首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Angiotensin II stimulates rapid formation of inositol-1,4,5-trisphosphate (Ins-1,4,5-P3) in bovine adrenal glomerulosa cells. In addition to being rapidly metabolized to lower inositol phosphates, Ins-1,4,5-P3 is converted to Ins-1,3,4,5-tetrakisphosphate (Ins-1,3,4,5-P4) and Ins-1,3,4-P3 which is in turn phosphorylated to a further Ins-P4 isomer, namely Ins-1,3,4,6-P4. In bovine adrenocortical cytosol [3H]Ins-1,3,4,5-P4 and [3H]Ins-1,3,4-P3 were converted to Ins-1,3,4,6-P4 and inositol pentakisphosphate (Ins-P5) in a metabolic sequence suggesting that unlike Ins-1,3,4,5-P4, Ins-1,3,4,6-P4 is a direct precursor of Ins-P5. Consistent with this assumption, [3H]Ins-1,3,4,6-P4 was converted to Ins-P5 in electropermeabilized adrenal glomerulosa cells. These findings demonstrate that Ins-1,3,4,6-P4 is an intermediate link between InsP3 metabolism and the higher inositol phosphates detected in several tissues.  相似文献   

2.
The binding of [3H]Ins(1,4,5)P3 to bovine adrenocortical microsomes has been shown to be rapid, reversible and saturable. The microsomal preparation contained a single population of high affinity sites (KD = 6.82+/-2.3 nM, Bmax = 370+/-38 fmol/mg protein). The binding site was shown to exhibit positional specificity with respect to inositol trisphosphate binding, i.e. Ins(2,4,5)P3 was able to compete with [3H]Ins(1,4,5)P3 whereas Ins(1,3,4)P3 was not. Ins(1,3,4,5)P4 showed a similar affinity for the receptor as Ins(2,4,5)P3 whereas the other inositol phosphates tested, ATP, GTP and 2,3-DPG, were poor competitors. [3H]Ins(1,4,5)P3-binding was independent of free Ca2+ concentrations. The adrenocortical microsomal preparation has been incorporated into an assay which has been used to determine the basal and vasopressin-stimulated content of neutralised acid extracts of rat hepatocytes. Intracellular concentrations of Ins(1,4,5)P3 were calculated to be 0.22+/-0.15 microM basal and 2.53+/-1.8 microM at peak stimulation. This assay provides a simple, specific and quantitative method for the measurement of Ins(1,4,5)P3 concentrations in the picomolar range.  相似文献   

3.
Angiotensin stimulates rapid and prominent increases in inositol polyphosphates and their metabolites in bovine glomerulosa cells labeled with [3H]inositol. In addition to the early formation of inositol 1,4,5-trisphosphate (Ins-1,4,5-P3) and inositol 1,3,4-trisphosphate (Ins-1,3,4-P3), as well as their intermediate product, inositol 1,3,4,5-tetrakisphosphate (Ins-1,3,4,5-P4), delayed increases in two new InsP4 isomers were consistently observed by high resolution high performance liquid chromatography. Studies on the metabolism of purified Ins-1,3,4,5-P4 preparations, labeled with [3H]inositol and 32P to monitor sites of dephosphorylation, were performed in permeabilized glomerulosa cells. In addition to rapid degradation of Ins-1,3,4,5-P3 to Ins-1,3,4-P3 and then to Ins-3,4-P2, there was delayed formation of one of the putative InsP4 isomers observed during AII stimulation in intact cells. The kinetics of formation of the new InsP4 isomer, and the lack of phosphate in its 5 position based on isotope ratios, were consistent with its origin from Ins-1,3,4-P3. This was confirmed by the conversion of [3H]Ins-1,3,4-P3 to the new InsP4 isomer in permeabilized cells by a kinase distinct from that which phosphorylates Ins-1,4,5-P3. These results have demonstrated that the dephosphorylation sequence of Ins-1,4,5-P3 metabolism is accompanied by a complex cycle of higher phosphorylations with formation of new intermediates of potential significance in cellular regulation.  相似文献   

