首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BMS-488043, like its predecessor BMS-378806, is a small molecule that can block the interactions between gp120 and CD4, and has shown good clinical efficacy. However, the crystal structure of drug-gp120 complexes or the full-length gp120 free of bound ligand is unpublished until now. Docking combined with molecular dynamics simulation is used to investigate the binding mode between BMS-488043 and gp120. On the basis of the analysis of the simulated results, the plausible binding mode is acquired, such as the changes of binding mode in the trajectory and the calculated binding free energy. Subsequently, a number of residues which make contacts with the small molecule are studied by binding free energy decomposition to understand the mutation experiments, such as Trp427, Ser375, and Thr257 residues with the help of the acquired binding mode above. Especially, the importance of the hydrophobic groove formed by residues Ile371 and Gly472 which bind BMS-488043 is elaborated, which has not been explored much. In addition, theoretical investigations on the dynamics behavior of the gp120 associated with BMS-488043 enhanced binding are performed; the results indicate that the BMS-488043 may be more deeply inserted into the Phe43 cavity compared with the previous binding mode acquired by docking.  相似文献   

2.
BMS-378806 is a recently discovered small-molecule human immunodeficiency virus type 1 (HIV-1) attachment inhibitor with good antiviral activity and pharmacokinetic properties. Here, we demonstrate that the compound targets viral entry by inhibiting the binding of the HIV-1 envelope gp120 protein to cellular CD4 receptors via a specific and competitive mechanism. BMS-378806 binds directly to gp120 at a stoichiometry of approximately 1:1, with a binding affinity similar to that of soluble CD4. The potential BMS-378806 target site was localized to a specific region within the CD4 binding pocket of gp120 by using HIV-1 gp120 variants carrying either compound-selected resistant substitutions or gp120-CD4 contact site mutations. Mapping of resistance substitutions to the HIV-1 envelope, and the lack of compound activity against a CD4-independent viral infection confirm the gp120-CD4 interactions as the target in infected cells. BMS-378806 therefore serves as a prototype for this new class of antiretroviral agents and validates gp120 as a viable target for small-molecule inhibitors.  相似文献   

3.
Schön A  Madani N  Klein JC  Hubicki A  Ng D  Yang X  Smith AB  Sodroski J  Freire E 《Biochemistry》2006,45(36):10973-10980
NBD-556 and the chemically and structurally similar NBD-557 are two low-molecular weight compounds that reportedly block the interaction between the HIV-1 envelope glycoprotein gp120 and its receptor, CD4. NBD-556 binds to gp120 with a binding affinity of 2.7 x 10(5) M(-1) (K(d) = 3.7 muM) in a process characterized by a large favorable change in enthalpy partially compensated by a large unfavorable entropy change, a thermodynamic signature similar to that observed for binding of sCD4 to gp120. NBD-556 binding is associated with a large structuring of the gp120 molecule, as also demonstrated by CD spectroscopy. NBD-556, like CD4, activates the binding of gp120 to the HIV-1 coreceptor, CCR5, and to the 17b monoclonal antibody, which recognizes the coreceptor binding site of gp120. NBD-556 stimulates HIV-1 infection of CD4-negative, CCR5-expressing cells. The thermodynamic signature of the binding of NBD-556 to gp120 is very different from that of another viral entry inhibitor, BMS-378806. Whereas NBD-556 binds gp120 with a large favorable enthalpy and compensating unfavorable entropy changes, BMS-378806 does so with a small binding enthalpy change in a mostly entropy-driven process. NBD-556 is a competitive inhibitor of sCD4 and elicits a similar structuring of the coreceptor binding site, whereas BMS-378806 does not compete with sCD4 and does not induce coreceptor binding. These studies demonstrate that low-molecular-weight compounds can induce conformational changes in the HIV-1 gp120 glycoprotein similar to those observed upon CD4 binding, revealing distinct strategies for inhibiting the function of the HIV-1 gp120 envelope glycoprotein. Furthermore, competitive and noncompetitive compounds have characteristic thermodynamic signatures that can be used to guide the design of more potent and effective viral entry inhibitors.  相似文献   

