首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Historically, two main forms of cell death have been distinguished: apoptosis and necrosis. Apoptosis was initially considered as the only physiological and programmed form of cell death. This type of death is recurrently associated with caspases, a family of cysteine proteases activated in apoptotic conditions. However, it is now widely recognized that programmed cell death (PCD) can also occur in the complete absence of caspase activation. The existence of non-caspase PCD pathways was corroborated by the discovery of caspase-independent executioners, such as the mitochondrial protein Apoptosis-Inducing Factor (AIF). Necrosis has often been viewed as an accidental and uncontrolled cell death process. Nevertheless, increasing evidence shows that, like apoptosis, necrosis could be a highly regulated type of PCD. Indeed, apoptosis and necrosis present more similarities than it has been originally thought. Here, we summarize the different classifications of PCD and the current knowledge of a necrotic PCD pathway mediated by AIF: alkylating DNA-damage mediated death. We also outline the molecular mechanisms controlling this form of PCD and discuss their potential relevance in physiological and pathological settings. These emerging data on the molecular mechanisms regulating programmed necrosis may certainly have potent therapeutic consequences in treating both apoptotic-resistant tumors and degenerating adult neurons.  相似文献   

2.
Caspase-independent cell death may have a critical role to play in the therapeutic destruction of tumours. Recently it has been suggested that one of the mechanisms by which rituximab, a therapeutic anti-CD20 antibody, kills B cells is caspase-independent. In this study we show that rituximab can induce death in a variety of Burkitt lymphoma derived cell lines. Rituximab-treated cells show leakage of adenylate kinase, surface expression of phosphatidylserine, upregulation of the cellular stress protein HSP70, phosphorylation of the survival protein Akt, and depolarisation of the mitochondrial membrane but no loss of cytochrome c or apoptosis inducing factor. Caspase inhibitors do not block these events. In support of these data there is no cleavage of caspases 3, 8 and 9, poly(ADP-ribose) polymerase, BH3 interacting domain death agonist or genomic DNA. Morphologically, cells show nuclear enlargement and cytoplasmic vacuolisation. Triggering of receptor mediated death in CD95 responsive lines results in “classical” apoptosis indicating that the internal machinery necessary for apoptosis is intact in these lines. The results suggest that rituximab can kill human B cells via a caspase-independent form of programmed cell death that shares features of apoptosis and necrosis. This pathway may be relevant to the clinical efficacy of rituximab.  相似文献   

3.
Bcr-Abl tyrosine kinase (TK) inhibitors are promising therapeutic agents for Bcr-Abl-positive (Bcr-Abl(+)) leukemias. Although they are known to promote caspase-mediated apoptosis, it remains unclear whether caspase-independent cell death-inducing mechanisms are also triggered. Here we demonstrated that INNO-406, a second-generation Bcr-Abl TK inhibitor, induces programmed cell death (PCD) in chronic myelogenous leukemia (CML) cell lines through both caspase-mediated and caspase-independent pathways. The latter pathways include caspase-independent apoptosis (CIA) and necrosis-like cell death (CIND), and the cell lines varied regarding which mechanism was elicited upon INNO-406 treatment. We also observed that the propensity toward CIA or CIND in cells was strongly associated with cellular dependency on apoptosome-mediated caspase activity. Cells that undergo CIND have a high apoptosome activity potential whereas cells that undergo CIA tend to have a lower potential. Moreover, we found that INNO-406 promotes autophagy. When autophagy was inhibited with chloroquine or gene knockdown of beclin1 by shRNA, INNO-406-induced cell death was enhanced, which indicates that the autophagic response of the tumor cells is protective. These findings suggest new insights into the biology and therapy of Bcr-Abl(+) leukemias.  相似文献   