4.
F Donié  E Hülser  G Reiser 《FEBS letters》1990,268(1):194-198
Proteins which bind with high affinity Ins 1,3,4,5-P4 or Ins 1,4,5-P3 were solubilized from porcine cerebellar membranes. Both binding activities were separated by heparin-agarose chromatography. The Ins 1,3,4,5-P4 receptor was partially purified with an approximately 1000-fold enrichment as compared to the membrane preparation. In the receptor-enriched preparation the Ins 1,3,4,5-P413 binding protein had an affinity (Kd) for Ins 1,3,4,5-P4 of 4.6 nM. Ins 1,3,4,5,6-P5 displaced [3H]Ins 1,3,4,5-P4 binding with a comparable affinity. The Ins 1,3,4,5-P4 binding protein displayed high selectivity for Ins 1,3,4,5-P4 over other inositol-phosphates (IC50 for Ins 1,4,5,6-P4 150 nM, for Ins-P6 1 microM and for Ins 1,3,4-P3 5 microM). Most importantly, Ins 1,4,5-P3 did not displace [3H]Ins 1,3,4,5-P4 binding at concentrations up to 10 microM. Binding of Ins 1,3,4,5-P4 was maximal in the pH range between 4.5 and 6, was stable with Ca2+ concentration varied from 1 nM to 1 mM, and was suppressed by heparin (IC50 about 2 nM). The high affinity receptor for Ins 1,3,4,5-P4 reported here, which is distinct from the Ins 1,4,5-P3 receptor might allow to evaluate the possible functional role of Ins 1,3,4,5-P4 in the cellular signal transduction.  相似文献   

5.
Does the inositol tris/tetrakisphosphate pathway exist in rat heart?   总被引:2,自引:0,他引:2  
D Renard  J Poggioli 《FEBS letters》1987,217(1):117-123
Appearance of two isomers of inositol trisphosphate (InsP3) was observed when [3H]inositol prelabelled rat heart ventricles were stimulated for 10 and 30 s with noradrenaline. In contrast, inositol tetrakisphosphate (InsP4) could not be detected. However the existence of the inositol tris/tetrakisphosphate pathway was demonstrated by studying [3H]inositol 1,4,5-trisphosphate (Ins-1,4,5-P3) metabolism in a soluble fraction of rat heart. There, [3H]Ins-1,4,5-P3 was phosphorylated to form [3H]Ins-1,3,4,5-P4. Raising [Ca2+] from 1 nM to 1 microM increased InsP3 kinase activity by 2-fold (EC50 for Ca2+ approx. 56 nM). This effect appeared to be due to an increase of the apparent Vmax of the enzyme while the apparent Km was unchanged.  相似文献   

6.
The effects of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), which has been hypothesized to be a chemical transmitter in excitation-contraction coupling in skeletal muscle, on aldolase bound to isolated triad junctions were investigated. Fructose-1,6-bisphosphate aldolase was identified as the major specific binding protein for the Ins(1,4,5)P3 analogue glycolaldehyde (2)-1-phospho-D-myo-inositol 4,5-bisphosphate which can form covalent bonds with protein amino groups by reduction of the Schiff's base intermediate with [3H]NaCNBH3. This analogue, Ins(1,4,5) P3, and the inositol polyphosphates inositol 1,3,4,5-tetrakisphosphate and inositol 1,4-bisphosphate were nearly equipotent in selectively releasing membrane bound aldolase with a K0.5 of about 3 microM. The rank order of the K0.5 values was identical to the KI values for inhibition of aldolase. Aldolase was also released by its substrate fructose 1,6-bisphosphate and by 2,3-bisphosphoglycerate. Ins(1,4,5)P3-induced aldolase release did not disrupt the triad junction; glyceraldehyde-3-phosphate dehydrogenase, a known junctional constituent, was displaced only at much higher Ins(1,4,5)P3 concentrations. Ins(1,4,5)P3 was as effective as fructose 1,6-bisphosphate in releasing aldolase from myofibrils. A finite number of binding sites for aldolase exist on triads (Bmax = 43-47 pmol of tetrameric aldolase exist on triads (Bmax = 43-47 pmol of tetrameric aldolase/mg of triad protein, KD = 23 nM). The junctional foot protein was implicated as an aldolase binding site by affinity chromatography with the junctional foot protein immobilized on Sepharose 4B. The potential consequences of aldolase being bound in the gap between the terminal cisternae and the transverse tubule to inositol polyphosphate and glycolytic metabolism in that local region are discussed.  相似文献   

