首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The isolated activation segment of pig procarboxypeptidase A binds two Tb3+ ions in a strong and specific way. In contrast, the binding of Ca2+, Cd2+ and Mg2+ is weak. The binding of Tb3+ increases the resistance of the isolated activation segment against proteolysis and competes for the binding of the carbocyanine dye Stains-All. This dye forms complexes with the activation segment showing spectral properties similar to those observed with EF-hand structures. The presented results support a previous hypothesis on the existence of two regions in the activation segment of pancreatic procarboxypeptidases structurally related to Ca2+-binding domains of the EF-hand protein family.  相似文献   

3.
The abilities of D-myo-inositol phosphates (InsPs) to promote Ca2+ release and to compete for D-myo-[3H]-inositol 1,4,5-trisphosphate [( 3H]Ins(1,4,5)P3) binding were examined with microsomal preparations from rat cerebellum. Of the seven InsPs examined, only Ins(1,4,5)P3, Ins(2,4,5)P3 and Ins(4,5)P2 stimulated the release of Ca2+. Ca2+ release was maximal in 4-6 s and was followed by a rapid re-accumulation of Ca2+ into the Ins(1,4,5)P3-sensitive compartment after Ins(1,4,5)P3, but not after Ins(2,4,5)P3 or Ins(4,5)P2. Ca2+ re-accumulation after Ins(1,4,5)P3 was also faster than after pulse additions of Ca2+, and coincided with the metabolism of [3H]Ins(1,4,5)P3. These data suggest that Ins(1,4,5)P3-induced Ca2+ release and the accompanying decrease in intraluminal Ca2+ stimulate the Ca2+ pump associated with the Ins(1,4,5)P3-sensitive compartment. That this effect was observed only after Ins(1,4,5)P3 may reflect differences in either the metabolic rates of the various InsPs or an effect of the Ins(1,4,5)P3 metabolite Ins(1,3,4,5)P4 to stimulate refilling of the Ins(1,4,5)P3-sensitive store. InsP-induced Ca2+ release was concentration-dependent, with EC50 values (concn. giving half-maximal release) of 60, 800 and 6500 nM for Ins(1,4,5)P3, Ins(2,4,5)P3 and Ins(4,5)P2 respectively. Ins(1,4,5)P3, Ins(2,4,5)P3 and Ins(4,5)P2 also competed for [3H]Ins(1,4,5)P3 binding, with respective IC50 values (concn. giving 50% inhibition) of 100, 850 and 13,000 nM. Comparison of the EC50 and IC50 values yielded a significant correlation (r = 0.991). These data provide evidence of an association between the [3H]Ins(1,4,5)P3-binding site and the receptor mediating Ins(1,4,5)P3-induced Ca2+ release.  相似文献   

4.
T L Smith 《Life sciences》1987,41(26):2863-2868
[3H]In(1,4,5)P3 specific binding was determined in membrane fragments from various brain regions of adult male C57/BL mice. [3H]In(1,4,5)P3 specific binding was at least 10 times higher in cerebellum than in either striatum, cerebral cortex, hippocampus, or midbrain. Ethanol added in vitro up to 500 mM to cerebellar membrane fragments of control mice had no significant effect on [3H]In(1,4,5)P3 specific binding. In contrast, the maximal number of binding sites (Bmax) for [3H]In(1,4,5)P3 was significantly decreased in cerebella from mice which had been rendered tolerant-dependent to ethanol. KD values for these mice were unchanged when compared to control values.  相似文献   

5.
Binding of the alpha-adrenergic agonist [3H]clonidine and the alpha-adrenergic antagonist [3H]WB-4101 exhibited multiple binding site characteristics in both rat frontal cortex and cerebellum. Kinetic analysis of the dissociation of both radioligands in rat frontal cortex suggests two high affinity sites for each ligand. Competition of various noradrenergic agonists and antagonists for [3H]WB-4101 binding yielded shallow competition curves, with Hill coefficients ranging from 0.45 to 0.7. This further suggests multiplicity in [3H]WB-4101 binding. In the rat cerebellum, competition of various noradrenergic drugs for [3H]clonidine binding yielded biphasic competition curves. Furthermore Scatchard analysis of [3H]clonidine binding in rat cerebellum showed two high affinity sites with KD = 0.5 nM and 1.9 nM, respectively. Competition of various noradrenergic drugs for [3H]WB-4101 binding in the rat cerebellum yielded biphasic competition curves. Lesioning of the dorsal bundle with 6-hydroxydopamine did not significantly affect the binding of either [3H]clonidine or [3H]WB-4101. These findings for both [3H]clonidine and [3H]WB-4101 binding in rat frontal cortex and cerebellum can be explained by the existence of postsynaptic binding sites for both 3H ligands.  相似文献   

