advantage one type of cross striated or smooth muscle cell for its characteristic contraction. The relations between ultrastructures and functions of each muscular system will now be discussed.  相似文献   

8.
Ultrastructure of muscle cells in Siboglinum fiordicum (Pogonophora)   总被引:1,自引:0,他引:1  
Two different muscle types are found in the body of Siboglinum fiordicum: body wall muscle and blood vessel muscle. Both are of a myomesothelial type. The myofibrils of the body wall muscle are non-striated and consist of thick and thin myofilaments. Scattered dense bodies and attachment plaques are described. The sarcoplasmic reticulum forms a three-dimensional network in the myofibrils and only peripheral couplings are observed. The thick filaments are of a paramyosin type and have a diameter ranging from 400-1500 A. The blood vessels muscle is non-striated, but sometimes a sarcomere-like organization has been observed. Both thick and thin filaments are present. The thick filaments have a diameter of 250-400 A and lack transverse striations. Dense bodies and attachment of plaques are few. The sparse sarcoplasmic reticulum is restricted to the myofibril periphery where it makes peripheral couplings with sarcolemma. The luminal surface of the vessels is lined by a basal lamina with collagen-like inclusions. No endothelium is found. The body wall muscle and the blood vessel muscle are compared with other muscle types described in invertebrates.  相似文献   

9.
Four muscular systems of the Tetraclita squamosa barnacle were observed by means of an electron microscope and it was revealed that these systems each bore different types of muscle cells. The four systems were the adductor (A), the lateral scutal depressor (LSD), the ventral scutal depressor (VSD), and the tergal depressor (TD). The A-system included cross stiated muscle cells which showed long sarcomeres (about 10 μm) and rather disordered arrays of myofilaments. The LSD-system included cross striated muscles which had medium length sarcomeres (about 6.7 μm) and rather ordered myofilamental arrays. The VSD-system was constructed of cross striated muscle cells which bore shorter sarcomeres (4.6 μm) than the previous three systems and ordered myofilamental arrays. This last type of cell also bore well-developed sarcoplasmic reticular systems. The TD-system included smooth muscle cells which showed rather ordered arrays of myofilaments and dense-bodies. Each muscular system, as described above, included to its advantage one type of cross striated or smooth muscle cell for its characteristic contraction. The relations between ultrastructures and functions of each muscular system will now be discussed.  相似文献   

10.
R D Farley 《Tissue & cell》1984,16(4):577-588
The light and electron microscopes were used to examine possible hemocytopoietic tissue in the desert scorpion, Paruroctonus mesaensis. Results agree with earlier light microscopic studies that cells are released into the blood from the two lateral lymphoid organs and the supraneural gland. The former are sacciform structures attached by their anterior ends to the diaphragm. The supraneural gland forms the thickened wall of the supraneural artery in the mesosoma from the first to the third abdominal ganglia. The lateral lymphoid glands have an acellular stroma in which are embedded granular and agranular cells. The stroma is apparently formed by specialized cells which release membranous cell fragments that become the matrix of the gland. Cells are released into the body cavity from the periphery of the two organs. The supraneural gland has a fibrous stroma in which are embedded a variety of cell types. The cells appear to be released in greatest abundance into the blood in the lumen of the gland. The gland has cells with opaque granules (0.9-1.4 micron diameter) and agranular cells of variable shape. The most abundant cell, possibly the stem-cell for the others, is about 10 micron diameter and often has processes of variable length. In addition, muscle cells at various stages of differentiation are found at the inner margin of the gland. These cells have thick and thin myofilaments (24-32 and 5-8 nm diameter) and dense bodies which sometimes become organized into sarcomeres with Z-bands before the cells are released into the gland lumen. The function of these muscle cells is unknown, but possibly they contribute to the maintenance of blood pressure and the release of cells into the blood from the inner margin of the gland.  相似文献   

11.
The structure of the cross-striated adductor muscle of the scallop has been studied by electron microscopy and X-ray diffraction using living relaxed, glycerol-extracted (rigor), fixed and dried muscles. The thick filaments are arranged in a hexagonal lattice whose size varies with sarcomere length so as to maintain a constant lattice volume. In the overlap region there are approximately 12 thin filaments about each thick filament and these are arranged in a partially disordered lattice similar to that found in other invertebrate muscles, giving a thin-to-thick filament ratio in this region of 6:1.The thin filaments, which contain actin and tropomyosin, are about 1 μm long and the actin subunits are arranged on a helix of pitch 2 × 38.5 nm. The thick filaments, which contain myosin and paramyosin, are about 1.76 μm long and have a backbone diameter of about 21 nm. We propose that these filaments have a core of paramyosin about 6 nm in diameter, around which the myosin molecules pack. In living relaxed muscle, the projecting myosin heads are symmetrically arranged. The data are consistent with a six-stranded helix, each strand having a pitch of 290 nm. The projections along the strands each correspond to the heads of one or two myosin molecules and occur at alternating intervals of 13 and 16 nm. In rigor muscle these projections move away from the backbone and attach to the thin filaments.In both living and dried muscle, alternate planes of thick filaments are staggered longitudinally relative to each other by about 7.2 nm. This gives rise to a body-centred orthorhombic lattice with a unit cell twice the volume of the basic filament lattice.  相似文献   

