共查询到20条相似文献,搜索用时 12 毫秒
1.
The effect of phosphorus addition on survival of Escherichia coli in an experimental drinking water distribution system was investigated. Higher phosphorus concentrations prolonged the survival of culturable E. coli in water and biofilms. Although phosphorus addition did not affect viable but not culturable (VBNC) E. coli in biofilms, these structures could act as a reservoir of VBNC forms of E. coli in drinking water distribution systems. 相似文献
2.
3.
Liu Jingqing Ren Hongxing Ye Xianbei Wang Wei Liu Yan Lou Liping Cheng Dongqing He Xiaofang Zhou Xiaoyan Qiu Shangde Fu Liusong Hu Baolan 《Applied microbiology and biotechnology》2017,101(2):749-759
Applied Microbiology and Biotechnology - Biofilms in the pipe wall may lead to water quality deterioration and biological instability in drinking water distribution systems (DWDSs). In this study,... 相似文献
4.
5.
AIMS: To examine whether incubation of Escherichia coli in nondisinfected drinking water result in development of cells that are not detectable using standard procedures but maintain a potential for metabolic activity and cell division. METHODS AND RESULTS: Survival and detectability of four different E. coli strains were studied using drinking water microcosms and samples from contaminated drinking water wells. Recovery of E. coli was compared using different cultivation-dependent methods, fluorescence in situ hybridization (FISH) using specific oligonucleotide probes, direct viable counts (DVC), and by enumeration of gfp-tagged E. coli (green fluorescent protein, GFP). Two levels of stress responses were observed after incubation of E. coli in nondisinfected drinking water: (i) the presence of cells that were not detected using standard cultivation methods but could be cultivated after gentle resuscitation on nonselective nutrient-rich media, and (ii) the presence of cells that responded to nutrient addition but could only be detected by cultivation-independent methods (DVC, FISH and GFP). Collectively, the experiments demonstrated that incubation for 20-60 days in nondisinfected drinking water resulted in detection of only 0.7-5% of the initial E. coli population using standard cultivation methods, whereas 1-20% could be resuscitated to a culturable state, and 17-49% could be clearly detected using cultivation-independent methods. CONCLUSIONS: Resuscitation of stressed E. coli on nonselective nutrient-rich media increased cell counts in drinking water using both traditional (CFU), and cultivation-independent methods (DVC, FISH and GFP). The cultivation-independent methods resulted in detection of 10-20 times more E. coli than the traditional methods. The results indicate that a subpopulation of substrate-responsive but apparent nonculturable E. coli may develop in drinking water during long-term starvation survival. SIGNIFICANCE AND IMPACT OF THE STUDY: The existence of substrate-responsive but nonculturable cells should be considered when evaluating the survival potential of E. coli in nondisinfected drinking water. 相似文献
6.
Watson CL Owen RJ Said B Lai S Lee JV Surman-Lee S Nichols G 《Journal of applied microbiology》2004,97(4):690-698
AIMS: To investigate treated water distribution systems in England as a source of Helicobacter pylori. METHODS AND RESULTS: Water and biofilms were obtained from 11 domestic and seven educational properties and from hydrants, reservoirs and water meters supplied by three water utilities. Samples were cultured on nonselective and antibiotic containing media combined with immunomagnetic separation concentration. Viable helicobacters were not detected in any of the 151 samples but Helicobacter-specific PCR assays detected DNA in 26% of samples from domestic properties, schools and hydrants with the highest frequency in biofilms (42%). Direct sequencing of six selected amplicons confirmed >95% sequence homology to H. pylori. CONCLUSIONS: While viable helicobacters were not isolated, evidence was obtained for the presence of Helicobacter DNA, including that of H. pylori. Biofilms on surfaces within water distribution systems may act either as sites for the passive accumulation of helicobacters or as potentially important reservoirs of infection. SIGNIFICANCE AND IMPACT OF THE STUDY: Our findings strengthen evidence that H. pylori may be transmitted through drinking water. However, there is currently no evidence that viable cells can survive the disinfection levels used in UK mains supplies and the health risk from this source remains unclear. 相似文献
7.