7.
1. The characterization of a radioreceptor assay for determining Ins(1,4,5)P3 concentration in tissue extracts is described which utilizes the binding of [3H]Ins(1,4,5)P3 to an adrenal-cortex membrane fraction. 2. Analysis of [3H]Ins(1,4,5)P3 binding by isotope dilution demonstrated an apparent single population of binding sites (KD 3.65 +/- 0.18 nM, Bmax. 872 +/- 70 fmol/mg of protein). Specific binding of [3H]Ins(1,4,5)P3 was enhanced at alkaline pH values (maximum at pH 8.5), with complete loss of specific binding at pH less than 6. These binding sites displayed strict stereo- and positional specificity for Ins(1,4,5)P3, with L-Ins(1,4,5)P3, Ins(1,3,4)P3 and DL-Ins(1,3,4,5)P4 causing 50% displacement of specific [3H]Ins(1,4,5)P3 binding (IC50 values) at concentrations of 14 +/- 3 microM, 3.0 +/- 0.3 microM and 0.53 +/- 0.03 microM respectively. 3. Kinetic analysis of binding data, however, revealed a high-affinity [3H]Ins(1,4,5)P3 binding site (KD 0.052 nM) in addition to the lower-affinity site (KD 2.53 nM) already demonstrated in displacement studies. 4. It is shown that the presence of the high-affinity site can be exploited to increase the sensitivity of the [3H]Ins(1,4,5)P3 radioreceptor assay, allowing accurate detection of 20 fmol of Ins(1,4,5)P3 in 300 microliters of tissue extract. 5. Further validation of the specificity of the above assay for Ins(1,4,5)P3 was provided by incubating tissue extracts with either a 5-phosphatase or 3-kinase preparation. It was shown that identical loss occurred of both Ins(1,4,5)P3 mass and [3H]Ins(1,4,5)P3, added to parallel incubations. 6. The ability of the assay to measure basal and agonist-stimulated increases in Ins(1,4,5)P3 concentration has been demonstrated with rat cerebral cortex and bovine tracheal smooth-muscle slices and a range of cultured and isolated cell preparations.  相似文献   

8.
In adrenal glomerulosa cells, angiotensin II stimulates rapid increases in inositol 1,4,5-trisphosphate (Ins-1,4,5-P3) and inositol 1,3,4,5-tetrakisphosphate (Ins-1,3,4,5-P4), followed by slower increases in two additional inositol tetrakisphosphate (InsP4) isomers. One of these InsP4 isomers was previously identified as Ins-1,3,4,6-P4 and shown to be a precursor of inositol pentakisphosphate (InsP5). Analysis of the third InsP4 isomer, purified from cultured bovine adrenal cells labeled with [3H]inositol and stimulated by angiotensin II, revealed that the polyol produced by periodate oxidation, borohydrate reduction, and dephosphorylation was [3H]iditol. This finding is consistent with precursor structures of either Ins-1,4,5,6-P4 or Ins-3,4,5,6-P4 (= L-Ins-1,4,5,6-P4) for the third InsP4 isomer. The [3H]iditol was readily converted to [3H]sorbose by the stereospecific enzyme, L-iditol dehydrogenase, indicating that it originated from Ins-3,4,5,6-P4. Chicken erythrocytes labeled with [3H]inositol also contained high levels of Ins-1,3,4,6-P4 and Ins-3,4,5,6-P4, as well as InsP5, but only small amounts of Ins-1,3,4,5-P4. Both [3H]Ins-1,3,4,6-P4 and [3H]Ins-3,4,5,6-P4, but not [3H]Ins-1,3,4,5-P4, were phosphorylated to form InsP5 in permeabilized bovine glomerulosa cells. In addition, InsP5 itself was slowly dephosphorylated to Ins-1,4,5,6-P4, indicating that its structure is Ins-1,3,4,5,6-P5. These results demonstrate that the higher inositol phosphates are metabolically interrelated and are linked to the receptor-regulated InsP3 response by the conversion of Ins-1,3,4-P3 through Ins-1,3,4,6-P4 to Ins-1,3,4,5,6-P5. The source of Ins-3,4,5,6-P4, the other precursor of InsP5, is not yet known but its elevation in angiotensin II-stimulated glomerulosa cells suggests that its formation is also influenced by agonist-regulated processes.  相似文献   