4.
Da LT  Quan JM  Wu YD 《Proteins》2011,79(6):1810-1819
A recently discovered small-molecule inhibitor, BMS-488043 (BMS-488), for the invasion of Human immunodeficiency virus Type 1 (HIV-1), shows a high activity against the entry of diversified HIV-1. Docking and molecular dynamic studies have been carried out to understand the binding mode of BMS-488 to gp120 as well as the effect of the small molecule on the conformational change of gp120 induced by CD4 binding. The results indicate that BMS-488 can accommodate in the CD4 binding pocket and interfere the CD4 binding in a noncompetitive mode. The piperazine group of BMS-488 prevents the bridging sheet formation of gp120 induced by the CD4 binding mainly through blocking the rotation of the Trp112 located on the α1 helix of gp120. The bridging sheet formation cannot be blocked for the W112A mutant of gp120 due to the reduced steric hindrance, in agreement with its significant resistance to the BMS inhibitor. The aza-indole ring is likely to interfere the exposure of gp41 by stacking within the β3-β5 and LB loops to disrupt the close packing of Pro212-His66-Phe210. The mode of action of BMS-488 also accommodates many mutagenesis results related to BMS-488 activity.  相似文献   

5.
BMS-806 and the related compound, #155, are novel inhibitors of human immunodeficiency virus type 1 (HIV-1) entry that bind the gp120 exterior envelope glycoprotein. BMS-806 and #155 block conformational changes in the HIV-1 envelope glycoproteins that are induced by binding to the host cell receptor, CD4. We tested a panel of HIV-1 envelope glycoprotein mutants and identified several that were resistant to the antiviral effects of BMS-806 and #155. In the CD4-bound conformation of gp120, the amino acid residues implicated in BMS-806 and #155 resistance line the "phenylalanine 43 cavity" and a water-filled channel that extends from this cavity to the inner domain. Structural considerations suggest a model in which BMS-806 and #155 bind gp120 prior to receptor binding and, upon CD4 binding, are accommodated in the Phe-43 cavity and adjacent channel. The integrity of the nearby V1/V2 variable loops and N-linked carbohydrates on the V1/V2 stem indirectly influences sensitivity to the drugs. A putative binding site for BMS-806 and #155 between the gp120 receptor-binding regions and the inner domain, which is thought to interact with the gp41 transmembrane envelope glycoprotein, helps to explain the mode of action of these drugs.  相似文献   

6.
BMS-488043 is a small-molecule human immunodeficiency virus type 1 (HIV-1) CD4 attachment inhibitor with demonstrated clinical efficacy. The compound inhibits soluble CD4 (sCD4) binding to the 11 distinct HIV envelope gp120 proteins surveyed. Binding of BMS-488043 and that of sCD4 to gp120 are mutually exclusive, since increased concentrations of one can completely block the binding of the other without affecting the maximal gp120 binding capacity. Similarly, BMS-488043 inhibited virion envelope trimers from binding to sCD4-immunoglobulin G (IgG), with decreasing inhibition as the sCD4-IgG concentration increased, and BMS-488043 blocked the sCD4-induced exposure of the gp41 groove in virions. In both virion binding assays, BMS-488043 was active only when added prior to sCD4. Collectively, these results indicate that obstruction of gp120-sCD4 interactions is the primary inhibition mechanism of this compound and that compound interaction with envelope must precede CD4 binding. By three independent approaches, BMS-488043 was further shown to induce conformational changes within gp120 in both the CD4 and CCR5 binding regions. These changes likely prevent gp120-CD4 interactions and downstream entry events. However, BMS-488043 could only partially inhibit CD4 binding to an HIV variant containing a specific envelope truncation and altered gp120 conformation, despite effectively inhibiting the pseudotyped virus infection. Taken together, BMS-488043 inhibits viral entry primarily through altering the envelope conformation and preventing CD4 binding, and other downstream entry events could also be inhibited as a result of these induced conformational changes.  相似文献   