6.
The effect of aminooxyacetic acid (AOAA), NH4 +, phenylsuccinate (Phs), ketone bodies (KB) and glutamine (Gln), that might interfere with the biosynthesis of neurotransmitter glutamate on the K+-evoked Ca2+-dependent release ofd-[3H]aspartate from rat cerebellar slices was studied. Therefore slices were preincubated in a Krebs-Ringer-bicarbonate-glucose (KR) buffer, loaded withd-[3H]aspartate and superfused in the presence of Ca2+ or when Ca2+ was replaced by Mg2+ or in some cases by EGTA. AOAA, NH 4 + and Phs increase the K+-evoked Ca2+-dependent release of radioactivity by 30%, 68% and 188% compared to the control respectively indicating that these agents are inhibitors of the K+-evoked Ca2+-dependent release of glutamate. KB and Gln had no effect on the Ca2+-dependent release of radioactivity. AOAA., NH 4 + , Phs and KB but not Gln increase the total release of radioactivity by 43%, 69%, 139%, and 37% respectively. AOAA, NH 4 + and KB but not Phs or Gln increase the Ca2+-independent release (Mg2+ replacing Ca2+) of radioactivity by 71%, 71% and 108% respectively. The present results indicate that in the cerebellum: 1) Neurotransmitter glutamate is mostly synthesized through the phosphate activated glutaminase (PAG) reaction 2) It is further supported that glutamate released in a Ca2+-dependent manner before entering its pool in the cytosol has to move into the mitochondrial matrix.  相似文献   

7.
8.
1. The characterization of a radioreceptor assay for determining Ins(1,4,5)P3 concentration in tissue extracts is described which utilizes the binding of [3H]Ins(1,4,5)P3 to an adrenal-cortex membrane fraction. 2. Analysis of [3H]Ins(1,4,5)P3 binding by isotope dilution demonstrated an apparent single population of binding sites (KD 3.65 +/- 0.18 nM, Bmax. 872 +/- 70 fmol/mg of protein). Specific binding of [3H]Ins(1,4,5)P3 was enhanced at alkaline pH values (maximum at pH 8.5), with complete loss of specific binding at pH less than 6. These binding sites displayed strict stereo- and positional specificity for Ins(1,4,5)P3, with L-Ins(1,4,5)P3, Ins(1,3,4)P3 and DL-Ins(1,3,4,5)P4 causing 50% displacement of specific [3H]Ins(1,4,5)P3 binding (IC50 values) at concentrations of 14 +/- 3 microM, 3.0 +/- 0.3 microM and 0.53 +/- 0.03 microM respectively. 3. Kinetic analysis of binding data, however, revealed a high-affinity [3H]Ins(1,4,5)P3 binding site (KD 0.052 nM) in addition to the lower-affinity site (KD 2.53 nM) already demonstrated in displacement studies. 4. It is shown that the presence of the high-affinity site can be exploited to increase the sensitivity of the [3H]Ins(1,4,5)P3 radioreceptor assay, allowing accurate detection of 20 fmol of Ins(1,4,5)P3 in 300 microliters of tissue extract. 5. Further validation of the specificity of the above assay for Ins(1,4,5)P3 was provided by incubating tissue extracts with either a 5-phosphatase or 3-kinase preparation. It was shown that identical loss occurred of both Ins(1,4,5)P3 mass and [3H]Ins(1,4,5)P3, added to parallel incubations. 6. The ability of the assay to measure basal and agonist-stimulated increases in Ins(1,4,5)P3 concentration has been demonstrated with rat cerebral cortex and bovine tracheal smooth-muscle slices and a range of cultured and isolated cell preparations.  相似文献   