9.
We have synthesized two photolabile arylazido-analogues of Ins(1,4,5)P3 selectively substituted at the 1-phosphate group for determination of Ins(1,4,5)P3-binding proteins. These two photoaffinity derivatives, namely N-(4-azidobenzoyl)aminoethanol-1-phospho-D-myo-inositol 4,5-bisphosphate (AbaIP3) and N-(4-azidosalicyl)aminoethanol-1-phospho-D-myo-inositol 4,5-bisphosphate (AsaIP3), bind to high affinity Ins(1,4,5)P3-specific binding sites at a 9-fold lower affinity (Kd = 66 and 70 nM) than Ins(1,4,5)P3 (Kd = 7.15 nM) in a fraction from rat pancreatic acinar cells enriched in endoplasmic reticulum (ER). Other inositol phosphates tested showed comparable (DL-myo-inositol 1,4,5-trisphosphothioate, Kd = 81 nM) or much lower affinities for the binding sites [Ins(1,3,4,5)P4, Kd = 4 microM; Ins(1,4)P2, Kd = 80 microM]. Binding of AbaIP3 was also tested on a microsomal preparation of rat cerebellum [Kd = 300 nM as compared with Ins(1,4,5)P3, Kd = 45 nM]. Ca2+ release activity of the inositol derivatives was tested with AbaIP3. It induced a rapid and concentration-dependent Ca2+ release from the ER fraction [EC50 (dose producing half-maximal effect) = 3.1 microM] being only 10-fold less potent than Ins(1,4,5)P3 (EC50 = 0.3 microM). From the two radioactive labelled analogues ([3H]AbaIP3 and 125I-AsIP3) synthesized, the radioiodinated derivative was used for photoaffinity labelling. It specifically labelled three proteins with apparent molecular masses of 49, 37 and 31 kDa in the ER-enriched fraction. By subfractionation of this ER-enriched fraction on a Percoll gradient the 37 kDa Ins(1,4,5)P3 binding protein was obtained in a membrane fraction which showed the highest effect in Ins(1,4,5)P3-inducible Ca2+ release (fraction P1). The other two Ins(1,4,5)P3-binding proteins, of 49 and 31 kDa, were obtained in fraction P2, in which Ins(1,4,5)P3-induced Ca2+ release was half of that obtained in fraction P1. We conclude from these data that the 37 kDa and/or the 49 and 31 kDa proteins are involved in Ins(1,4,5)P3-induced Ca2+ release from the ER of rat pancreatic acinar cells.  相似文献   

10.
D-myo-Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) regulates intracellular Ca2+ by mobilizing Ca2+ from a non-mitochondrial store. We have investigated the effects of Ca2+ on the binding of [32P]Ins (1,4,5)P3 to permeabilized rat hepatocytes and a liver plasma membrane-enriched fraction. Increasing the free Ca2+ concentration in the medium from 0.1 nM to 0.7 microM increased the capacity of a high affinity binding component (KD = 2-3 nM) in permeabilized cells by a factor of 10. If the membrane fraction was preincubated at 37 degrees C before binding was measured at 4 degrees C, all of the Ins(1,4,5)P3 receptors were transformed to a low affinity state (KD = 65 +/- 12 nM, Bmax = 3.1 +/- 0.1 fmol/mg, n = 4). When 0.7 microM of Ca2+ was added, the receptors were totally transformed to a high affinity state (KD = 2.8 +/- 0.4 nM, Bmax = 2.7 +/- 0.4 fmol/mg, n = 4). The EC50 of the Ca2(+)-induced interconversion of the Ins(1,4,5)P3 receptor was 140 nM. This Ca2(+)-induced transformation of the Ins(1,4,5)P3 receptor from a low affinity to a high affinity state was associated with an inhibition of the Ins(1,4,5)P3-induced Ca2+ release in permeabilized hepatocytes. These data suggest that the Ins(1,4,5)P3-dependent hormones, by increasing the intracellular Ca2+ concentration, induce a reversible transformation of the receptor from its low affinity state, coupled to the Ca2+ release, to a desensitized high affinity state. Transformation of the receptor may play a role in the oscillatory release of Ca2+ observed in single isolated hepatocytes.  相似文献   

