首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Prefoldin is a molecular chaperone that captures a protein-folding intermediate and transfers it to a group II chaperonin for correct folding. The manner by which prefoldin interacts with a group II chaperonin is poorly understood. Here, we have examined the prefoldin interaction site in the archaeal group II chaperonin, comparing the interaction of two Thermococcus chaperonins and their mutants with Pyrococcus prefoldin by surface plasmon resonance. We show that the mutations of Lys250 and Lys256 of Thermococcus alpha chaperonin residues to Glu residues increase the affinity to Pyrococcus prefoldin to the level of Thermococcus beta chaperonin and Pyrococcus chaperonin, indicating that their Glu250 and Glu256 residues of the helical protrusion region are responsible for relatively stronger binding to Pyrococcus prefoldin than Thermococcus alpha chaperonin. Since the putative chaperonin binding sites in the distal ends of Pyrococcus prefoldin are rich in basic residues, electrostatic interaction seems to be important for their interaction. The substrate protein transfer rate from prefoldin correlates well with its affinity for chaperonin.  相似文献   

2.
The molecular chaperone prefoldin (PFD) is a complex comprised of six different subunits, PFD1-PFD6, and delivers newly synthesized unfolded proteins to cytosolic chaperonin TRiC/CCT to facilitate the folding of proteins. PFD subunits also have functions different from the function of the PFD complex. We previously identified MM-1α/PFD5 as a novel c-Myc-binding protein and found that MM-1α suppresses transformation activity of c-Myc. However, it remains unclear how cells regulate protein levels of individual subunits and what mechanisms alter the ratio of their activities between subunits and their complex. In this study, we found that knockdown of one subunit decreased protein levels of other subunits and that transfection of five subunits other than MM-1α into cells increased the level of endogenous MM-1α. We also found that treatment of cells with MG132, a proteasome inhibitor, increased the level of transfected/overexpressed MM-1α but not that of endogenous MM-1α, indicating that overexpressed MM-1α, but not endogenous MM-1α, was degraded by the ubiquitin proteasome system (UPS). Experiments using other PFD subunits showed that the UPS degraded a monomer of PFD subunits, though extents of degradation varied among subunits. Furthermore, the level of one subunit was increased after co-transfection with the respective subunit, indicating that there are specific combinations between subunits to be stabilized. These results suggest mutual regulation of protein levels among PFD subunits and show how individual subunits form the PFD complex without degradation.  相似文献   

3.
Eukaryotic prefoldin (PFD) is a heterohexameric chaperone with a jellyfish-like structure whose function is to deliver nonnative target proteins, principally actins and tubulins, to the eukaryotic cytosolic chaperonin for facilitated folding. Here we demonstrate that functional PFD can spontaneously assemble from its six constituent individual subunits (PFD1-PFD6), each expressed as a recombinant protein. Using engineered forms of PFD assembled in vitro, we show that the tips of the PFD tentacles are required to form binary complexes with authentic target proteins. We show that PFD uses the distal ends of different but overlapping sets of subunits to form stable binary complexes with different target proteins, namely actin and alpha- and beta-tubulin. We also present data that suggest a model for the order of these six subunits within the hexamer. Our data are consistent with the hypothesis that PFD, like the eukaryotic cytosolic chaperonin, has co-evolved specifically to facilitate the folding of its target proteins.  相似文献   

4.
Kurimoto E  Nishi Y  Yamaguchi Y  Zako T  Iizuka R  Ide N  Yohda M  Kato K 《Proteins》2008,70(4):1257-1263
Group II chaperonin (CPN) cooperates with prefoldin (PFD), which forms a jellyfish-shaped heterohexameric complex with a molecular mass of 87 kDa. PFD captures an unfolded protein with the tentacles and transfers it to the cavity of CPN. Although X-ray crystal structures of CPN and PFD have been reported, no structural information has been so far available for the terminal regions of the PFD tentacles nor for the C-terminal segments of CPNs, which were regarded to be functionally significant in the previous studies. Here we report 13C NMR analyses on archaeal PFD, CPN, and their complex, focusing on those structurally uncharacterized regions. The PFD and CPN complexes selectively labeled with 13C at methionyl carbonyl carbons were separately and jointly subjected to NMR measurements. 13C NMR spectral data demonstrated that the N-terminal segment of the alpha and beta subunits of PFD as well as the C-terminal segments of the CPN hexadecamer retain significant degrees of freedom in internal motion even in the complex with a molecular mass of 1.1 MDa.  相似文献   