Lehtola MJ Juhna T Miettinen IT Vartiainen T Martikainen PJ 《Journal of industrial microbiology & biotechnology》2004,31(11):489-494
The formation of biofilms in drinking water distribution networks is a significant technical, aesthetic and hygienic problem. In this study, the effects of assimilable organic carbon, microbially available phosphorus (MAP), residual chlorine, temperature and corrosion products on the formation of biofilms were studied in two full-scale water supply systems in Finland and Latvia. Biofilm collectors consisting of polyvinyl chloride pipes were installed in several waterworks and distribution networks, which were supplied with chemically precipitated surface waters and groundwater from different sources. During a 1-year study, the biofilm density was measured by heterotrophic plate counts on R2A-agar, acridine orange direct counting and ATP-analyses. A moderate level of residual chorine decreased biofilm density, whereas an increase of MAP in water and accumulated cast iron corrosion products significantly increased biofilm density. This work confirms, in a full-scale distribution system in Finland and Latvia, our earlier in vitro finding that biofilm formation is affected by the availability of phosphorus in drinking water. 相似文献
8.
P.J. Packer C.W. Mackerness M. Riches C.W. Keevil 《Letters in applied microbiology》1995,20(5):303-307
Various selective media were assessed for their ability to detect and differentiate Klebsiella oxytoca and Escherichia coli in environmental water samples. Only two, Membrane Lauryl Sulphate agar and Deoxycholate Agar, could differentiate the two coliforms from each other and from the 'background' heterotrophs in water and this was a consequence of E. coli's ability to grow at 44°C and 37°C whereas Kl. oxytoca could only grow at 37°C. Modified M-FC medium effectively differentiated Kl. oxytoca but not E. coli in environmental samples. Other media characterized the different coliforms in pure culture but failed to do likewise in environmental samples. For example, pure cultures of E. coli fluoresced when MUG was added to the medium but single colonies on a mixed species plate failed to do so. MT7 agar distinguished the two coliforms from water heterotrophs but not from each other. 相似文献
9.
Fangqiong Ling Chiachi Hwang Mark W LeChevallier Gary L Andersen Wen-Tso Liu 《The ISME journal》2016,10(3):582-595
Drinking water distribution systems (DWDSs) harbor the microorganisms in biofilms and suspended communities, yet the diversity and spatiotemporal distribution have been studied mainly in the suspended communities. This study examined the diversity of biofilms in an urban DWDS, its relationship with suspended communities and its dynamics. The studied DWDS in Urbana, Illinois received conventionally treated and disinfected water sourced from the groundwater. Over a 2-year span, biomass were sampled from household water meters (n=213) and tap water (n=20) to represent biofilm and suspended communities, respectively. A positive correlation between operational taxonomic unit (OTU) abundance and occupancy was observed. Examined under a ‘core-satellite'' model, the biofilm community comprised 31 core populations that encompassed 76.7% of total 16 S rRNA gene pyrosequences. The biofilm communities shared with the suspended community highly abundant and prevalent OTUs, which related to methano-/methylotrophs (i.e., Methylophilaceae and Methylococcaceae) and aerobic heterotrophs (Sphingomonadaceae and Comamonadaceae), yet differed by specific core populations and lower diversity and evenness. Multivariate tests indicated seasonality as the main contributor to community structure variation. This pattern was resilient to annual change and correlated to the cyclic fluctuations of core populations. The findings of a distinctive biofilm community assemblage and methano-/methyltrophic primary production provide critical insights for developing more targeted water quality monitoring programs and treatment strategies for groundwater-sourced drinking water systems. 相似文献
10.
Influence of biofilms on iron and manganese deposition in drinking water distribution systems 总被引:2,自引:0,他引:2
Although health risk due to discoloured water is minimal, such water continues to be the source of one of the major complaints received by most water utilities in Australia. Elevated levels of iron (Fe) and/or manganese (Mn) in bulk water are associated with discoloured water incidents. The accumulation of these two elements in distribution systems is believed to be one of the main causes for such elevated levels. An investigation into the contribution of pipe wall biofilms towards Fe and Mn deposition, and discoloured water events is reported in this study. Eight laboratory-scale reactors were operated to test four different conditions in duplicate. Four reactors were exposed to low Fe (0.05 mg l(-1)) and Mn (0.02 mg l(-1)) concentrations and the remaining four were exposed to a higher (0.3 and 0.4 mg l(-1) for Fe and Mn, respectively) concentration. Two of the four reactors which received low and high Fe and Mn concentrations were chlorinated (3.0 mg l(-1) of chlorine). The biological activity (measured in terms of ATP) on the glass rings in these reactors was very low (~1.5 ng cm(-2) ring). Higher concentrations of Fe and Mn in bulk water and active biofilms resulted in increased deposition of Fe and Mn on the glass rings. Moreover, with an increase in biological activity, an increase in Fe and Mn deposition was observed. The observations in the laboratory-scale experiments were in line with the results of field observations that were carried out using biofilm monitors. The field data additionally demonstrated the effect of seasons, where increased biofilm activities observed on pipe wall biofilms during late summer and early autumn were found to be associated with increased deposition of Fe and Mn. In contrast, during the cooler months, biofilm activities were a magnitude lower and the deposited metal concentrations were also significantly less (ie a drop of 68% for Fe and 86% for Mn). Based on the laboratory-scale investigations, detachment of pipe wall biofilms due to cell death or flow dynamics could release the entrapped Fe and Mn into the bulk water, which could lead to a discoloured water event. Hence, managing biofilm growth on drinking water pipelines should be considered by water utilities to minimize accumulation of Fe and Mn in distribution networks. 相似文献
11.