11.
Are there subtypes of the inositol 1,4,5-trisphosphate receptor?   总被引:2,自引:0,他引:2       下载免费PDF全文
We have compared the properties of the [3H]Ins(1,4,5)P3-binding sites from a number of tissues in an attempt to determine if heterogeneity exists within the Ins(1,4,5)P3-receptor family. The binding of Ins(1,4,5)P3 was characterized in detail by using membranes prepared from human uterine smooth muscle and bovine adrenal cortex. Ins(1,4,5)P3 exhibited an approx. 5 times greater affinity for the binding site in adrenal cortex (KD = 9.81 +/- 1.92 nM) compared with uterine smooth muscle (KD = 37.1 +/- 1.8 nM). The binding was dependent on pH in both tissues, with a maximum at pH 8.3; at this pH various inositol phosphates and nucleotides competed for the binding sites with similar potencies on both tissues. However, the binding of Ins(1,4,5)P3 to the uterine smooth-muscle membranes was Ca2(+)-sensitive, whereas that to the bovine adrenal cortex was not; furthermore, heparin displaced the binding of Ins(1,4,5)P3 in the uterus with an IC50 value (concn. of displacer giving 50% inhibition of specific binding) of 3.9 micrograms/ml (2.5, 6.4; lower, upper range), compared with a value of 22 (13, 30) micrograms/ml in adrenal cortex. In view of the ability of Ins(1,4,5)P3 and heparin to distinguish between these binding sites, their effect on other tissues was examined. Ins(1,4,5)P3 showed a similar affinity for receptors located in the bovine cerebellum to those in the bovine adrenal cortex, but heparin displaced Ins(1,4,5)P3 binding with a 5-fold greater affinity from the cerebellum. Ins(1,4,5)P3 had a 2-fold greater affinity for its receptor with human platelets, as compared with human uterus, but heparin was unable to distinguish between these sites. In guinea-pig ileum, Ins(1,4,5)P3 displayed a similar affinity for the receptors in the longitudinal muscle compared with the circular muscle, but heparin could distinguish between these sites. These data show that small differences exist between tissues, but no clear picture is apparent. It is possible that these results reflect tissue-dependent factors such as phosphorylation, the presence of calmedin etc., rather than the presence of receptor subtypes or species difference.  相似文献   

12.
The role of Ca2+ in the generation of inositol phosphates was investigated using rat pancreatic islets after steady state labeling with myo-[2-3H]inositol. Depolarizing K+ concentrations (24 mM) evoked early (2 s) increases in inositol 1,4,5-trisphosphate (Ins-1,4,5-P3) and inositol 1,3,4,5-tetrakisphosphate (Ins-1,3,4,5-P4) as measured by high performance anion-exchange chromatography. The increase in Ins-1,4,5-P3 was transient and was followed by a more pronounced rise in Ins-1,3,4-P3. These effects were dependent on the presence of extracellular Ca2+ but were not secondary to release of either neurotransmitters or metabolites of arachidonic acid. K+ also promoted the breakdown of phosphatidylinositol 4,5-bisphosphate (PtdIns-4,5-P2) and of the other phosphoinositides. Glucose (16.7 mM) was less marked in its effects but still promoted rapid increases in Ins-1,3,4,5-P4 (2 s) and Ins-1,4,5-P3 (10 s) and a slower rise in Ins-1,3,4-P3 (30 s). The levels of all three metabolites rose steadily over 10 min stimulation. These responses to glucose could be largely, although not entirely, inhibited by depletion of extracellular Ca2+ or by Ca2+ channel blockade with verapamil (20 microM). Carbamylcholine (0.5 mM) was the most potent stimulus used evoking early rises in Ins-1,4,5-P3 and Ins-1,3,4,5-P4 (2 s) followed by Ins-1,3,4-P3 (10 s), effects which were only partially dependent on extracellular Ca2+. The results suggest that a Ca2+-mediated PtdIns-4,5-P2 hydrolysis accounts for most of the Ins-1,4,5-P3 generated in response to glucose but not carbamylcholine. In addition, glucose may exert effects on inositol phosphate metabolism which are Ca2+ independent.  相似文献   