5.
6.
K P Kearse  D B Williams    A Singer 《The EMBO journal》1994,13(16):3678-3686
The alpha beta T-cell antigen receptor (TCR) is a multisubunit transmembrane complex composed of at least six different proteins (alpha, beta, gamma, delta, epsilon and zeta) that are assembled in the endoplasmic reticulum (ER). In this report we have examined the role of oligosaccharide processing on survival and assembly of nascent TCR proteins within the ER and their associations with molecular chaperone proteins important in TCR assembly. We found that treatment of BW5147 T cells with the glucosidase inhibitor castanospermine resulted in markedly accelerated degradation of nascent TCR alpha proteins with a half-life of approximately 20 min. Accelerated degradation was unique to TCR alpha proteins, as the stability of nascent TCR beta and CD3 gamma,epsilon chains was unaltered. Consistent with a requirement for glucose (Glc) trimming for survival of nascent TCR alpha proteins within the ER, we found that newly synthesized TCR alpha chains were innately unstable in the glucosidase II-deficient BW5147 mutant cell line PHAR2.7. In addition to destabilizing nascent TCR alpha proteins we found that persistence of Glc residues on core oligosaccharides markedly interfered with association of both TCR alpha and TCR beta glycoproteins with the molecular chaperone calnexin. Finally, using 2B4 T hybridoma cells in which TCR complexes are efficiently assembled, we found that rapid degradation of nascent TCR alpha proteins induced by impaired Glc trimming severely limits assembly of TCR alpha proteins with TCR beta proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Huntington disease is caused by cell death after the expansion of polyglutamine (polyQ) tracts longer than ∼40 repeats encoded by exon 1 of the huntingtin (HTT) gene. Prefoldin is a molecular chaperone composed of six subunits, PFD1–6, and prevents misfolding of newly synthesized nascent polypeptides. In this study, we found that knockdown of PFD2 and PFD5 disrupted prefoldin formation in HTT-expressing cells, resulting in accumulation of aggregates of a pathogenic form of HTT and in induction of cell death. Dead cells, however, did not contain inclusions of HTT, and analysis by a fluorescence correlation spectroscopy indicated that knockdown of PFD2 and PFD5 also increased the size of soluble oligomers of pathogenic HTT in cells. In vitro single molecule observation demonstrated that prefoldin suppressed HTT aggregation at the small oligomer (dimer to tetramer) stage. These results indicate that prefoldin inhibits elongation of large oligomers of pathogenic Htt, thereby inhibiting subsequent inclusion formation, and suggest that soluble oligomers of polyQ-expanded HTT are more toxic than are inclusion to cells.  相似文献   

8.
Group II chaperonins in the eukaryotic and archaeal cytosol assist in protein folding independently of the GroES-like cofactors of eubacterial group I chaperonins. Recently, the eukaryotic chaperonin was shown to cooperate with the hetero-oligomeric protein complex GimC (prefoldin) in folding actin and tubulins. Here we report the characterization of the first archaeal homologue of GimC, from Methanobacterium thermoautotrophicum. MtGimC is a hexamer of 87 kDa, consisting of two alpha and four beta subunits of high alpha-helical content that are predicted to contain extended coiled coils and represent two evolutionarily conserved classes of Gim subunits. Reconstitution experiments with MtGimC suggest that two subunits of the alpha class (archaeal Gimalpha and eukaryotic Gim2 and 5) form a dimer onto which four subunits of the beta class (archaeal Gimbeta and eukaryotic Gim1, 3, 4 and 6) assemble. MtGimalpha and beta can form hetero-complexes with yeast Gim subunits and MtGimbeta partially complements yeast strains lacking Gim1 and 4. MtGimC is a molecular chaperone capable of stabilizing a range of non-native proteins and releasing them for subsequent chaperonin-assisted folding. In light of the absence of Hsp70 chaperones in many archaea, GimC may fulfil an ATP-independent, Hsp70-like function in archaeal de novo protein folding.  相似文献   

9.
The subunit composition of the Ns and Ni, the human erythrocyte stimulatory and inhibitory regulatory proteins of adenylyl cyclase, respectively, were analyzed by a sodium dodecyl sulfate-containing discontinuous urea and polyacrylamide gradient gel electrophoresis system designed for the study of low molecular weight polypeptides. This system disclosed that these proteins, in addition to their known alpha and beta subunits, contain an additional small peptide of apparent molecular weight of 5,000 (5K). This "5K peptide" is also present in preparations of another protein which we termed "40K protein" on the basis of its hydrodynamic behavior and whose primary protein constituent is the Mr 35,000 beta subunit of the above regulatory proteins. Analyzing Ni, the 5K peptide was functionally related to the protein by showing that its apparent Stokes radius changes from 5.9 to 5.1 nm after treatment with guanyl-5'-yl imidodiphosphate and magnesium in parallel with the alpha and beta subunits. These data are interpreted as evidence for the existence of a third subunit associated with the regulatory proteins of adenylyl cyclase. We call this subunit gamma and propose a minimum subunit structure for these proteins of the alpha beta gamma type.  相似文献   