4.
A growing body of evidence now suggests that programmed cell death (PCD) occurs via non-apoptotic mechanisms as well as by apoptosis. In contrast to apoptosis, however, the molecular mechanisms involved in the regulation of non-apoptotic PCD remain only poorly understood. Here we show that ceramide induces a non-apoptotic PCD with a necrotic-like morphology in human glioma cells. Characteristically, the cell death was not accompanied by loss of the mitochondrial transmembrane potential, cytosolic release of cytochrome c from mitochondria, or the activation of the caspase cascade. Consistent with these characteristics, this ceramide-induced cell death was inhibited neither by the overexpression of Bcl-xL nor by the pan-caspase inhibitor zVAD-fmk. However, strikingly, the ceramide-induced non-apoptotic cell death was inhibited by the activation of the Akt/protein kinase B pathway through the expression of a constitutively active version of Akt. The results for the first time indicate that the Akt kinase, known to play an essential role in survival factor-mediated inhibition of apoptotic cell death, is also involved in the regulation of non-apoptotic PCD.  相似文献   

5.
Apoptosis has been considered as an underlying mechanism in acute lung injury/acute respiratory distress syndrome and multiorgan dysfunction syndrome. Recently, several alternative pathways for cell death (such as caspase-independent cell death, oncosis, and autophagy) have been discovered. Evidence of these pathways in the pathogenesis of acute lung injury has also come into light. In this article, we briefly introduce cell death pathways and then focus on studies related to lung injury. The different types of cell death that occur and the underlying mechanisms utilized depend on both experimental and clinical conditions. Lipopolysaccharide-induced acute lung injury is associated with apoptosis via Fas/Fas ligand mechanisms. Hyperoxia and ischemia-reperfusion injury generate reactive oxidative species, which induce complex cell death patterns composed of apoptosis, oncosis, and necrosis. Prolonged overexpression of inflammatory mediators results in increased production and activation of proteases, especially cathepsins. Activation and resistance to death of neutrophils also plays an important role in promoting parenchymal cell death. Knowledge of the coexisting multiple cell death pathways and awareness of the pharmacological inhibitors targeting different proteases critical to cell death may lead to the development of novel therapies for acute lung injury.  相似文献   

6.
Death receptors such as the 55 kDa tumor necrosis factor (TNF) receptor (TNF-R55) or Fas can initiate both apoptotic (caspase-dependent) and caspase-independent routes to programmed cell death (PCD). Here, we demonstrate for the first time that the single murine receptor for (TNF)-related apoptosis-inducing ligand (mTRAIL-R2) can induce a caspase-independent form of PCD with necrosis-like features in addition to apoptosis. Analysis of morphological and cellular features of caspase-independent PCD in response to TRAIL and TNF suggests that mTRAIL-R2 and TNF-R55 elicit caspase-independent PCD through similar pathways, although without participation of cathepsins. Cells overexpressing acid ceramidase (AC), an enzyme that metabolizes the sphingolipid ceramide, show enhanced survival from TRAIL-induced caspase-independent PCD but not from apoptosis, implicating a function of ceramide as a key mediator in caspase-independent PCD (but not apoptosis) induced by mTRAIL-R2. In concert with the enhanced resistance of AC-overexpressing cells against caspase-independent PCD induced by TNF, our results suggest that ceramide acts as a common mediator of caspase-independent PCD caused by death receptors such as mTRAIL-R2 and TNF-R55.  相似文献   

7.
Mitochondrial morphology within cells is controlled by precisely regulated rates of fusion and fission . During programmed cell death (PCD), mitochondria undergo extensive fragmentation and ultimately caspase-independent elimination through a process known as mitoptosis . Though this increased fragmentation is due to increased fission through the recruitment of the dynamin-like GTPase Drp1 to mitochondria , as well as to a block in mitochondrial fusion , cellular mechanisms underlying these processes remain unclear. Here, we describe a mechanism for the increased mitochondrial Drp1 levels and subsequent stimulation of mitochondrial fission seen during PCD. We observed Bax/Bak-mediated release of DDP/TIMM8a, a mitochondrial intermembrane space (IMS) protein , into the cytoplasm, where it binds to and promotes the mitochondrial redistribution of Drp1, a mediator of mitochondrial fission. Using both loss- and gain-of-function assays, we also demonstrate that the Drp1- and DDP/TIMM8a-dependent mitochondrial fragmentation observed during PCD is an important step in mitoptosis, which in turn is involved in caspase-independent cell death. Thus, following Bax/Bak-mediated mitochondrial outer membrane permeabilization (MOMP), IMS proteins released comprise not only apoptogenic factors such as cytochrome c involved in caspase activation but also DDP/TIMM8a, which activates Drp1-mediated fission to promote mitochondrial fragmentation and subsequently elimination during PCD.  相似文献   

