首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The IGFs may be important autocrine, paracrine or endocrine growth factors for human breast cancer. IGF-I and II stimulate growth of cultured human breast cancer cells. IGF-I is slightly more potent, paralleling its higher affinity for the IGF-I receptor. Antibody blockade of the IGF-I receptor inhibits growth stimulation induced by both IGFs, suggesting that this receptor mediates the growth effects of both peptides. However, IGF-I receptor blockade does not inhibit estrogen (E2)-induced growth suggesting that secreted IGFs are not the major mediators of E2 action. Several breast cancer cell lines express IGF-II mRNA by both Northern analysis and RNase protection assay. IGF-II activity is found in conditioned medium by radioimmuno and radioreceptor assay, after removal of somatomedin binding proteins (BP) which are secreted in abundance. IGF-I is undetectable. BPs of 25 and 40 K predominate in ER-negative cell lines while BPs of 36 K predominate in ER-positive cells. Blockade of the IGF-I receptor inhibits anchorage-independent and monolayer growth in serum of a panel of breast cancer cell lines. Growth of one line (MDA-231) was also inhibited in vivo by receptor antibody treatment of nude mice. The antibody had no effect on growth of MCF-7 tumors. These data suggest the IGFs are important regulators of breast cancer cell proliferation and that antagonism of this pathway may offer a new treatment strategy.  相似文献   

2.
The role of autocrine growth factors in the stimulation of lung cancer growth is well established. Nicotine is an agonist for acetylcholine receptors and stimulates lung cancer growth. This suggests that if lung cancers synthesize acetylcholine (ACh), then ACh may be an autocrine growth factor for lung cancer. Analysis of normal lung demonstrated that the cells of origin of lung cancers express the proteins necessary for non-neuronal ACh storage and synthesis. Analysis of mRNA from squamous cell lung carcinoma, small cell lung carcinoma (SCLC) and adenocarcinoma showed synthesis of choline acetyltransferase (ChAT) and nicotinic receptors. Immunohistochemical analysis of a retrospective series of SCLC and adenocarcinomas showed that more than 50% of the lung cancers screened expressed ChAT and nicotinic receptors. To study the effect of endogenous ACh synthesis on growth, SCLC cell lines were studied. SCLC cell lines were found to express ChAT mRNA and to secrete ACh into the medium as measured by HPLC separation and enzymatically-coupled electrochemical detection. The SCLC cell line NCI-H82 synthesized highest levels of ACh. Showing that the endogenously synthesized ACh interacted with its receptors to stimulate cell growth, addition of muscarinic and nicotinic antagonists slowed H82 cell proliferation. These findings demonstrate that lung cancer cell lines synthesize and secrete ACh to act as an autocrine growth factor. The existence of a cholinergic autocrine loop in lung cancer provides a basis for understanding the effects of nicotine in cigarette smoke on lung cancer growth and provides a new pathway to investigate for potential therapeutic approaches to lung cancer.  相似文献   

3.
Conditioned serum-free media (CM) from small-cell lung cancer (SCLC) cell lines were examined for the presence of insulin-like growth-factor-binding proteins (IGF-BP). 6/9 SCLC cell lines secreted binding proteins with high affinity for IGFs. When [125I]IGF-I or [125I]IGF-II was incubated with the CMs, complexes of tracer with proteins could be demonstrated by gel filtration, by precipitation with polyethylenglycol, and after adsorption of unbound tracer with activated charcoal. Analysis of binding data according to the method of Scatchard resulted in linear plots for IGF-I and IGF-II. The dissociation constants were determined to be 0.106 nM for IGF-I and 0.209 nM for IGF-II binding. Cross-linking of [125I]IGF-I or [125I]IGF-II to the CMs followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) under nonreducing conditions revealed the presence of IGF-BPs with molecular masses in the range 24-32 kDa. The binding was competitively inhibited by addition of cold IGF-I and IGF-II but not by insulin. Northern blot hybridization with an IGF-BP cDNA probe encoding a low-molecular-weight IGF-BP from a human placenta cDNA library and Western blot analysis with a corresponding polyclonal antibody showed no expression of this gene. These data demonstrate that SCLC cell lines release IGF-BPs in culture supernatants, which differ from IGF-BPs detected in liver and placenta. These IGF-BPs might be important mediators in the autocrine/paracrine growth regulation of IGFs in SCLC.  相似文献   