10.
11.
GIRK (Kir3) channels are activated by neurotransmitters coupled to G proteins, via a direct binding of G(beta)(gamma). The role of G(alpha) subunits in GIRK gating is elusive. Here we demonstrate that G(alpha)(i) is not only a donor of G(beta)(gamma) but also regulates GIRK gating. When overexpressed in Xenopus oocytes, GIRK channels show excessive basal activity and poor activation by agonist or G(beta)(gamma). Coexpression of G(alpha)(i3) or G(alpha)(i1) restores the correct gating parameters. G(alpha)(i) acts neither as a pure G(beta)(gamma) scavenger nor as an allosteric cofactor for G(beta)(gamma). It inhibits only the basal activity without interfering with G(beta)(gamma)-induced response. Thus, GIRK is regulated, in distinct ways, by both arms of the G protein. G(alpha)(i) probably acts in its GDP bound form, alone or as a part of G(alpha)(beta)(gamma) heterotrimer.  相似文献   

12.
Atp11p and Atp12p are chaperones for F(1)-ATPase biogenesis in mitochondria   总被引:3,自引:0,他引:3  
The bioenergetic needs of aerobic cells are met principally through the action of the F(1)F(0) ATP synthase, which catalyzes ATP synthesis during oxidative phosphorylation. The catalytic unit of the enzyme (F(1)) is a multimeric protein of the subunit composition alpha(3)beta(3)(gamma)(delta) epsilon. Our work, which employs the yeast Saccharomyces cerevisiae as a model system for studies of mitochondrial function, has provided evidence that assembly of the mitochondrial alpha and beta subunits into the F(1) oligomer requires two molecular chaperone proteins called Atp11p and Atp12p. Comprehensive knowledge of Atp11p and Atp12p activities in mitochondria bears relevance to human physiology and disease as these chaperone actions are now known to exist in mitochondria of human cells.  相似文献   

13.
Prefoldin is a jellyfish-shaped hexameric co-chaperone of the group II chaperonins. It captures a protein folding intermediate and transfers it to a group II chaperonin for completion of folding. The manner in which prefoldin interacts with its substrates and cooperates with the chaperonin is poorly understood. In this study, we have examined the interaction between a prefoldin and a chaperonin from hyperthermophilic archaea by immunoprecipitation, single molecule observation, and surface plasmon resonance. We demonstrate that Pyrococcus prefoldin interacts most tightly with its cognate chaperonin, and vice versa, suggesting species specificity in the interaction. Using truncation mutants, we uncovered by kinetic analyses that this interaction is multivalent in nature, consistent with multiple binding sites between the two chaperones. We present evidence that both N- and C-terminal regions of the prefoldin beta sub-unit are important for molecular chaperone activity and for the interaction with a chaperonin. Our data are consistent with substrate and chaperonin binding sites on prefoldin that are different but in close proximity, which suggests a possible handover mechanism of prefoldin substrates to the chaperonin.  相似文献   

14.
The plasmid R6K contains three distinct origins of replication: alpha, beta, and gamma. The gamma sequence is essential in cis and acts as an enhancer that activates the distant alpha and beta origins. R6K therefore represents a favorable procaryotic model system with which to unravel the biochemical mechanisms underlying selective origin activation, particularly activation involving distant sites on the same chromosome. We have discovered that plasmids containing the origins alpha and gamma required the Escherichia coli DnaA initiator protein in addition to the R6K-encoded initiator protein, Pi, and other host replisomal proteins for their maintenance in vivo. Plasmids initiating replication from origin beta required only the Pi initiator protein and other host replisomal proteins. We have exploited the differential requirement for the DnaA protein by origins gamma and beta to selectively study and localize the minimal origin beta sequences by deletion analysis as one test of a looping model of origin activation. A 64-bp region spanning the extreme -COOH terminal coding sequence of the Pi protein was found to be essential for replication in vivo in the absence of DnaA protein, consistent with the approximate physical location of the beta origin. Replication emanating from origin beta could be abolished in vivo by deletion of the 9-bp target site for Pi protein-mediated DNA looping between the gamma origin/enhancer and the distant beta origin. Electron microscopy of nascent replication intermediates generated in vivo directly confirmed our genetic localization of the beta origin. Our results strongly suggest that activation of the beta origin by a distant replication enhancer element requires a small target sequence essential for initiator protein-mediated DNA looping.  相似文献   