9.
The binding of (1)-[3H]vesamicol was characterized in several subcellular fractions and brain regions of the rat. Binding to a lysed P2 fraction from the rat cerebral cortex reached equilibrium within 4 min at 37°C and was reversible (dissociation half-time 4.9 min). At least two binding affinities were found in P2 fractions from the cerebral cortex (Kd:21 nM and 980 nM), striatum (Kd:28 nM and 690 nM), and cerebellum (Kd:22 nM and 833 nM). High affinity Bmax values were highest in striatum (1.17 pmol/mg protein), followed by cerebellum (0.67 pmol/mg protein), and cerebral cortex (0.38 pmol/mg protein). Low affinity Bmax values were highest in cerebellum (5.2 pmol/mg protein), with similar values for cerebral cortex (3.7 pmol/mg protein) and striatum (3.8 pmol/mg protein). High affinity but not low affinity binding in each brain region was stereospecific. Another inhibitor of vesicular ACh-transport also displaced 1-vesamicol binding potently (IC50:17 nM) and efficaciously (over 90%). Both high affinity and low affinity Bmax values for [3H]vesamicol-binding were highest in a partially purified synaptic vesicle fraction, followed by puriffied synaptosomes, crude membranes and P2 fractions. Specific binding was not observed in a mitochondria-enriched fraction. Crude membrane preparations of primary, neuron-enriched whole brain cultures also exhibited high (64 nM) and low affinity (1062 nM) [3H]vesamicol binding. Isoosmotic replaement of 0.18 M KCl in the binding-buffer with NaCl had no effect on binding. These results suggest that at least some high affinity [3H]vesamicol binding in rat brain preparations may be associated with synaptic vesicles, some of which may not be cholinergic in origin.  相似文献   

10.
Huh YH  Yoo SH 《FEBS letters》2003,555(2):411-418
Although the inositol 1,4,5-triphosphate (IP(3))-induced nuclear Ca(2+) release has been shown to play key roles in nuclear functions, the presence of IP(3) receptor (IP(3)R)/Ca(2+) channels in the nucleoplasm has not been found. Recently, the IP(3)R/Ca(2+) channels were reported to exist in the nucleoplasmic reticulum structure, an extension of the nuclear envelope. Here we investigated the potential existence of the IP(3)Rs in the nucleoplasm and found the presence of all three IP(3)R isoforms in neuroendocrine and non-neuroendocrine cells. The IP(3)Rs were widely scattered in the nucleoplasm, localizing in both the heterochromatin and euchromatin regions.  相似文献   

11.
Effects of the xanthine drug caffeine on inositol (1,4,5)-trisphosphate (InsP3)-gated calcium (Ca) channels from canine cerebellum were studied using single channels incorporated into planar lipid bilayers. Caffeine, used widely as an agonist of ryanodine receptors, inhibited the activity of InsP3-gated Ca channels in a noncooperative fashion with half-inhibition at 1.64 mM caffeine. The frequency of channel openings was decreased more than threefold after addition of 5 mM caffeine; there was only a small effect on mean open time of the channels, and the single channel conductance was unchanged. Increased InsP3 concentration overcame the inhibitory action of caffeine, but caffeine did not reduce specific [3H]InsP3 binding to the receptor. The inhibitory action of caffeine on InsP3 receptors suggests that the action of caffeine on the intracellular Ca pool must be interpreted with caution when both ryanodine receptors and InsP3 receptors are present in the cell.  相似文献   

12.
Evidence is presented to show that acid extracts of avian erythrocytes prelabelled for 24-48 h with myo-[3H]inositol contain the following myo-[3H]inositol trisphosphates (expressed as a percentage of total myo-[3H]inositol trisphosphates extracted): 36% myo-[3H]inositol 1,4,5-trisphosphate; 33.7% myo-[3H]inositol 1,3,4-trisphosphate; 13% myo-[3H]inositol 3,4,5-trisphosphate; 9.7% myo-[3H]inositol 3,4,6-trisphosphate; 4.4% myo-[3H]inositol 1,4,6-trisphosphate and 3.3% myo-[3H]inositol 1,3,6-trisphosphate. The only phosphatidyl-myo-[3H]inositol bisphosphate that could be detected in [3H]Ins-prelabelled avian erythrocytes was phosphatidyl-myo-[3H]inositol 4,5-bisphosphate. Cellular myo-[3H]inositol 3,4,5-trisphosphate may be synthesized by dephosphorylation of myo-[3H]inositol 3,4,5,6-tetrakisphosphate. D- and L-myo-[3H]inositol 1,4,6-trisphosphate and D- and L-myo-[3H]inositol 1,3,6-trisphosphate may be dephosphorylation products of myo-[3H]inositol 1,3,4,6-tetrakisphosphate.  相似文献   