7.
Shrivastava I  LaLonde JM 《Biochemistry》2011,50(19):4173-4183
HIV cell entry and infection are driven by binding events to the CD4 and chemokine receptors with associated conformational change of the viral glycoprotein, gp120. Scyllatoxin miniprotein CD4 mimetics and a small molecule inhibitor of CD4 binding, NBD-556, also effectively induce gp120 conformational change. In this study we examine the fluctuation profile of gp120 in context of CD4, a miniprotein mimetic, and NBD-556 with the aim of understanding the effect of ligand binding on gp120 conformational dynamics. Analysis of molecular dynamics trajectories indicate that NBD-556 binding in the Phe 43 cavity enhances the overall mobility of gp120, especially in the outer domain in comparison to CD4 or miniprotein bound complex. Interactions with the more flexible bridging sheet strengthen upon NBD-556 binding and may contribute to gp120 restructuring. The enhanced mobility of D368, E370, and I371 with NBD-556 bound in the Phe 43 cavity suggests that interactions with α3-helix in the outer domain are not optimal, providing further insights into gp120--small molecule interactions that may impact small molecule designs.  相似文献   

8.
HIV envelope glycoproteins undergo large-scale conformational changes as they interact with cellular receptors to cause the fusion of viral and cellular membranes that permits viral entry to infect targeted cells. Conformational dynamics in HIV gp120 are also important in masking conserved receptor epitopes from being detected for effective neutralization by the human immune system. Crystal structures of HIV gp120 and its complexes with receptors and antibody fragments provide high-resolution pictures of selected conformational states accessible to gp120. Here we describe systematic computational analyses of HIV gp120 plasticity in such complexes with CD4 binding fragments, CD4 mimetic proteins, and various antibody fragments. We used three computational approaches: an isotropic elastic network analysis of conformational plasticity, a full atomic normal mode analysis, and simulation of conformational transitions with our coarse-grained virtual atom molecular mechanics (VAMM) potential function. We observe collective sub-domain motions about hinge points that coordinate those motions, correlated local fluctuations at the interfacial cavity formed when gp120 binds to CD4, and concerted changes in structural elements that form at the CD4 interface during large-scale conformational transitions to the CD4-bound state from the deformed states of gp120 in certain antibody complexes.  相似文献   

9.
Inhibition of human immunodeficiency virus (HIV) entry into target human cells is considered as a critical strategy for preventing HIV infection. Conformational shifts of the HIV-1 envelope glycoprotein (gp120) facilitates the attachment of the virus to target cells, therefore gp120 remains an attractive target for antiretroviral therapy development. Compound 18A has been recently identified as a broad-spectrum anti-HIV inhibitor. It was proposed that 18A disrupts rearrangements of V1/V2 region in gp120; however, the precise mechanism by which 18A interferes with the inherent motion of V1/V2 domain remains obscure. In this report, we elaborate on the binding mode of compound 18A to the closed conformation of a soluble cleaved gp120 and further examine the dynamic motion of V1/V2 region in both gp120 and the gp120–18A complex via all-atom molecular dynamics simulations. In this work, comparative molecular dynamic analyses revealed that 18A makes contact with Leu179, Ile194, Ile424, Met426 W427, E370 and Met475 in the main hydrophobic cavity of the unliganded gp120 and disrupts the restructuring of V1/V2 domain observed in apo gp120. The unwinding of α1 and slight inversion of β2 in gp120 leads to the shift of VI/V2 domain away from the V3 N-terminal regions and toward the outer domain. Stronger contacts between Trp425 and Trp112 rings may contribute to the reduced flexibility of α1 observed upon 18A binding thereby inhibiting the shifts of the V1/V2 region. Binding of 18A to gp120: (1) decreases the overall flexibility of the protein and (2) inhibits the formation a gp120 conformation that closely ressembles a CD4-bound-like conformation. Information gained from this report not only elaborates on important dynamic features of gp120, but will also assist with the future designs of potent gp120 inhibitors as anti-HIV.  相似文献   