Although health risk due to discoloured water is minimal, such water continues to be the source of one of the major complaints received by most water utilities in Australia. Elevated levels of iron (Fe) and/or manganese (Mn) in bulk water are associated with discoloured water incidents. The accumulation of these two elements in distribution systems is believed to be one of the main causes for such elevated levels. An investigation into the contribution of pipe wall biofilms towards Fe and Mn deposition, and discoloured water events is reported in this study. Eight laboratory-scale reactors were operated to test four different conditions in duplicate. Four reactors were exposed to low Fe (0.05?mg?l?1) and Mn (0.02?mg?l?1) concentrations and the remaining four were exposed to a higher (0.3 and 0.4?mg?l?1 for Fe and Mn, respectively) concentration. Two of the four reactors which received low and high Fe and Mn concentrations were chlorinated (3.0?mg?l?1 of chlorine). The biological activity (measured in terms of ATP) on the glass rings in these reactors was very low (~1.5 ng cm?2 ring). Higher concentrations of Fe and Mn in bulk water and active biofilms resulted in increased deposition of Fe and Mn on the glass rings. Moreover, with an increase in biological activity, an increase in Fe and Mn deposition was observed. The observations in the laboratory-scale experiments were in line with the results of field observations that were carried out using biofilm monitors. The field data additionally demonstrated the effect of seasons, where increased biofilm activities observed on pipe wall biofilms during late summer and early autumn were found to be associated with increased deposition of Fe and Mn. In contrast, during the cooler months, biofilm activities were a magnitude lower and the deposited metal concentrations were also significantly less (ie a drop of 68% for Fe and 86% for Mn). Based on the laboratory-scale investigations, detachment of pipe wall biofilms due to cell death or flow dynamics could release the entrapped Fe and Mn into the bulk water, which could lead to a discoloured water event. Hence, managing biofilm growth on drinking water pipelines should be considered by water utilities to minimize accumulation of Fe and Mn in distribution networks. 相似文献
12.
13.
Dailloux M Albert M Laurain C Andolfatto S Lozniewski A Hartemann P Mathieu L 《Applied and environmental microbiology》2003,69(11):6946-6948
The ability of Mycobacterium xenopi to colonize an experimental drinking water distribution system (a Propella reactor) was investigated. M. xenopi was present in the biofilm within an hour following its introduction. After 9 weeks, it was always present in the outlet water (1 to 10 CFU 100 ml(-1)) and inside the biofilm (10(2) to 10(3) CFU cm(-2)). Biofilms may be considered reservoirs for the survival of M. xenopi. 相似文献
14.
In this study, to give insight into the bacterial diversity of biofilms from full-scale drinking water distribution systems (DWDSs), the bacterial community compositions of biofilms from two urban DWDSs (Guangzhou and Beijing, China) were determined using a 16S rRNA gene library technique. Meanwhile, the occurrence and diversity of mycobacteria were also analyzed by a Mycobacterium -specific hsp gene assay. The biofilms from the full-scale DWDSs have complex bacterial populations. Proteobacteria was the common and predominant group in all biofilm samples, in agreement with previous reports. The community structures of bacteria at the three sites in Guangzhou DWDS were significantly different, despite the similar physicochemical properties of portable water. Some abundant and peculiar bacterial phylotypes were noteworthy, including Methylophilus , Massilia, and Planomicrobium , members of which are rarely found in DWDSs and their roles in DWDS biofilms are still unclear. The diversity of Mycobacterium species in biofilm samples was rather low. Mycobacterium arupense and Mycobacterium gordonae were the primary Mycobacterium species in Guangzhou and Beijing biofilms, respectively, indicating that M. arupense may be more resistant to chloride than M. gordonae. 相似文献
15.