13.
Specific binding sites for vasopressin (AVP) were located in subcellular particulate fractions of rat brain with tritiated vasopressin of high specific activity, 22.5 Ci/mmol. Rat brain tissue was dissected, placed in cold 0.32 M sucrose containing proteolytic inhibitors, homogenized and fractionated into a crude nuclear fraction (1K pellet), crude mitochondrial fractions (12K pellet), and plasma membranes and microsomes (100K pellet). Specific binding of vasopressin was found in the 12K and 100K pellets in the presence of a divalent metal ion with Ni greater than Co greater than Mg greater than Mn greater than no metal ion at pH 7.4 in 50 mM Tris-Maleate buffer. Maximum specific binding of 16 nM AVP was located in the 100K anterior cortex fraction which bound 350 fmoles/mg protein; striatum, midbrain/thalamus, cerebellum, and medulla oblongata and pons bound specifically about 200 fmoles/mg protein and frontal poles and parietal cortex about 100 fmoles/mg protein in the 100K pellet. In all of the brain regions studied, except hippocampus and septum, the 100K pellet bound specifically 2 to 4 times more 3H-AVP than the 12K pellet. In the hippocampus with 16 nM AVP, the 12K pellet bound specifically 150 fmoles/mg protein; the septum, 75 fmoles/mg protein. Little or no binding to the 100K pellet was present in these regions. Bound AVP could be dissociated rapidly from the membranes by the addition of EDTA. The 12K hippocampal pellet was further fractionated into myelin, mitochondria, and synaptosomes; purification was confirmed by marker enzyme assays.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Benyhe S  Farkas J  Tóth G  Wollemann M 《Life sciences》1999,64(14):1189-1196
[3H]Met-enkephalin-Arg6-Phe7 (MERF) has been shown to label opioid (kappa2 and delta) and sigma2 sites in rat and frog brain membrane preparations, and no specific binding to kappa1 opioid receptors could be established (refs. 6 and 8). In this study the binding was examined in rat cerebellar membranes which are relatively rich in kappa2-sites, and in guinea pig cerebellar preparations where kappa1 opioid receptors are almost exclusively present. In accordance with our previous results, [3H]MERF binding could not be displaced in guinea pig cerebellar membranes neither with U-69,593 nor with naloxone or levorphanol suggesting no interaction with opioid sites, nevertheless a Kd of 2.8 nM was calculated in cold saturation experiments. In rat cerebellar membrane fractions about the half of the specific [3H]MERF binding sites was inhibited by opiate alkaloids such as naloxone, ethylketocyclazocine, or bremazocine. This portion of the heptapeptide binding sites was stereoselective as demonstrated by the difference in the affinities of the enantiomeric compounds levorphanol and dextrorphan, therefore it would represent an opioid site. In both tissues (-)N-allyl-normetazocine (SKF-10,047), which is also considered as sigma2 ligand, displayed the highest affinities. Among opioid peptides beta-endorphin and dynorphin(1-13) showed the highest potencies, displacing [3H]MERF also from its non-opioid sites. It was concluded therefore that [3H]MERF does not bind to kappa1 sites, and besides kappa2-opioid sites substantial binding to peptide preferring non-opioid sites, and/or sigma2 receptors also occurs.  相似文献   

15.
16.
The effects of the muscarinic agonist carbachol, histamine and bradykinin on incorporation of [3H]inositol into the phosphoinositides and the formation of [3H]InsPs were examined in bovine tracheal smooth-muscle (BTSM) slices labelled with [3H]inositol. These agonists result in substantial and dose-related increases in the incorporation of [3H]inositol into the phospholipids. Carbachol and histamine stimulated the incorporation of [3H]inositol into the phospholipids to the same degree, despite histamine being only 35% as effective as carbachol on [3H]InsP accumulation. Histamine and carbachol, at maximal concentrations, were non-additive with respect to both the stimulated incorporation of [3H]inositol and [3H]InsP formation. For carbachol this effect on incorporation was found to occur to a similar extent in PtdInsP and PtdInsP2 as well as PtdIns. The initial effect of carbachol on [3H]inositol incorporation was rapid (maximal by 10 min); however, with prolonged stimulation large secondary declines in PtdInsP and PtdInsP2 labelling were observed, with depletion of the much larger PtdIns pool only evident in the presence of Li+. Lowering buffer [Ca2+] increased the incorporation of [3H]inositol under basal conditions, but did not attenuate the subsequent agonist-stimulated incorporation effect. The large changes in specific radioactivity of the phosphoinositides, and consequently the [3H]InsP products, after carbachol stimulation resulted in the apparent failure of atropine to reverse the [3H]InsP response completely. Labelling muscle slices with [3H]inositol in the presence of carbachol or labelling for longer periods (greater than 6 h) prevented subsequent carbachol-stimulated effects on incorporation without significantly altering the dose-response relationship for carbachol-stimulated [3H]InsP formation and resulted in steady-state labelling conditions confirmed by the ability of atropine to reverse fully the [3H]InsP response to carbachol. This study demonstrates the profound effects of a number of agonists on [3H]inositol incorporation into the phospho- and polyphosphoinositides in BTSM with important consequent changes in the specific radioactivity of these lipids and the resulting [3H]InsP products. In addition, a selective depletion of PtdInsP and PtdInsP2 over PtdIns has been demonstrated with prolonged muscarinic-receptor stimulation.  相似文献   