8.
Caspases are cysteine proteases that can drive apoptosis in metazoans and have critical functions in the elimination of cells during development, the maintenance of tissue homeostasis, and responses to cellular damage. Although a growing body of research suggests that programmed cell death can occur in the absence of caspases, mammalian studies of caspase-independent apoptosis are confounded by the existence of at least seven caspase homologs that can function redundantly to promote cell death. Caspase-independent programmed cell death is also thought to occur in the invertebrate nematode Caenorhabditis elegans. The C. elegans genome contains four caspase genes (ced-3, csp-1, csp-2, and csp-3), of which only ced-3 has been demonstrated to promote apoptosis. Here, we show that CSP-1 is a pro-apoptotic caspase that promotes programmed cell death in a subset of cells fated to die during C. elegans embryogenesis. csp-1 is expressed robustly in late pachytene nuclei of the germline and is required maternally for its role in embryonic programmed cell deaths. Unlike CED-3, CSP-1 is not regulated by the APAF-1 homolog CED-4 or the BCL-2 homolog CED-9, revealing that csp-1 functions independently of the canonical genetic pathway for apoptosis. Previously we demonstrated that embryos lacking all four caspases can eliminate cells through an extrusion mechanism and that these cells are apoptotic. Extruded cells differ from cells that normally undergo programmed cell death not only by being extruded but also by not being engulfed by neighboring cells. In this study, we identify in csp-3; csp-1; csp-2 ced-3 quadruple mutants apoptotic cell corpses that fully resemble wild-type cell corpses: these caspase-deficient cell corpses are morphologically apoptotic, are not extruded, and are internalized by engulfing cells. We conclude that both caspase-dependent and caspase-independent pathways promote apoptotic programmed cell death and the phagocytosis of cell corpses in parallel to the canonical apoptosis pathway involving CED-3 activation.  相似文献   

9.
Caspase-independent programmed necrosis is a highly regulated cellular demise that displays morphological and biochemical necrotic hallmarks, such as an earlier permeability of the plasma membrane and lactate dehydrogenase (LDH) leakiness. This form of programmed cell death (PCD) is regulated by AIF, a FAD-dependent oxidoreductase, which is released from the mitochondria to the nucleus where it induces chromatin condensation and DNA fragmentation. Some years ago, it has been established that the sequential activation of poly(ADP-ribose) polymerase-1 (PARP-1), calpains, and Bax regulate the mitochondrial AIF release associated to programmed necrosis. But, what happens when AIF is in the nucleus? How does this protein induce chromatinolysis and programmed necrosis? Recently, we have unraveled some of the mechanisms underlying the nuclear action of AIF in this type of caspase-independent cell death. Indeed, AIF plays a key role in programmed necrosis by its ability to organize a DNA-degrading complex with H2AX and Cyclophiline A (CypA). The AIF/H2AX link is indeed a critical event and explains the nuclear AIF apoptogenic action. In the present article, we outline the current knowledge on cell death by programmed necrosis and discuss the relevance of the AIF/H2AX/CypA DNA-degrading complex in the regulation of this original form of cell death.  相似文献   

10.
The systemic pathophysiologic changes following thermal injuries affect multiple organs and body systems leading to clinical manifestations including shock, intestinal alterations, respiratory and renal failure, immunosuppression and others. Recent advances in the comprehension of mechanisms underlying systemic complications of thermal injuries have contributed to uncover part of the cellular and molecular basis that underlie such changes. Recently, programmed cell death (apoptosis) has been considered playing an important role in the development of such pathological events. Therefore, investigators utilizing animal models and clinical studies involving human primates have produced a large body of information suggesting that apoptosis is associated with most of the tissue damages triggered by severe thermal injuries. In order to draw the attention on the important role of apoptosis on systemic complications of thermal injuries, in this review we describe most of these studies, discuss possible cellular and molecular mechanisms and indicate ways to utilize them for the development of therapeutic strategies by which apoptosis may be prevented or counteracted.  相似文献   