16.
Highly sensitive and specific detection of viable Escherichia coli in drinking water 总被引:3,自引:0,他引:3
A highly sensitive and specific assay method was developed for the detection of viable Escherichia coli as an indicator organism in water, using nucleic acid sequence-based amplification (NASBA) and electrochemiluminescence (ECL) analysis. Viable E. coli were identified via a 200-nt-long target sequence from mRNA (clpB) coding for a heat shock protein. In the detection assay, a heat shock was applied to the cells prior to disruption to induce the synthesis of clpB mRNA and the mRNA was extracted, purified, and finally amplified using NASBA. The amplified mRNA was quantified with an ECL detection system after hybridization with specific DNA probes. Several disruption methods were investigated to maximize total RNA extracted from viable cells. Optimization was also carried out regarding the design of NASBA primer pairs and detection probes, as well as reaction and detection conditions. Finally, the assay was tested regarding sensitivity and specificity. Analysis of samples revealed that as few as 40 E. coli cells/mL can be detected, with no false positive signals resulting from other microorganisms or nonviable E. coli cells. Also, it was shown that a quantification of E. coli cells was possible with our assay method. 相似文献
17.
Nontuberculous mycobacteria (NTM) are ubiquitous and have been isolated from a variety of environmental sources, including water. Various NTM were isolated from biofilms in drinking water distribution systems in two urban and two semiurban areas in South Africa. Most of the isolates belonged to opportunistic pathogenic species of the NTM group, but none belonged to the Mycobacterium avium complex. 相似文献
18.
19.
Begum YA Talukder KA Nair GB Khan SI Svennerholm AM Sack RB Qadri F 《Canadian journal of microbiology》2007,53(1):19-26
Enterotoxigenic Escherichia coli (ETEC) is a common cause of bacterial infection leading to acute watery diarrhea in infants and young children. Although the prevalence of ETEC is high in Bangladesh and infections can be spread through food and contaminated water, limited information is available about ETEC in the surface water. We carried out studies to isolate ETEC from surface water samples from ponds, rivers, and a lake from a site close to field areas known to have a high incidence of diarrhea in Dhaka, Bangladesh, and Matlab, Bangladesh. ETEC strains isolated from the water sources were compared with ETEC strains isolated from patients with diarrhea at two hospitals in these areas. ETEC were isolated from 30% (45 of 150) of the samples from the surface water sources and 19% (518 of 2700) of the clinical specimens. One hundred ETEC strains isolated from patients with similar phenotypes as the environmental strains were compared for phenotypic and genotypic properties. The most common O serogroups on ETEC were O6, O25, O78, O115, and O126 in both types of strains. Pulsed-field gel electrophoresis analyses of the ETEC strains showed that multiple clones of ETEC were present within each colonization factor type and that some clones detected in the environment were also isolated from the stools of patients. The strains showed multiple and similar antibiotic resistance patterns. This study shows that ETEC is prevalent in surface water sources in Bangladesh suggesting a possible reason for the endemicity of this pathogen in Bangladesh. 相似文献
20.
Global gene expression in Escherichia coli biofilms 总被引:9,自引:0,他引:9
It is now apparent that microorganisms undergo significant changes during the transition from planktonic to biofilm growth. These changes result in phenotypic adaptations that allow the formation of highly organized and structured sessile communities, which possess enhanced resistance to antimicrobial treatments and host immune defence responses. Escherichia coli has been used as a model organism to study the mechanisms of growth within adhered communities. In this study, we use DNA microarray technology to examine the global gene expression profile of E. coli during sessile growth compared with planktonic growth. Genes encoding proteins involved in adhesion (type 1 fimbriae) and, in particular, autoaggregation (Antigen 43) were highly expressed in the adhered population in a manner that is consistent with current models of sessile community development. Several novel gene clusters were induced upon the transition to biofilm growth, and these included genes expressed under oxygen-limiting conditions, genes encoding (putative) transport proteins, putative oxidoreductases and genes associated with enhanced heavy metal resistance. Of particular interest was the observation that many of the genes altered in expression have no current defined function. These genes, as well as those induced by stresses relevant to biofilm growth such as oxygen and nutrient limitation, may be important factors that trigger enhanced resistance mechanisms of sessile communities to antibiotics and hydrodynamic shear forces. 相似文献