13.
[3H]Inositol hexakisphosphate (InsP6) binds with a heterogeneous distribution to frozen sections of unfixed rat brain and is displaced by unlabelled InsP6. The pattern of binding correlates with binding to neuronal cell bodies. [3H]InsP6 binding to cerebellar membranes has been further characterised, is reversible, and saturable, and exhibits high specificity for inositol polyphosphates. The IC50 for competition by unlabelled InsP6 is approximately 100nM, whereas inositol 1,3,4,5,6 pentakisphosphate (Ins(13456)P5), inositol 1,3,4,5 tetrakisphosphate (Ins(1345)P4), and inositol 1,4,5 trisphosphate (Ins(145)P3) bind with an affinity at least one order of magnitude lower. [3H]InsP6 binding is clearly distinct from previously characterised Ins(145)P3 (ref. 1, 2) and Ins(1345)P4 (ref. 3) binding, both in terms of pharmacology and brain distribution.  相似文献   

14.
The two-step isomerization of inositol 1,4,5-trisphosphate (Ins-1,4,5-P3) to Ins-1,3,4-P3 via the intermediate inositol 1,3,4,5-tetrakisphosphate (Ins-P4) was studied in intact RINm5F cells and in subcellular fractions. Muscarinic stimulation with carbamylcholine leads to a rapid (2 s) rise in both Ins-1,4,5-P3 and Ins-P4, whereas Ins-1,3,4-P3 was produced only after a lag of at least 5 s. In cells with depleted Ca2+ stores, the rise in Ins-1,4,5-P3 was nearly tripled, and that of Ins-1,3,4-P3 markedly diminished as compared to control cells. Raising the free Ca2+ concentration from 10(-7) to 10(-5) M increased inositol 1,4,5-triphosphate-3-kinase activity in cytosolic fractions by 2 1/2-fold (EC50 for Ca2+ approximately 0.8 microM) but had no effect on the activity of inositol 1,4,5-triphosphate-5-phosphomonoesterase. At 10(-7) M Ca2+ these two enzymes displayed comparable activity when assayed at concentrations of Ins-1,4,5-P3 occurring in stimulated cells; however, at 10(-5) M Ca2+, kinase activity predominates. These results suggest that Ins-1,4,5-P3 counter-regulates its own levels through the activity of inositol 1,4,5-trisphosphate 3-kinase and that the increase in [Ca2+]i may account for the transience of the rise in Ins-1,4,5-P3 seen during muscarinic stimulation of RINm5F cells.  相似文献   

15.
S H Ryu  S Y Lee  K Y Lee  S G Rhee 《FASEB journal》1987,1(5):388-393
Inositol 1,4,5-trisphosphate (Ins-1,4,5-P3) is an important second-messenger molecule that mobilizes Ca2+ from intracellular stores in response to the occupancy of receptor by various Ca2+-mobilizing agonists. The fate of Ins-1,4,5-P3 is determined by two enzymes, a 3-kinase and a 5-phosphomonoesterase. The first enzyme converts Ins-1,4,5-P3 to Ins-1,3,4,5-P4, whereas the latter forms Ins-1,4-P2. Recent studies suggest that Ins-1,3,4,5-P4 might modulate the entry of Ca2+ from an extracellular source. In the current report, we describe the partial purification of the 3-kinase [approximately 400-fold purified, specific activity = 0.12 mumol/(min.mg)] from the cytosolic fraction of bovine brain and studies of its catalytic properties. We found that the 3-kinase activity is significantly activated by the Ca2+/calmodulin complex. Therefore, we propose that Ca2+ mobilized from endoplasmic reticulum by the action of Ins-1,4,5-P3 forms a complex with calmodulin, and that the Ca2+/calmodulin complex stimulates the conversion of Ins-1,4,5-P3, an intracellular Ca2+ mobilizer, to Ins-1,3,4,5-P4, an extracellular Ca2+ mobilizer. A rapid assay method for the 3-kinase was developed that is based on the separation of [3-32P]Ins-1,3,4,5-P4 and [gamma-32P]ATP by thin-layer chromatography. Using this new assay method, we evaluated kinetic parameters (Km for ATP = 40 microM, Km for Ins-1,4,5-P3 = 0.7 microM, Ki for ADP = 12 microM) and divalent cation specificity (Mg2+ much greater than Mn2+ greater than Ca2+) for the 3-kinase. Studies with various inositol polyphosphates indicate that the substrate-binding site is quite specific to Ins-1,4,5-P3. Nevertheless, Ins-2,4,5-P3 could be phosphorylated at a velocity approximately 1/20-1/30 that of Ins-1,4,5-P3.  相似文献   