10.
Hsu ST  Bonvin AM 《Proteins》2004,55(3):582-593
The entry of HIV-1 into a target cell requires gp120 and receptor CD4 as well as coreceptor CCR5/CXCR4 recognition events associated with conformational changes of the involved proteins. The binding of CD4 to gp120 is the initiation step of the whole process involving structural rearrangements that are crucial for subsequent pathways. Despite the wealth of knowledge about the gp120/CD4 interactions, details of the conformational changes occurring at this stage remain elusive. We have performed molecular dynamics simulations in explicit solvent based on the gp120/CD4/CD4i crystal structure in conjunction with modeled V3 and V4 loops to gain insight into the dynamics of the binding process. Three differentiated interaction modes between CD4 and gp120 were found, which involve electrostatics, hydrogen bond and van der Waals networks. A "binding funnel" model is proposed based on the dynamical nature of the binding interface together with a CD4-attraction gradient centered in gp120 at the CD4-Phe43-binding cavity. Distinct dynamical behaviors of free and CD4-bound gp120 were monitored, which likely represent the ground and pre-fusogenic states, respectively. The transition between these states revealed concerted motions in gp120 leading to: i) loop contractions around the CD4-Phe43-insertion cavity; ii) stabilization of the four-stranded "bridging sheet" structure; and iii) translocation and clustering of the V3 loop and the bridging sheet leading to the formation of the coreceptor binding site. Our results provide new insight into the dynamic of the underlying molecular recognition mechanism that complements the biochemical and structural studies.  相似文献   

11.
Wang Q  Wang J  Cai Z  Xu W 《Biophysical chemistry》2008,134(3):178-184
BB-83698 is a first potent inhibitor of peptide deformylase in this novel class to enter clinical trials. In this study, automated docking, molecular dynamics simulation and binding free energy calculations with the linear interaction energy (LIE) method are first applied to investigate the binding of BB-83698 to the peptide deformylase from Bacillus stearothermophilus. The lowest docking energy structure from each cluster is selected as different representative binding modes. Compared with the experimental data, the results show that the binding of BB-83698 in Mode 1 is the most stable, with a binding free energy of -41.35 kJ/mol. The average structure of the Mode 1 complex suggests that inhibitor interacts with Ile59 and Gly109 by hydrogen bond interaction and with Pro47, Pro57, Ile59 and Leu146 by hydrophobic interaction are essential for the activity of BB-83698. Mode 2 represents a new binding mode. Additionally, if the hydrophilic group is introduced to the benzo-[1,3]-dioxole ring, the binding affinity of BB-83698 to the peptide deformylase from B. stearothermophilus will be greatly improved.  相似文献   

12.
Virtual screening of novel entry inhibitor scaffolds mimicking primary receptor CD4 of HIV-1 gp120 was carried out in conjunction with evaluation of their potential inhibitory activity by molecular modeling. To do this, pharmacophore models presenting different sets of the hotspots of cellular receptor CD4 for its interaction with gp120 were generated. These models were used as the templates for identification of CD4-mimetic candidates by the pepMMsMIMIC screening platform. Complexes of these candidates with gp120 were built by high-throughput ligand docking and their stability was estimated by molecular dynamics simulations and binding free energy calculations. As a result, five top hits that exhibited strong attachment to the two well-conserved hotspots of the gp120 CD4-binding site were selected for the final analysis. In analogy to CD4, the identified compounds make hydrogen bonds with Asp-368gp120 and multiple van der Waals contacts with the gp120 residues that bind to Phe-43CD4, resulting in destruction of the critical interactions of gp120 with Phe-43CD4 and Arg-59CD4. The complexes of the CD4-mimetic candidates with gp120 show relative conformational stability within the molecular dynamics simulations and expose the high percentage occupancies of intermolecular hydrogen bonds, in line with the data on the binding free energy calculations. In light of these findings, the identified compounds are considered as good scaffolds for the development of new functional antagonists of viral entry with broad HIV-1 neutralization.  相似文献   