4.
BACKGROUND: Perturbation in a level of any peptide from insulin-like growth factor (IGF) family (ligands, receptors, and binding proteins) seems to be implicated in lung cancer formation; IGF ligands and IGF-I receptor through their mitogenic and anti-apoptotic action, and the mannose 6-phosphate/insulin-like growth factor II receptor (M6-P/IGF-IIR) possibly as a tumor suppressor. MATERIALS AND METHODS: To determine the identity, role, and mutual relationship of IGFs in lung cancer growth and maintenance, we examined IGF's gene (by RT-PCR) and protein (by immunohistochemistry) expression in 69 human lung carcinoma tissues. We also examined IGF-I receptor numbers (Scatchard analysis) and IGF-II production and release (by Western blot) in IGF-II/IGF-IR mRNA positive and negative lung carcinomas. Finally, the potential role of IGF-IR and IGF-II as growth promoting factors in lung cancer was studied using antisense oligodeoxynucleotides that specifically inhibit IGF-IR and IGF-II mRNA. RESULTS: Thirty-two tumors were positive for IGF-I, 39 for IGF-II, 48 for IGF-IR, and 35 for IGFBP-4 mRNA. Seventeen tumors were concomitantly positive for all four IGFs, whereas 34 were positive for IGF-II, IGF-IR, and IGFBP-4 mRNA. An elevated amount of IGF-II peptide was secreted into the growth medium of cell cultures established from five different IGF-II/IGF-IR mRNA positive lung cancer tissues. The cells also expressed elevated numbers of IGF-IR. Nine IGF-II-negative and 19 IGF-II-positive lung cancers of different stages were selected, and M6-P/ IGF-II receptor was determined immunohistochemically. Most of the IGF-II-negative tumors were strongly positive for M6-P/IGF-IIR. IGF-II-positive tumors were mostly negative for M6-P/IGF-II receptors. Antisense oligodeoxynucleotides to IGF-II significantly inhibited, by 25-60%, the in vitro growth of all six lung cancer cell lines. However, the best results (growth inhibition of up to 80%) were achieved with concomitant antisense treatment (to IGF-IR and IGF-II). CONCLUSION: Our data suggest that lung cancer cells produce IGF-IR and IGF-II, which in turn stimulates their proliferation by autocrine mechanism. Cancer cell proliferation can be abrogated or alleviated by blocking the mRNA activity of these genes indicating that an antisense approach may represent an effective and practical cancer gene therapy strategy.  相似文献   

5.
Interest in the role of the insulin-like growth factor (IGF) axis in growth control and carcinogenesis has recently been increased by the finding of elevated serum insulin-like growth factor I (IGF-I) levels in association with three of the most prevalent cancers in the United States: prostate cancer, colorectal cancer, and lung cancer. IGFs serve as endocrine, autocrine, and paracrine stimulators of mitogenesis, survival, and cellular transformation. These actions are mediated through the type 1 IGF-receptor (IGF-1R), a tyrosine kinase that resembles the insulin receptor. The availability of free IGF for interaction with the IGF-1R is modulated by the insulin-like growth factor-binding proteins (IGFBPs). IGFBPs, especially IGFBP-3, also have IGF-independent effects on cell growth. IGF-independent growth inhibition by IGFBP-3 is believed to occur through IGFBP-3-specific cell surface association proteins or receptors and involves nuclear translocation. IGFBP-3-mediated apoptosis is controlled by numerous cell cycle regulators in both normal and disease processes. IGFBP activity is also regulated by IGFBP proteases, which affect the relative affinities of IGFBPs, IGFs and IGF-1R. Perturbations in each level of the IGF axis have been implicated in cancer formation and progression in various cell types.  相似文献   