11.
Amiloride is a potassium-sparing diuretic that has been used as an anti-kaliuretic for the chronic management of hypertension and heart failure. Several studies have identified a potential anti-cancer role for amiloride, however the mechanisms underlying its anti-tumor effects remain to be fully delineated. Our group previously demonstrated that amiloride triggers caspase-independent cytotoxic cell death in human glioblastoma cell lines but not in primary astrocytes. To delineate the cellular mechanisms underlying amiloride’s anti-cancer cytotoxicity, cell permeant and cell impermeant derivatives of amiloride were synthesized that exhibit markedly different potencies in cancer cell death assays. Here we compare the cytotoxicities of 5-benzylglycinyl amiloride (UCD38B) and its free acid 5-glycinyl amiloride (UCD74A) toward human breast cancer cells. UCD74A exhibits poor cell permeability and has very little cytotoxic activity, while UCD38B is cell permeant and induces the caspase-independent death of proliferating and non-proliferating breast cancer cells. UCD38B treatment of human breast cancer cells promotes autophagy reflected in LC3 conversion, and induces the dramatic swelling of the endoplasmic reticulum, however these events do not appear to be the cause of cell death. Surprisingly, UCD38B but not UCD74A induces efficient AIF translocation from the mitochondria to the nucleus, and AIF function is necessary for the efficient induction of cancer cell death. Our observations indicate that UCD38B induces programmed necrosis through AIF translocation, and suggest that its cytosolic accessibility may facilitate drug action.  相似文献   

12.
Apoptosis is triggered by the activation of caspases and characterized by chromatin condensation and nuclear fragmentation (type II nuclear morphology). Necrosis is depicted by a gain in cell volume (oncosis), swelling of organelles, plasma membrane leakage, and subsequent loss of intracellular contents. Although considered as different cell death entities, there is an overlap between apoptosis and necrosis. In this sense, mounting evidence suggests that both processes can be morphological expressions of a common biochemical network known as “apoptosis-necrosis continuum.” To gain insight into the events driving the apoptosis-necrosis continuum, apoptotically proficient cells were screened facing several apoptotic inducers for the absence of type II apoptotic nuclear morphologies. Chelerythrine was selected for further studies based on its cytotoxicity and the lack of apoptotic nuclear alterations. Chelerythrine triggered an early plasma membrane leakage without condensed chromatin aggregates. Ultrastructural analysis revealed that chelerythrine-mediated cytotoxicity was compatible with a necrotic-like type of cell death. Biochemically, chelerythrine induced the activation of caspases. Moreover, the inhibition of caspases prevented chelerythrine-triggered necrotic-like cell death. Compared with staurosporine, chelerythrine induced stronger caspase activation detectable at earlier times. After using a battery of chemicals, we found that high concentrations of thiolic antioxidants fully prevented chelerythrine-driven caspase activation and necrotic-like cell death. Lower amounts of thiolic antioxidants partially prevented chelerythrine-mediated cytotoxicity and allowed cells to display type II apoptotic nuclear morphology correlating with a delay in caspase-3 activation. Altogether, these data support that an early and pronounced activation of caspases can drive cells to undergo a form of necrotic-like regulated cell death.  相似文献   

13.
The caspase family of cysteine proteases is essential for implementation of physiological cell death. Since a wide variety of cellular proteins is cleaved by caspases during apoptosis, it has been predicted that digestion of proteins crucial to maintaining the life of a cell is central to apoptosis. To assess the role of the proteolytic destruction during apoptosis, we introduced the non-specific protease proteinase K into intact cells. This introduction led to extensive digestion of cellular proteins, including physiological caspase-substrates. Caspase-3-like activity was induced rapidly, followed by morphological signs of apoptosis such as membrane blebbing and nuclear condensation. The caspase inhibitor Z-VAD-fmk inhibited the appearance of these morphological changes without reducing the extent of intracellular proteolysis by proteinase K. Loss of integrity of the cell membrane, however, was not blocked by Z-VAD-fmk. This system thus generated conditions of extensive destruction of caspase substrates by proteinase K in the absence of apoptotic morphology. Taken together, these experiments suggest that caspases implement cell death not by protein destruction but by proteolytic activation of specific downstream effector molecules.  相似文献   

14.