13.
Induced fit molecular docking studies were performed on BMS-806 derivatives reported as small molecule inhibitors of HIV-1 gp120–CD4 binding. Comprehensive study of protein–ligand interactions guided in identification and design of novel symmetrical N,N′-disubstituted urea and thiourea as HIV-1 gp120–CD4 binding inhibitors. These molecules were synthesized in aqueous medium using microwave irradiation. Synthesized molecules were screened for their inhibitory ability by HIV-1 gp120–CD4 capture enzyme-linked immunosorbent assay (ELISA). Designed compounds were found to inhibit HIV-1 gp120–CD4 binding in micromolar (0.013–0.247 μM) concentrations.  相似文献   

14.
We investigated the interaction between cross-reactive HIV-1 neutralizing human monoclonal antibody m18 and HIV-1YU-2 gp120 in an effort to understand how this antibody inhibits the entry of virus into cells. m18 binds to gp120 with high affinity (KD≈5 nM) as measured by surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC). SPR analysis further showed that m18 inhibits interactions of gp120 with both soluble CD4 and CD4-induced antibodies that have epitopes overlapping the coreceptor binding site. This dual receptor site antagonism, which occurs with equal potency for both inhibition effects, argues that m18 is not functioning as a mimic of CD4, in spite of the presence of a putative CD4-like loop formed by HCDR3 in the antibody. Consistent with this view, m18 was found to interact with gp120 in the presence of saturating concentrations of a CD4-mimicking small molecule gp120 inhibitor, suggesting that m18 does not require unoccupied CD4 Phe43 binding cavity residues of gp120. Thermodynamic analysis of the m18-gp120 interaction suggests that m18 stabilizes a conformation of gp120 that is unique from and less structured than the CD4-stabilized conformation. Conformational mutants of gp120 were studied for their impact on m18 interaction. Mutations known to disrupt the coreceptor binding region and to lead to complete suppression of 17b binding had minimal effects on m18 binding. This argues that energetically important epitopes for m18 binding lie outside the disrupted bridging sheet region used for 17b and coreceptor binding. In contrast, mutations in the CD4 region strongly affected m18 binding. Overall, the results obtained in this work argue that m18, rather than mimicking CD4 directly, suppresses both receptor binding site functions of HIV-1 gp120 by stabilizing a nonproductive conformation of the envelope protein. These results can be related to prior findings about the importance of conformational entrapment as a common mode of action for neutralizing CD4bs antibodies, with differences mainly in epitope utilization and the extent of gp120 structuring.  相似文献   

15.

Background

HIV-1 infects macrophages and microglia in the brain and can cause neurological disorders in infected patients. We and others have shown that brain-derived envelope glycoproteins (Env) have lower CD4 dependence and higher avidity for CD4 than those from peripheral isolates, and we have also observed increased fusogenicity and reduced sensitivity to the fusion inhibitor T-1249. Due to the genetic differences between brain and spleen env from one individual throughout gp120 and in gp41's heptad repeat 2 (HR2), we investigated the viral determinants for the phenotypic differences by performing functional studies with chimeric and mutant Env.