6.
Scarpa RC  Carraway RE  Cochrane DE 《Peptides》2005,26(11):2201-2210
Fibroblasts are key cells in tissue repair and important contributors to the inflammatory response. Insulin-like growth factors (IGFs) have been shown to participate in growth, in immune responses and in tissue repair where they stimulate cell growth. Neurotensin (NT) has been suggested to participate in inflammation and in tissue repair and is an autocrine or paracrine growth factor for several cancer cell types. Here we show that IGF-induced proliferation of fibroblasts is enhanced by NT in a concentration and type 1 NT-receptor dependent manner. This action of NT was blocked by inhibitors of phospholipase C and protein kinase C but not by inhibitors of phosphoinositide-3-kinase. An inhibitor of MEK 1/2 significantly reduced the proliferative effects of the IGFs but NT's ability to enhance IGF-induced proliferation was not effected. The ability of NT to enhance IGF-induced proliferation did not involve an autocrine factor. These results suggest that interactions between NT and the IGFs may contribute to the regulation of fibroblasts in for example, inflamed or injured tissues.  相似文献   

7.
Insulin-like growth factor binding proteins: new proteins, new functions.   总被引:12,自引:0,他引:12  
The insulin-like growth factors (IGFs), IGF binding proteins (IGFBPs), and IGFBP proteases regulate somatic growth and cellular proliferation both in vivo and in vitro. IGFs are potent mitogens whose actions are determined by the availability of free IGFs to interact with IGF receptors. IGFBPs comprise a family of six proteins that bind IGFs with high affinity and specificity and thereby regulate IGF-dependent actions. IGFBPs have recently emerged as IGF-independent regulators of cell growth. Cleavage of IGFBPs by specific proteases modulate levels of free IGFs and IGFBPs and thereby their actions. IGFBP-related proteins (IGFBP-rPs) bind IGFs with low affinity and also play important roles in cell growth and differentiation. The GH-IGF-IGFBP axis is complex and powerful. Future research on its physiology promises exciting insights into cell biology as well as therapies for diseases such as cancer and diabetes mellitus.  相似文献   

8.
We employed two selective EGFR tyrosine kinase inhibitors: AG494 (reversible) and AG1478 (irreversible) for growth regulation of human lung (A549) and prostate (DU145) cancer cell lines, cultured in chemically defined DMEM/F12 medium. Both tested tyrphostins significantly inhibited autocrine growth of the investigated cell lines. The action of AG494 was dose dependent, and at highest concentrations led to complete inhibition of growth. AG1478 seemed to be more effective at lower concentrations, but was unable to completely inhibit growth of A549 cells. Inhibition of EGFR kinase activity by AG494 in contrast to AG1478 had no effect on the activity of ERK in both cell lines. Both EGFR's inhibitors induced apoptosis of the investigated lung and prostate cancer cell lines, but the proapoptotic effect of the investigated tyrphostins was greater in A549 than in DU145 cells. The tyrphostins arrested cell growth of DU145 and A549 cells in the G1 phase, similarly to other known inhibitors of EGFR. The influence of AG494 and AG1478 on the activity of two signaling proteins (AKT and ERK) was dependent upon the kind of investigated cells. In the case of DU145 cells, there was an evident decline in enzymatic activity of both kinases (stronger for AG1478), while in A549, only AG1478 effectively inhibited the phosphorylation of Akt. Tyrphostins AG494 and AG1478 are ATP-competitors and are supposed to have a similar mechanism of action, but our results suggest that this is not quite true.  相似文献   