Background

Apoptosis, the most well-known type of programmed cell death, can induce in a paracrine manner a proliferative response in neighboring surviving cells called apoptosis-induced proliferation (AiP). While having obvious benefits when triggered in developmental processes, AiP is a serious obstacle in cancer therapy, where apoptosis is frequently induced by chemotherapy. Therefore, in this study, we evaluated the capacity of an alternative type of cell death, called caspase-independent cell death, to promote proliferation.

Results

Using a novel in vitro isogenic cellular model to trigger either apoptosis or caspase-independent cell death, we found that the later has no obvious compensatory proliferation effects on neighboring cells.

Conclusions

This study enforces the idea that alternative types of cell death such as caspase-independent cell death could be considered to replace apoptosis in the context of cancer treatment.
  相似文献   

15.
Nanometre-scale spaces between organelles represent focused nodes for signal transduction and the control of cellular decisions. The endoplasmic reticulum (ER) and the mitochondria form dynamic quasi-synaptic interaction nanodomains in all cell types examined, but the functional role of these junctions in cellular metabolism and cell survival remains to be fully understood. In this paper, we review recent evidence that ER Ca2+ channels, such as the RyR and IP3R, can signal specifically across this nanodomain to the adjacent mitochondria to pace basal metabolism, with focus on the pancreatic β-cell. Blocking these signals in the basal state leads to a form of programmed cell death associated with reduced ATP and the induction of calpain-10 and hypoxia-inducible factors. On the other hand, the hyperactivity of this signalling domain plays a deleterious role during classical forms of apoptosis. Thus, the nanospace between ER and mitochondria represents a critical rheostat controlling both metabolism and programmed cell death. Many aspects of the mechanisms underlying this control system remain to be uncovered, and new nanotechnologies are required understand these domains at a molecular level.  相似文献   

16.
Caspase-independent cell deaths have been observed in many species including the human. However, the molecular mechanisms which govern them are largely unknown. Our present work makes use of a model organism, the protist Dictyostelium discoideum, which displays a caspase-independent cell death during its development. In rich medium, Dictyostelium multiplies vegetatively as a unicellular organism, but in starvation conditions, Dictyostelium cells aggregate, differentiate and morphogenize into a multicellular structure, called sorocarp, containing a mass of spores supported by a stalk. Cells in the stalk are considered dead on the basis of non-regrowth in a rich medium and are vacuolized. This programmed cell death is therefore developmental and vacuolar, and in addition, caspase-independent since the Dictyostelium genome does not contain caspases genes. In order to study in detail this cell death without induction of development, an in vitro experimental protocol has been adopted, which enabled us to describe the cascade of morphological events during this cell death. An insertional mutagenesis approach, followed by appropriate selection or screening of mutants potentially resistant to death, attempted at establishing the cascade of molecular events leading to vacuolar death of Dictyostelium cells. A better understanding of alternative death pathways may allow to control different types of cell deaths in the cases of cancers or neurodegenerative diseases. In this short review, we will discuss briefly some generalities about the development of Dictyostelium in starvation conditions, and we will focus on the course of programmed cell death in Dictyostelium and on the genetic tools used to elucidate the corresponding molecular mechanisms.  相似文献   

17.
Cell volume regulation in immune cell apoptosis   总被引:5,自引:0,他引:5  
The loss of cell volume is an early and fundamental feature of programmed cell death or apoptosis; however, the mechanisms responsible for cell shrinkage during apoptosis are poorly understood. The loss of cell volume is not a passive component of the apoptotic process, and a number of experimental findings from different laboratories highlight the importance of this process as an early and necessary regulatory event in the signaling of the death cascade. Additionally, the loss of intracellular ions, particularly potassium, has been shown to play a primary role in cell shrinkage, caspase activation, and nuclease activity during apoptosis. Thus, an understanding of the role that ion channels and plasma membrane transporters play in cellular signaling during apoptosis may have important physiological implications for immune cells, especially lymphocyte function. Furthermore, this knowledge may also have an impact on the design of therapeutic strategies for a variety of diseases of the immune system in which apoptosis plays a central role, such as oncogenic processes or immune system disorders. The present review summarizes our appreciation of the mechanisms underlying the early loss of cell volume during apoptosis and their association with downstream events in lymphocyte apoptosis.  相似文献   