16.
Inositol-5-phosphatases are important enzymes involved in the regulation of diverse cellular processes from synaptic vesicle recycling to insulin signaling. We describe a comparative study of two representative inositol-5-phosphatases, Schizosaccharomyces pombe synaptojanin (SPsynaptojanin) and human SH2 domain-containing inositol-5-phosphatase SHIP2. We show that in addition to Mg2+, transition metals such as Mn2+, Co2+, and Ni2+ are also effective activators of SPsynaptojanin. In contrast, Ca2+ and Cu2+ are inhibitory. We provide evidence that Mg2+ binds the same site occupied by Ca2+ observed in the crystal structure of SPsynaptojanin complexed with inositol 1,4-bisphosphate (Ins(1,4)P2). Ionizations important for substrate binding and catalysis are defined for the SPsynaptojanin-catalyzed Ins(1,4,5)P3 reaction. Kinetic analysis with four phosphatidylinositol lipids bearing a 5-phosphate and 54 water-soluble inositol phosphates reveals that SP-synaptojanin and SHIP2 possess much broader substrate specificity than previously appreciated. The rank order for SPsynaptojanin is Ins(2,4,5)P3 > phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) approximately Ins(4,5)P2 approximately Ins(1,4,5)P3 approximately Ins(4,5,6)P3 > PtdIns(3,5)P2 approximately PtdIns(3,4,5)P3 approximately Ins(1,2,4,5)P4 approximately Ins(1,3,4,5)P4 approximately Ins-(2,4,5,6)P4 approximately Ins(1,2,4,5,6)P5. The rank order for SHIP2 is Ins(1,2,3,4,5)P5 > Ins(1,3,4,5)P4 > PtdIns(3,4,5)P4 approximately PtdIns(3,5)P2 approximately Ins(1,4,5,6)P4 approximately Ins(2,4,5,6)P4. Because inositol phosphate isomers elicit different biological activities, the extended substrate specificity for SPsynaptojanin and SHIP2 suggest that these enzymes likely have multiple roles in cell signaling and may regulate distinct pathways. The unique substrate specificity profiles and the importance of 2-position phosphate in binding also have important implications for the design of potent and selective SPsynaptojanin and SHIP2 inhibitors for pharmacological investigation.  相似文献   

17.
Specific, saturable and reversible binding of tritium-labeled inositol 1,4,5-trisphosphate [( 3H]Ins(1,4,5)P3) to human platelet membranes is demonstrated. The Ins(1,4,5)P3-binding sites are abundant and display high selectivity for Ins(1,4,5)P3. Other inositol phosphates exhibit much lower affinity for this site. The specific [3H]Ins(1,4,5)P3 binding was found to be modulated by pH, monovalent and divalent cations, and GTP. A sharp increase in binding occurs at slightly alkaline pH. The monovalent cations, Na+, K+ and Li+ almost double the binding at 30 mM. Mg2+ inhibits the specific [3H]Ins(1,4,5)P3 binding. At low concentrations of Ca2+, the binding is inhibited, but at concentrations higher than 5 mM the binding is potentiated and increases by almost 5-fold at 100 mM. Similar pattern of the effects is also observed for Mn2+ and Sr2+. The specific [3H]Ins(1,4,5)P3 binding is specifically inhibited by GTP. Other nucleotides also inhibit the binding but at higher concentrations. From saturation binding studies, Ca2+ potentiation seems to be due to the conversion of the receptor from the low-affinity state to the high-affinity one. In the absence of Ca2+, the Scatchard plot is nonlinear and concave, and statistically can be fitted best with two equilibrium dissociation constants (Kd values), 0.19 +/- 0.11 and 13.2 +/- 18.1 nM, respectively, for high- and low-affinity binding sites. However, in the presence of 100 mM CaCl2, the Scatchard plot reveals only the high-affinity binding sites with a Kd value of 0.32 +/- 0.15 nM. The specific Ins(1,4,5)P3 receptor in human platelets could therefore exist in multiple conformational states to regulate the intracellular Ca2+ concentration.  相似文献   