9.
Differentiation of muscle cells to form postmitotic myotubes is usually viewed as being negatively controlled by medium components, sometimes designated "mitogens." However, we have found that a family of mitogenic agents, the insulin-like growth factors (IGFs), are potent stimulators of differentiation in myoblasts which act by inducing expression of the myogenin gene. We show here that this action of the IGFs occurs even when these growth factors are not added to the cell medium; upon transfer to low-serum "differentiation medium," myoblasts begin active expression of the IGF-II gene, at both the mRNA and protein levels. Furthermore, autocrine secretion of IGF-II is essential for the process of terminal differentiation of the cells. These conclusions are based upon four lines of evidence. (1) The rate of spontaneous differentiation in several sublines of myogenic cells correlates with their level of expression of IGF-II. (2) C2 and Sol 8 cells, which secrete high levels of IGF-II, are relatively insensitive to exogenous IGFs, in contrast to L6 lines, which exhibit lower levels of IGF-II gene expression. (3) An antisense oligodeoxyribonucleotide complementary to the first five codons of IGF-II inhibits myogenic differentiation in the absence but not in the presence of exogenous IGF-II. (4) Spontaneous differentiation in response to autocrine IGF-II involves the same mechanism that occurs in cells stimulated by the IGFs, i.e. elevation of expression of the myogenin gene.  相似文献   

10.
The neuropeptides vasopressin, bradykinin, cholecystokinin, galanin, neurotensin and gastrin-releasing peptide stimulate rapid, transient increases in cytosolic Ca2+ in small cell lung cancer cell lines at nanomolar concentrations. Responsiveness to individual peptides is heterogeneous among the diverse cell lines, but the ability to respond to regulatory peptides is a general phenomenon. Peptide responses demonstrate homologous desensitisation and are blocked by ligand-specific antagonists, indicating that they are mediated by distinct receptors. Many neuropeptides are also secreted by small cell lung cancer. Here we suggest that multiple autocrine and paracrine interactions regulate its growth.  相似文献   

11.
Insulin-like growth factors (IGFs) are potent mitogens for a variety of cancer cells in vitro. A paracrine/autocrine role of IGF-II in the growth of breast and prostate cancer cells has been suggested. Information on cell-type-specific IGF-II expression in vivo in the breast and prostate is, however, limited. Thus, cell types expressing IGF-II mRNA and protein in tumors were identified by in situ hybridization and immunohistochemistry. Of 36 prostate, 17 breast, and 10 bladder cancers, and 9 paraganglioma tissues examined, IGF-II was expressed in more than 50% of prostate, breast, and bladder tumors, and in 100% of paraganglioma tumors. Expression levels of IGF-II were highest in the paraganglioma and bladder followed by prostate and breast tumors. In all the tumors expressing IGF-II, both mRNA and protein were localized to malignant cells, expression in the stroma being minimal. Since previous studies had indicated that an incompletely processed form of 15-kDa IGF-II exhibited higher mitogenic potency than the completely processed 7.5-kDa IGF-II form, the quantity and size of IGF-II proteins expressed in these tumors were analyzed by Western immunoblotting. Greater expression of 15-kDa IGF-II relative to the 7.5-kDa IGF-II form was clearly demonstrated in all six prostate cancers and in half of the two breast and four bladder cancers examined. The results are consistent with the hypothesis that the 15-kDa form of IGF-II expressed in cancerous cells contributes to autocrine cancer cell growth in vivo. Received: 11 June 1997 / Accepted: 22 August 1997  相似文献   

12.
The importance of the ovarian insulin-like growth factors (IGFs) has been suggested by data from numerous laboratories and several approaches in the last several years. In the aggregate, these data indicate that this system could function as an important local amplification mechanism for steroidogenesis and gonadotropin action. Studies supporting this hypothesis have described several interacting components of this autocrine/paracrine system. First, the several types of ovarian cells possess an IGF-response system, which includes receptors for IGFs and an effective intracellular transduction system. The IGFs can promote growth and/or differentiation of ovarian cells, and their predominant actions depend on the nature of the cells and the presence of additional modulating factors. The biochemical events leading to enhanced steroidogenesis are now understood in considerable detail and include induction of several steps in the cAMP-dependent steroidogenic cascade. The second component of the ovarian IGF system comprises hormone-responsive local production of IGFs. Both IGF-I and IGF-II may be secreted; gonadotropins, gonadal steroids and locally produced growth factors can regulate the IGF system at this level. Finally, ovarian cells secrete a heterogeneous and complex family of IGF-binding proteins (IGFBPs). These proteins can impact on multiple ovarian functions in a manner which is generally opposite to that of the IGFs themselves. As is the case for the IGFs, the secretion of these proteins by ovarian cells is regulated by gonadotropins and locally produced ovarian factors. Collectively, these several components provide an integrated, synergistically cooperative local network to promote gonadotropin-dependent growth and differentiation in the ovary.  相似文献   