Results

Chimeric Env showed that the V1/V2-C2-V3 region in brain's gp120 determines the low CD4 dependence and high avidity for CD4, as well as macrophage tropism and reduced sensitivity to the small molecule BMS-378806. Changes in brain gp41's HR2 region did not contribute to the increased fusogenicity or to the reduced sensitivity to T-1249, since a T-1249-based peptide containing residues found in brain's but not in spleen's HR2 had similar potency than T-1249 and interacted similarly with an immobilized heptad repeat 1-derived peptide in surface plasmon resonance analysis. However, the increased fusogenicity and reduced T-1249 sensitivity of brain and certain chimeric Env mostly correlated with the low CD4 dependence and high avidity for CD4 determined by brain's V1-V3 region. Remarkably, most but not all of these low CD4-dependent, macrophage tropic envelopes glycoproteins also had increased sensitivity to the novel allosteric entry inhibitor HNG-105. The gp120's C2 region asparagine 283 (N283) has been previously associated with macrophage tropism, brain infection, lower CD4 dependence and higher CD4 affinity. Therefore, we introduced the N283T mutation into an env clone from a brain-derived isolate and into a brain tissue-derived env clone, and the T283N change into a spleen-derived env from the same individual; however, we found that their phenotypes were not affected.

Conclusion

We have identified that the V1-V3 region of a brain-derived envelope glycoprotein seems to play a crucial role in determining not only the low CD4 dependence and increased macrophage tropism, but also the augmented fusogenicity and reduced sensitivity to T-1249 and BMS-378806. By contrast, increased sensitivity to HNG-105 mostly correlated with low CD4 dependence and macrophage tropism but was not determined by the presence of the brain's V1-V3 region, confirming that viral determinants of phenotypic changes in brain-derived envelope glycoproteins are likely complex and context-dependent.
  相似文献   

16.
HIV‐1 gp120 undergoes multiple conformational changes both before and after binding to the host CD4 receptor. BMS‐626529 is an attachment inhibitor (AI) in clinical development (administered as prodrug BMS‐663068) that binds to HIV‐1 gp120. To investigate the mechanism of action of this new class of antiretroviral compounds, we constructed homology models of unliganded HIV‐1 gp120 (UNLIG), a pre‐CD4 binding‐intermediate conformation (pCD4), a CD4 bound‐intermediate conformation (bCD4), and a CD4/co‐receptor‐bound gp120 (LIG) from a series of partial structures. We also describe a simple pathway illustrating the transition between these four states. Guided by the positions of BMS‐626529 resistance substitutions and structure–activity relationship data for the AI series, putative binding sites for BMS‐626529 were identified, supported by biochemical and biophysical data. BMS‐626529 was docked into the UNLIG model and molecular dynamics simulations were used to demonstrate the thermodynamic stability of the different gp120 UNLIG/BMS‐626529 models. We propose that BMS‐626529 binds to the UNLIG conformation of gp120 within the structurally conserved outer domain, under the antiparallel β20–β21 sheet, and adjacent to the CD4 binding loop. Through this binding mode, BMS‐626529 can inhibit both CD4‐induced and CD4‐independent formation of the “open state” four‐stranded gp120 bridging sheet, and the subsequent formation and exposure of the chemokine co‐receptor binding site. This unique mechanism of action prevents the initial interaction of HIV‐1 with the host CD4+ T cell, and subsequent HIV‐1 binding and entry. Our findings clarify the novel mechanism of BMS‐626529, supporting its ongoing clinical development. Proteins 2015; 83:331–350. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
Maraviroc is a nonpeptidic small molecule human immunodeficiency virus type 1 (HIV-1) entry inhibitor that has just entered the therapeutic arsenal for the treatment of patients. We recently demonstrated that maraviroc binding to the HIV-1 coreceptor, CC chemokine receptor 5 (CCR5), prevents it from binding the chemokine CCL3 and the viral envelope glycoprotein gp120 by an allosteric mechanism. However, incomplete knowledge of ligand-binding sites and the lack of CCR5 crystal structures have hampered an in-depth molecular understanding of how the inhibitor works. Here, we addressed these issues by combining site-directed mutagenesis (SDM) with homology modeling and docking. Six crystal structures of G-protein-coupled receptors were compared for their suitability for CCR5 modeling. All CCR5 models had equally good geometry, but that built from the recently reported dimeric structure of the other HIV-1 coreceptor CXCR4 bound to the peptide CVX15 (Protein Data Bank code 3OE0) best agreed with the SDM data and discriminated CCR5 from non-CCR5 binders in a virtual screening approach. SDM and automated docking predicted that maraviroc inserts deeply in CCR5 transmembrane cavity where it can occupy three different binding sites, whereas CCL3 and gp120 lie on distinct yet overlapped regions of the CCR5 extracellular loop 2. Data suggesting that the transmembrane cavity remains accessible for maraviroc in CCL3-bound and gp120-bound CCR5 help explain our previous observation that the inhibitor enhances dissociation of preformed ligand-CCR5 complexes. Finally, we identified residues in the predicted CCR5 dimer interface that are mandatory for gp120 binding, suggesting that receptor dimerization might represent a target for new CCR5 entry inhibitors.  相似文献   