18.
The actions of angiotensin II (AII) on inositol polyphosphate production and metabolism were analyzed in cultured bovine adrenal glomerulosa cells. In cells labeled for 24 hr with [3H]inositol, AII caused a rapid and prominent rise in formation of Ins-P3 (mainly the Ins-1,3,4,-P3 isomer) and of Ins-P4, with marked increases in two isomers of Ins-P2 and Ins-P. These findings are consistent with rapid formation and turnover of Ins-1,4,5-P3, partly via conversion to Ins-1,3,4,5-P4 with subsequent metabolism to Ins-1,3,4-P3 and lower inositol phosphates. The demonstration of a cytosolic Ins-P3-kinase gave further evidence for the presence of the tris/tetrakisphosphate pathway and Ins-P4 synthesis during AII action in the bovine adrenal cortex.  相似文献   

19.
Stimulation of aldosterone production by angiotensin II in the adrenal glomerulosa cell is mediated by increased phosphoinositide turnover and elevation of intracellular Ca2+ concentration. In cultured bovine glomerulosa cells, angiotensin II caused rapid increases in inositol-1,4,5-trisphosphate (Ins-1,4,5-P3) levels and cytosolic Ca2+ during the first minute of stimulation, when both responses peaked between 5 and 10 s and subsequently declined to above-baseline levels. In addition to this temporal correlation, the dose-response relationships of the angiotensin-induced peak increases in cytosolic Ca2+ concentrations and Ins-1,4,5-P3 levels measured at 10 s were closely similar. However, at later times (greater than 1 min) there was a secondary elevation of Ins-1,4,5-P3, paralleled by increased formation of inositol 1,3,4,5-tetrakisphosphate that was associated with cytosolic Ca2+ concentrations only slightly above the resting value. These results are consistent with the primary role of Ins-1,4,5-P3 in calcium mobilization during activation of the glomerulosa cell by angiotensin II. They also suggest that Ins-1,4,5-P3 participates in the later phase of the target-cell response, possibly by acting alone or in conjunction with its phosphorylated metabolites to promote calcium entry and elevation of cytosolic Ca2+ during the sustained phase of aldosterone secretion.  相似文献   

20.
In bovine adrenal microsomes, Ins(1,4,5)P3 binds to a specific high-affinity receptor site (Kd = 11 nM) with low affinity for two other InsP3 isomers, Ins(1,3,4)P3 and Ins(2,4,5)P3. In the same subcellular fractions Ins(1,4,5)P3 was also the most potent stimulus of Ca2+ release of all the inositol phosphates tested. Of the many inositol phosphates recently identified in angiotensin-II-stimulated adrenal glomerulosa and other cells, Ins(1,3,4,5)P4 has been implicated as an additional second messenger that may act in conjunction with Ins(1,4,5)P3 to elicit Ca2+ mobilization. In the present study, an independent action of Ins(1,3,4,5)P4 was observed in bovine adrenal microsomes. Heparin, a sulphated polysaccharide which binds to Ins(1,4,5)P3 receptors in several tissues, inhibited both the binding of radiolabelled Ins(1,4,5)P3 and its Ca2(+)-releasing activity in adrenal microsomes. In contrast, heparin did not inhibit the mobilization of Ca2+ by Ins(1,3,4,5)P4, even at doses that abolished the Ins(1,4,5)P3 response. Such differential inhibition of the Ins(1,4,5)P3- and Ins(1,3,4,5)P4-induced Ca2+ responses by heparin indicates that Ins(1,3,4,5)P4 stimulates the release of Ca2+ from a discrete intracellular store, and exerts this action via a specific receptor site that is distinct from the Ins(1,4,5)P3 receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号