12.
Summary The fine structure of each type of anterior pituitary cell in the male goat was studied through the application of a superimposition technique in which adjacent thick sections were used to identify individual cells beforehand by light-microscopic immunohistochemistry. A cone of the pars intermedia protrudes into the pars anterior, being surrounded by the narrow pituitary cleft; the immunohistochemical appearances of the cells forming the cone resemble those of the pars anterior. Several follicles appear in the pars anterior. Ultrastructurally GH cells resemble prolactin cells. The secretory granules of both types are spherical; the diameter of the former is about 340 nm, whereas that of the latter is about 440 nm. ACTH cells are polygonal in shape with secretory granules, about 180 nm in diameter, scattered throughout the cytoplasm. TSH cells, which are spherical in shape, contain the smallest secretory granules, 150 nm in diameter. The highly electron-dense LH cells contain numerous secretory granules about 210 nm in diameter. Their nuclei are irregular with incisures. Thus, the anterior pituitary cells of the goat are ultrastructurally characteristic and species-specific.  相似文献   

13.
In Megalobulimus abbreviatus, the ultrastructural features and the contractile proteins of columellar, pharyngeal and foot retractor muscles were studied. These muscles are formed from muscular fascicles distributed in different planes that are separated by connective tissue rich in collagen fibrils. These cells contain thick and thin filaments, the latter being attached to dense bodies, lysosomes, sarcoplasmic reticulum, caveolae, mitochondria and glycogen granules. Three types of muscle cells were distinguished: T1 cells displayed the largest amount of glycogen and an intermediate number of mitochondria, suggesting the highest anaerobic metabolism; T2 cells had the largest number of mitochondria and less glycogen, which suggests an aerobic metabolism; T3 cells showed intermediate glycogen volumes, suggesting an intermediate anaerobic metabolism. The myofilaments in the pedal muscle contained paramyosin measuring between 40 and 80 nm in diameter. Western Blot muscle analysis showed a 46-kDa band that corresponds to actin and a 220-kDa band that corresponds to myosin filaments. The thick filament used in the electrophoresis showed a protein band of 100 kDa in the muscles, which may correspond to paramyosin.  相似文献   

14.
FINE STRUCTURE OF SMOOTH MUSCLE CELLS GROWN IN TISSUE CULTURE   总被引:7,自引:6,他引:1       下载免费PDF全文
The fine structure of smooth muscle cells of the embryo chicken gizzard cultured in monolayer was studied by phase-contrast optics and electron microscopy. The smooth muscle cells were irregular in shape, but tended to be elongate. The nucleus usually contained prominent nucleoli and was large in relation to the cell body. When fixed with glutaraldehyde, three different types of filaments were noted in the cytoplasm: thick (150–250 A in diameter) and thin (30–80 A in diameter) myofilaments, many of which were arranged in small bundles throughout the cytoplasm and which were usually associated with dark bodies; and filaments with a diameter of 80–110 A which were randomly orientated and are not regarded as myofilaments. Some of the aggregated ribosomes were helically arranged. Mitochondria, Golgi apparatus, and dilated rough endoplasmic reticulum were prominent. In contrast to in vivo muscle cells, micropinocytotic vesicles along the cell membrane were rare and dense areas were usually confined to cell membrane infoldings. These cells are compared to in vivo embryonic smooth muscle and adult muscle after treatment with estrogen. Monolayers of cultured smooth muscle will be of particular value in relating ultrastructural features to functional observations on the same cells.  相似文献   

15.
Pectoral muscle from normal and dystrophic New Hampshire chicken embryos was dissociated and grown in vitro. Marked differences between the two types of cell cultures were observed with the light and electron microscopes during early myogenic stages. The diseased myoblasts assumed a polarized affect and fused into smaller and fewer myotubes. Pseudostraps rather than true muscle straps were often seen in diseased cultures. There was also a delay in the appearance of myosin containing thick myofilaments in differentiating dystrophic muscle cells.  相似文献   

16.
Filaments 5 nm thick, located throughout the cytoplasm mainly along the surface, are observed in intact lymphocytes. In the control glycerinized lymphocytes, besides the above filaments aggregations of filaments nearly 3 nm in diameter were found. After the treatment of cells by antimurine serum or ferritin-conjugated concanavalin A, some fibrillar structures are observed mainly in the cap region in the form of filaments 5-6 nm of thickness, radially directed towards the plasma membrane. After glycerinization, three types of filaments are observed being, respectively, near 3, 5-6 and almost 8 nm in diameter. Two latter types of filaments are decorated by S1-myosine fragments which indicates their actine nature. Differences in the character and distribution of myofibrils in the cytoplasm of intact cells and cells with caps may witness in favour of their involvement in the processes associated with redistribution of surface receptors.  相似文献   