13.
Growth hormone releasing hormone (GHRH) from hypothalamus nominatively stimulates growth hormone release from adenohypophysis. GHRH is also produced by cancers, acting as an autocrine/paracrine growth factor. This growth factor function is seen in lymphoma, melanoma, colorectal, liver, lung, breast, prostate, kidney, bladder cancers. Pituitary type GHRH receptors and their splice variants are also expressed in these malignancies. Synthetic antagonists of the GHRH receptor inhibit proliferation of cancers. Besides direct inhibitory effects on tumors, GHRH antagonists also enhance cytotoxic chemotherapy. GHRH antagonists potentiate docetaxel effects on growth of H460 non-small cell lung cancer (NSCLC) and MX-1 breast cancer plus suppressive action of doxorubicin on MX-1 and HCC1806 breast cancer. We investigated mechanisms of antagonists on tumor growth, inflammatory signaling, doxorubicin response, expression of drug resistance genes, and efflux pump function. Triple negative breast cancer cell xenografted into nude mice were treated with GHRH antagonist, doxorubicin, or their combination. The combination reduced tumor growth, inflammatory gene expression, drug-resistance gene expression, cancer stem-cell marker expression, and efflux-pump function. Thus, antagonists increased the efficacy of doxorubicin in HCC1806 and MX-1 tumors. Growth inhibition of H460 NSCLC by GHRH antagonists induced marked downregulation in expression of prosurvival proteins K-Ras, COX-2, and pAKT. In HT-29, HCT-116 and HCT-15 colorectal cancer lines, GHRH antagonist treatment caused cellular arrest in S-phase of cell cycle, potentiated inhibition of in vitro proliferation and in vivo growth produced by S-phase specific cytotoxic agents, 5-FU, irinotecan and cisplatin. This enhancement of cytotoxic therapy by GHRH antagonists should have clinical applications.  相似文献   

14.
The proteasome plays a pivotal role in the turnover of regulatory transduction proteins induced by activated cell membrane growth factor receptors. The epidermal growth factor receptor (EGFR) pathway is crucial in the development and progression of human epithelial cancers. Proteasome inhibition may sensitize human cancer cell lines to EGFR inhibitors. We investigated the growth inhibitory and pro-apoptotic effects of the proteasome inhibitor bortezomib in combination with anti-EGFR drugs, such as gefitinib, vandetanib, and cetuximab in EGFR-expressing human cancer cell lines. Bortezomib determined dose-dependent growth inhibition in a nine cancer cell line panel (IC(50) values, range 6-42 nM). A significant synergistic growth inhibitory effect was observed with the combination of bortezomib and each EGFR inhibitor in all cell lines (combination index, CI, range 0.10-0.55), which was accompanied by a significant induction in apoptosis by the combined treatment with bortezomib, cetuximab and vandetanib. In HCT-116 colon cancer and A549 lung adenocarcinoma cells, bortezomib plus EGFR inhibitor treatment induced a more effective inhibition of EGFR-activated down-stream signals, including a marked suppression in activated, phosphorylated Akt (P-Akt). In contrast, overexpression of a constitutively active P-Akt protected A549 cells by cell growth inhibition and apoptosis following treatment with bortezomib and EGFR inhibitors. The combined treatment with bortezomib and EGFR inhibitors has a synergistic growth inhibitory and pro-apoptotic activity in different human cancer cells which possess a functional EGFR-dependent autocrine growth pathway through to a more efficient and sustained inhibition of Akt.  相似文献   