18.
The HIV envelope glycoprotein gp120 plays a critical role in virus entry, and thus, its structure is of extreme interest for the development of novel therapeutics and vaccines. To date, high resolution structural information about gp120 in complex with gp41 has proven intractable. In this study, we characterize the structural properties of gp120 in the presence and absence of gp41 domains by NMR. Using the peptide probe 12p1 (sequence, RINNIPWSEAMM), which was identified previously as an entry inhibitor that binds to gp120, we identify atoms of 12p1 in close contact with gp120 in the monomeric and trimeric states. Interestingly, the binding mode of 12p1 with gp120 is similar for clades B and C. In addition, we show a subtle difference in the binding mode of 12p1 in the presence of gp41 domains, i.e. the trimeric state, which we interpret as small differences in the gp120 structure in the presence of gp41.  相似文献   

19.
The HIV-1 gp120 exterior envelope glycoprotein undergoes a series of conformational rearrangements while sequentially interacting with the receptor CD4 and coreceptor CCR5 or CXCR4 on the surface of host cells to initiate virus entry. Both the crystal structures of the HIV-1 gp120 core bound by the CD4 and antigen 17b, and the SIV gp120 core pre-bound by the CD4 are known. We have performed dynamic domain studies on the homology models of the CD4-bound and unliganded HIV-1 gp120 with modeled V3 and V4 loops to explore details of conformational changes, hinge axes, and hinge bending regions in the gp120 structures upon CD4 binding. Four dynamic domains were clustered and intricately motional modes for domain pairs were discovered. Together with the detailed comparative analyses of geometrical properties between the unliganded and liganded gp120 models, an induced fit model was proposed to explain events accompanying the CD4 engagement to the gp120, which provided new insight into the dynamics of the molecular induced binding mechanism that complements the molecular dynamics and crystallographic studies.  相似文献   

20.
The entry of HIV-1 into a host cell requires the interaction of envelope glycoprotein gp120 with CD4 receptor as well as a co-receptor, which can be either CCR5 or CXCR4. The third variable loop (V3) of HIV-1 gp120 plays an important role in co-receptor selection (CCR5 or CXCR4) and also acts as an epitope for neutralizing antibodies against gp120. Here we have performed long time molecular dynamics simulations of two gp120 structures that are representatives of a R5 and X4 strains in the CD4-free and CD4-bound states. The results indicate some conserved features in both systems, such as the rigidity of the gp120 core, the conservation of the CD4 Phe43-gp120 binding cavity contacts, a high flexibility of the V3 loop particularly in the CD4 bound form. Analysis of the distribution of V3 loop's net charge shows it to be more positive for the gp120 sequences selecting CXCR4 co-receptor, letting us to propose that V3 loop net charge and flexibility are the two main elements in the co-receptor selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号