17.
Receptor muscles of the abdominal muscle receptor organs of the crayfish, Procambarus clarkii, were examined by electron microscopy. Both the fast and the slow receptor strand comprises a single muscle fibre which is divided by invagination of the cell membrane into numerous cytoplasmic processes in its intermediate region (the so-called intercalated tendon). Most of these myofibrillar processes insert in this region, but some of them pass through the intermediate region without interruption and join the other portion of the fibre. Thus the receptor muscles, whilst maintaining cytoplasmic continuity throughout their whole length, are modified in their intermediate regions, becoming fasciculated and providing spaces which are occupied by the connective tissue and the dendrites of the sensory neurone. Clear-cut differences in fine structure are shown between the muscle of the two types of receptor unit. The fast receptor muscle shows the typical features of arthropod fast muscles, including short sarcomere length (on average 3.3 μm), cylindrical myofibrils, well-developed sarcoplasmic reticulum, and regular hexagonal array of the myofilaments. By contrast, the slow receptor muscle fibre is characterized by long sarcomeres (average 6.5 μm) and unique organization of the myofilaments, with very thick ‘thick’ filaments having diameters in the range of 25–36 nm surrounded by about 12 thin filaments.  相似文献   

18.
Thick filaments in vascular smooth muscle   总被引:5,自引:4,他引:1       下载免费PDF全文
Two sets of myofilaments were demonstrated after incubation of strips of rabbit portal-anterior mesenteric vein under moderate stretch in a physiological salt solution. Thick filaments had a mean diameter of 18 nm and reached a maximum length of 1.4 µm with a mean length of 0.61 µm. In transverse sections, 2.5–5 nm particles were resolved as subunits of the thick filaments. Thin filaments had an average diameter of 8.4 nm and generally conformed to the structure believed to represent actin filaments in smooth and striated muscles. In the areas of maximum concentration there were 160–328 thick filaments/µm2 and the lowest ratio of thin to thick filaments was 12:1. Thick filaments were present in approximately equal numbers in vascular smooth muscle relaxed by theophylline, in Ca++-free solution, or contracted by norepinephrine. The same preparatory procedures used with vascular smooth muscle also enabled us to visualize thick filaments in guinea pig and rabbit taenia coli and vas deferens.  相似文献   

19.
The nephridial muscle layer of Phascolosoma granulatum consists of a network of longitudinal and circular cells separated by connective tissue matrix. The muscle fibers are densely packed with thick and thin myofilaments, among which are scattered cytoplasmic dense bodies. The nucleus and noncontractile cytoplasmic organelles occupy a lateral projection from the contractile portion of the fiber. Cytoplasmic dense bodies are the result of a clustering of an indeterminate number of the thin actin filaments that fill the cytoplasm between thick filaments. Attached to the cytoplasmic face of the cell membrane are membrane-associated electron-dense plaques. These sites are linked to the contractile myofilaments by narrow filamentous bridges. Extracellular narrow filaments extend from these plaques to collagen fibers of the connective tissue matrix. Differences in length of the dense plaques may be related to differences in thick myofilament diameter in three types of muscle fiber, types A, B and C, statistically distinguished by mean fiber size differences. The plaques may serve as connecting links for the transmission of tension from contractile units to the connective tissue of the muscle layer. © 1993 Wiley-Liss, Inc.  相似文献   

20.
The accessory muscle of the walking leg of the horseshoe crab, Tachypleus gigas, was examined electron microscopically. The muscle fibers vary in size but are small in diameter, when compared with other arthropod skeletal muscles. They are striated with A, I, Z and poorly defined H bands. The sarcomere length ranges from 3-10 μm with most sarcomeres in the range of about 6 μm. The myofilaments are arranged in lamellae in larger fibers and less well organized in the smaller ones. Each thick filament is surrounded by 9-12 thin filaments which overlap. The SR is sparse but well organized to form a fenestrated collar around the fibrils. Individual SR tubules are also seen among the myofibrils. Long transverse tubules extend inward from the sarcolemma to form dyads or triads with the SR at the A-I junction. Both dyads and triads coexist in a single muscle fiber, a feature believed to have evolutionary significance. The neuromuscular relationship is unique. In the region of synaptic contact, the sarcolemma is usually elevated to form a large club-shaped structure containing no myofilaments and few other organelles. The axons or axon terminals and glial elements penetrate deep into the club-shaped sarcoplasm and form synapses with the fiber. As many as 13 terminals have been observed within a single section. Synaptic vesicles of two types are found in the axon terminals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号