15.
PURPOSE: The epidermal growth factor receptor (EGFR) autocrine pathway plays an important role in cancer cell growth. Vascular endothelial growth factor A (VEGF-A) is a key regulator of tumor-induced endothelial cell proliferation and vascular permeability. ZD6474 is an orally available, small molecule inhibitor of VEGF receptor-2 (VEGFR-2), EGFR and RET tyrosine kinase activity. We investigated the activity of ZD6474 in combination with cetuximab, an anti-EGFR blocking monoclonal antibody, to determine the anti-tumor activity of EGFR blockade through the combined use of two agents targeting the receptor at different molecular sites in cancer cells and of VEGFR-2 blockade in endothelial cells. EXPERIMENTAL DESIGN: The anti-tumor activity in vitro and in vivo of ZD6474 and/or cetuximab was tested in human cancer cell lines with a functional EGFR autocrine pathway. RESULTS: The combination of ZD6474 and cetuximab determined synergistic growth inhibition in all cancer cell lines tested as assessed by the Chou and Talalay method. In nude mice bearing established human colon carcinoma (GEO) or lung adenocarcinoma (A549) xenografts and treated with ZD6474 and/or cetuximab for 4 weeks, a reversible tumor growth inhibition was caused by each drug. In contrast, a more significant tumor growth delay resulted from the combination of the two agents with an approximately 100-110 days increase in mice median overall survival as compared to single agent treatment. CONCLUSIONS: This study provides a rationale for evaluating in a clinical setting the double blockade of EGFR in combination with inhibition of VEGFR-2 signaling as cancer therapy.  相似文献   

16.
Insulin-like growth factors (IGF-I/-II) are not only the endocrine mediators of growth hormone-induced metabolic and anabolic actions but also polypeptides that act in a paracrine and autocrine manner to regulate cell growth, differentiation, apoptosis and transformation. The IGF system is a complex network comprised of two growth factors (IGF-I and -II), cell surface receptors (IGF-IR and -IIR), six specific high affinity binding proteins (IGFBP-I to IGFBP-6), IGFBP proteases as well as several other IGFBP-interacting molecules, which regulate and propagate IGF actions in several tissues. Besides their broad-spectrum physiological and pathophysiological functions, recent evidence suggests even a link between IGFs and different malignancies.  相似文献   

17.
Shim M  Cohen P 《Hormone research》1999,51(Z3):42-51
Perturbations of the insulin-like growth factor (IGF) axis, including the autocrine production of IGFs, IGF binding proteins (IGFBPs) and IGFBP proteases such as prostate specific antigen (PSA), and cathepsin D have been identified in prostate, lung and breast cancer cells and tissues. Serum IGFBP-3 levels have been found to be negatively correlated to the risk of cancer. Interestingly, IGFBP-3 is a potent inhibitor of IGF action and also mediates apoptosis via an IGF-independent mechanism. Recent case-control studies have found an approximately 10% increase in the serum levels of IGF-I in patients with prostate, breast and lung cancers, which are among the most frequently diagnosed cancers. While the studies indicate an association between serum IGF-I levels and cancer risk, causality has not been established. Thus, serum IGF-I level may actually be a confounding variable, serving as a marker for autocrine tissue IGF-I production. Growth hormone (GH) therapy raises both IGF-I and IGFBP-3 levels in serum. However, the role of GH in controlling prostate, breast and lung growth and carcinogenesis remains unclear from animal studies. Increased GH levels as seen in acromegaly have been associated with benign prostatic hyperplasia but not with prostate, breast or lung cancers, although colon cancer mortality may be increased. Should serum IGF-I levels be proven to play a causal role in the pathogenesis of cancer, interpreting the risk associated with therapies such as GH replacement must take into account both the duration of exposure and the risk magnitude associated with the degree of serum IGF-I elevation. Since GH-deficient patients often have a subnormal IGF-I serum level, which normalizes on therapy, their cancer risk on GH therapy probably does not increase substantially above that of the normal population. Until further research in the area dictates otherwise, ongoing surveillance and routine monitoring of IGF-I levels in GH recipients should become standard of care.  相似文献   