17.
Two models of perturbed cerebellar ontogenesis were obtained by a single administration of methylazoxymethanol (MAM), a potent antimitotic agent, to mouse pups either on the day of birth (MAM0 mice) or at postnatal day 5 (MAM5 mice). The alterations of the cerebellar GABAergic system were studied by measuring glutamic acid decarboxylase activity, [3H]muscimol binding sites, which are known to be concentrated in the GABAA receptors in the internal granular layer, and [3H]flunitrazepam binding sites, which are more abundant in the molecular layer. The primary target of the antimitotic agent are the precursors of the glutamatergic and GABAceptive granule cells. In both models GABAergic structures, as revealed by GAD activity measurements, appear to be relatively spared, and recovery of granule cell numbers occurs during development in MAM5 mice. In MAM treated mice the number of [3H]muscimol binding sites (on a per cerebellum basis) decrease as the number of granule cells decrease, although some recovery occurred in MAM5 mice, but not in MAM0 mice. In MAM5 mice, [3H]flunitrazepam binding sites (on a per cerebellum basis) were relatively unaffected, while they were decreased significantly, but to a lesser extent than [3H]muscimol binding sites, in MAM0 animals. The more significant reduction of granule cell numbers and the cytoarchitectural disruption resultant from the more precocious application of the antimitotic appear responsible for the significant alteration and lack of recovery in MAM0 mice.  相似文献   

18.
A series of DL-inositol 1,4,5-trisphosphate (IP3) analogs, with a bulky substitutent on the 2nd carbon of the inositol ring, has been synthesized. These compounds exert biological activities with only minor reduction in potency, in several assay systems (Hirata, M., Watanabe, Y., Ishimatsu, T., Ikebe, T., Kimura, Y., Yamaguchi, K., Ozaki, S., and Koga, T. (1989) J. Biol. Chem. 264, 20303-20308). Two analogs with aminocyclohexanecarbonyl (designated as analog 206) or aminobenzoyl group (analog 209) were separated into individual optical isomers and examined for stereospecificity in recognition by IP3-5-phosphatase, IP3-3-kinase and IP3 binding activity. IP3-5-phosphatase activity of erythrocyte ghosts was competitively inhibited by L-209 with a lower Ki value than D-IP3, but with a higher Ki value by L-206. D-Isomers of both analogs at 100 microM failed to inhibit the hydrolysis of D-[3H]IP3. On the other hand, D-isomers but not L-isomers of both analogs were as potent as D-IP3 in the recognition by IP3-3-kinase of rat brain cytosol and only the D-isomer of analog 206 could serve as substrate for the kinase. Also D-isomers of both analogs were equipotent to D-IP3 in displacing [3H]IP3 binding to rat cerebellum microsomes. These observations suggest that the IP3 analogs we synthesized are stereospecifically recognized by three IP3-recognizable proteins, but the phosphatase recognizes opposite isomers. Such being the case, the second hydroxyl group of D-IP3 may be involved in the recognition by IP3-5-phosphatase, but not by IP3-3-kinase and binding sites.  相似文献   

19.
The potency of a series of opioid and non-opioid psychotomimetic drugs to inhibit the specific binding of [3H]PCP and ( + )-[3H]SKF-10,047 to rat cerebral cortical membranes was examined. ( + )-PCMP, the 3-methylpiperidino analog of PCP, was a potent inhibitor of the specific binding of both ligands. All of the other 12 compounds examined, however, displayed a 3-277-fold selectivity for either [3H]PCP or (+)-[3H]SKF-10,047 binding. These results suggest that although these opioid and non-opioid psychotomimetics bind to both sites, most have significantly different affinities. The binding sites for [3H]PCP appear to be distinct from the ‘sigma’ binding sites labeled with (+)-[3H]SKF-10,047.

SKF-10,047 Sigma receptor Phencyclidine Phencyclidine receptor Psychotomimetic activity  相似文献   


20.
Phosphatidyl[2-3H]inositol was prepared from Saccharomyces cerevisiae (YSC-2), grown in synthetic medium containing myo[2-3H]inositol. Over 44 microCi (or 81%) of the radiolabeled inositol was taken up by the organism, with 34 microCi incorporated into phosphatidylinositol. Upon purification by silicic acid pressure liquid chromatography (MPLC), a final yield of 24 to 26 microCi of phosphatidyl[2-3H]inositol with a specific radioactivity of 40 X 10(3) dpm/nmole was obtained. The purified phosphatidyl[2-3H]inositol was found to be a suitable for phospholipase C from human platelets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号