18.
Increasingly, anti-cancer medications are being reported to induce cell death mechanisms other than apoptosis. Activating alternate death mechanisms introduces the potential to kill cells that have defects in their apoptotic machinery, as is commonly observed in cancer cells, including in hematological malignancies. We, and others, have previously reported that the mTOR inhibitor everolimus has pre-clinical efficacy and induces caspase-independent cell death in acute lymphoblastic leukemia cells. Furthermore, everolimus is currently in clinical trial for acute lymphoblastic leukemia. Here we characterize the death mechanism activated by everolimus in acute lymphoblastic leukemia cells. We find that cell death is caspase-independent and lacks the morphology associated with apoptosis. Although mitochondrial depolarization is an early event, permeabilization of the outer mitochondrial membrane only occurs after cell death has occurred. While morphological and biochemical evidence shows that autophagy is clearly present it is not responsible for the observed cell death. There are a number of features consistent with paraptosis including morphology, caspase-independence, and the requirement for new protein synthesis. However in contrast to some reports of paraptosis, the activation of JNK signaling was not required for everolimus-induced cell death. Overall in acute lymphoblastic leukemia cells everolimus induces a cell death that resembles paraptosis.  相似文献   

19.
In addition to cell shrinkage, membrane blebbing, DNA fragmentation and phosphatidylserine exposure, intracellular acidification represents a hallmark of apoptosis. Although the mechanisms underlying cytosolic acidification during apoptosis remained largely elusive, a pivotal role of mitochondria has been proposed. In order to investigate the involvement of mitochondria in cytosolic acidification during apoptosis, we blocked the mitochondrial death pathway by overexpression of Bcl-2 and subsequently activated the death receptor pathway by anti-CD95 or TRAIL or the mitochondrial pathway by staurosporine. We show that Bcl-2 but not caspase inhibition prevented staurosporine-induced intracellular acidification. Thus, intracellular acidification in mitochondrial apoptosis is a Bcl-2-inhibitable, but caspase-independent process. In contrast, Bcl-2 only slightly delayed, but did not prevent intracellular acidification upon triggering of death receptors. The Na+/H+ exchanger NHE1 was partially degraded during apoptosis but only to a small extent and and at a delayed time point when cytosolic acidification was almost completed. We therefore conclude that cytosolic acidification is mitochondrially controlled in response to mitochondria-dependent death stimuli, but requires additional caspase-dependent mechanisms during death receptor-mediated apoptosis. Michaela Waibel, Stefan Kramer and Kirsten Lauber share equal first authorship.  相似文献   

20.
Borsos E  Erdélyi P  Vellai T 《Autophagy》2011,7(5):557-559
Apoptosis, the main form of regulated (or programmed) cell death, allows the organism to tightly control cell numbers and tissue size, and to protect itself from potentially damaging cells. This type of cellular self-killing has long been assumed to be essential for early development. In the nematode Caenorhabditis elegans, however, the core apoptotic cell death pathway appears to be dispensable for embryogenesis when most developmental cell deaths take place: mutant nematodes defective for apoptosis develop into adulthood, with superficially normal morphology and behavior. Accumulating evidence indicates a similar situation in mammalian systems as well. For example, apoptosis-deficient mice can grow as healthy, fertile adults. These observations raise the possibility that alternative cell death mechanisms may compensate for the lack of apoptotic machinery in developing embryos. Interestingly, C. elegans embryogenesis can also occur without autophagy, an alternative form of cellular self-destruction (also called autophagic cell death). In an upcoming paper we report that simultaneous inactivation of the autophagic and apoptotic gene cascades in C. elegans arrests development at early stages, and the affected embryos exhibit severe morphological defects. Double-mutant nematode embryos deficient in both autophagy and apoptosis are unable to undergo body elongation or to arrange several tissues correctly. This novel function of autophagy genes in morphogenesis indicates a more fundamental role for cellular self-digestion in tissue patterning than previously thought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号