18.
Chemotherapy and androgen ablation therapy are only temporarily effective against prostate cancer, and current studies are ongoing to test agents that target proteins responsible for autocrine and paracrine stimulated growth. Given limitations of current laboratory models to test the effect of these agents on cell growth and protein targets, we developed a coculture model that can distinguish paracrine stimulated growth and effects on proteins. We found that LNCaP prostate cancer cells and an immortalized rat prostate cell line transfected to overexpress the antiapoptotic resistance protein Bcl-2 were stimulated to grow (>2-fold increase, p < 0.01) through autocrine effects from additional cells in an upper chamber of our system. Using a proteomic approach with a two-dimensional differential in gel electrophoresis method to increase fidelity, four proteins were found to increase after autocrine induced growth stimulation. These proteins were all identified by mass spectrometry as enzymes in the glycolytic pathway, validating the ability of this system to detect both clonogenic growth and the effect on proteins. These data, therefore, demonstrate a novel coculture model for further study of agents that target proteins in pathways of paracrine or autocrine stimulated cell growth.  相似文献   

19.
Pregnancy-associated plasma protein-A (PAPPA) has been reported to regulate the activity of insulin-like growth factor (IGF) signal pathway through proteolytic degradation of IGF binding proteins (IGFBPs) thereby increasing the local concentration of free IGFs available to receptors. In this study we found that PAPPA is secreted from two out of seven lung cancer cell lines examined. None of immortalized normal bronchial epithelial cells (HBE) tested secrets PAPPA. There is no correlation between expression level and secretion of PAPPA in these cells. A cell line over-expressing PAPPA accompanied with secretion shows no notable changes in proliferation under cell culture conditions in vitro, but displays significantly augmentation of tumor growth in vivo in a xenograft model. In contrast, a cell line over-expressing PAPPA without secretion exhibits reduction of tumor growth both in vitro and in vivo. Down-regulation of PAPPA expression and secretion by RNAi knockdown decreases tumor growth after implanted in vivo. The tumor promoting activity of PAPPA appears to be mediated mainly through augmentation of the IGF signaling pathway as indicated by notable increases in downstream Akt kinase phosphorylation in tumor samples. Our results indicate that PAPPA secretion may play an important role in lung cancer growth and progression.  相似文献   

20.
The prostate gland is regulated by multiple hormones and growth factors that may also affect prostate tumorigenesis. Growth hormone (GH) contributes to prostate development and function, but the direct effects of GH on prostate cancer cells are not well understood. The expression of endogenous GH in prostate cancer cell lines has also been observed, suggesting the potential for an effect of autocrine GH. In the present study, we measure the levels of GH and GH receptor (GHR) mRNA in multiple prostate cancer and normal prostate‐derived cell lines, and compare the effects of exogenous and autocrine GH on LNCaP prostate cancer cell proliferation and apoptosis, and the associated signal transduction pathways. We found that GHR and GH expression were higher in the prostate cancer cell lines, and that exogenous GH increased LNCaP cell proliferation, but had no effect on apoptosis. In contrast, autocrine GH overexpression reduced LNCaP cell proliferation and increased apoptosis. The distinct actions of exogenous and autocrine GH were accompanied by differences in the involvement of GHR‐associated signal transduction pathways, and were paralleled by an alteration in the subcellular localization of GHR, in which autocrine GH appeared to sequester GHR in the Golgi and endoplasmic reticulum. This alteration of GHR trafficking may underlie a distinct mode of GH‐mediated signaling associated with the effect of autocrine GH. These findings clarify the potential effects of GH on prostate cancer cell function, and indicate that the activity of autocrine GH may be distinct from that of endocrine GH in prostate cancer cells. J. Cell. Biochem. 114: 1322–1335, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号