15.
Using a non-denaturing digitonin-based polyacrylamide gradient gel electrophoretic system we identified the dihydropyridine-sensitive Ca2+ channel from skeletal muscle as a high molecular weight protein of greater than 700 kDa. When this protein was excised from the native gels and re-electrophoresed into SDS gels, it dissociated into the alpha 1, alpha 2, beta, gamma and delta peptides previously suggested to be putative subunits of these Ca2+ channels. The stoichiometry of the alpha 1:alpha 2:beta:gamma peptides was (-)1:1:1:1. The presence of the alpha 1 and alpha 2 peptides in the high molecular weight native complex was directly demonstrated with anti-alpha 1 and anti-alpha 2 antibodies. The apparent specific association of the peptides was demonstrated by the finding that the previously separated alpha 1 and alpha 2 peptides did not co-migrate with the native complex in non-denaturing gels. The results of this previously untried analysis support the concept that the skeletal muscle Ca2+ channels are multisubunit proteins. The combined non-denaturing and denaturing gel analyses may be of general utility for the analysis of other membrane proteins.  相似文献   

16.
Heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins) consist of a nucleotide-binding alpha subunit and a high-affinity complex of beta and gamma subunits. There is molecular heterogeneity of beta and gamma, but the significance of this diversity is poorly understood. Different G protein beta and gamma subunits have been expressed both singly and in combinations in Sf9 cells. Although expression of individual subunits is achieved in all cases, beta gamma subunit activity (support of pertussis toxin-catalyzed ADP-ribosylation of rGi alpha 1) is detected only when beta and gamma are expressed concurrently. Of the six combinations of beta gamma tested (beta 1 or beta 2 with gamma 1, gamma 2, or gamma 3), only one, beta 2 gamma 1, failed to generate a functional complex. Each of the other five complexes has been purified by subunit exchange chromatography using Go alpha-agarose as the chromatographic matrix. We have detected differences in the abilities of the purified proteins to support ADP-ribosylation of Gi alpha 1; these differences are attributable to the gamma component of the complex. When assayed for their ability to inhibit calmodulin-stimulated type-I adenylylcyclase activity or to potentiate Gs alpha-stimulated type-II adenylylcyclase, recombinant beta 1 gamma 1 and transducin beta gamma are approximately 10 and 20 times less potent, respectively, than the other complexes examined. Prenylation and/or further carboxyl-terminal processing of gamma are not required for assembly of the beta gamma subunit complex but are indispensable for high affinity interactions of beta gamma with either G protein alpha subunits or adenylylcyclases.  相似文献   

17.
By use of the yeast two-hybrid system, hepatitis C virus (HCV) F protein was found to interact with a cellular protein named prefoldin 2. The interaction was confirmed by confocal immunofluorescence microscopy as well as coimmunoprecipitation experiments. Prefoldin 2 is a subunit of a hexameric molecular chaperone complex, named prefoldin, which delivers nascent actin and tubulin proteins to the eukaryotic cytosolic chaperonin for facilitated folding. Functional prefoldin spontaneously assembles from its six subunits (prefoldin 1-6). In the yeast three-hybrid system, it was found that expression of HCV F protein impeded the interaction between prefoldin 1 and 2. By performing immunofluorescence experiment and non-denaturing gel electrophoresis, it was shown that expression of HCV F protein resulted in aberrant organization of tubulin cytoskeleton. Since HCV replication requires intact microtubule and actin polymerization, HCV F protein may serve as a modulator to prevent high level of HCV replication and thus contributes to viral persistence in chronic HCV infection.  相似文献   

18.
Two GTP-binding trimeric proteins (referred to as alpha 41 beta gamma and alpha 39 beta gamma based on the kilodalton molecular weights of their alpha-subunits) were purified from rat brain as the specific substrates of the ADP-ribosylation reaction catalyzed by islet-activating protein, pertussis toxin, and resolved irreversibly into alpha- and beta gamma-subunits by incubation with guanosine 5'-O-(thiotriphosphate) (GTP gamma S). Some of these resolved subunits interacted directly with the adenylate cyclase catalyst partially purified from rat brain in a detergent-containing solution, resulting in inhibition of the cyclase activity as follows. 1) GTP gamma S-bound alpha 41 inhibited the catalyst, but GTP gamma S-bound alpha 39 did not; the inhibition was competitive with GTP gamma S-bound alpha-subunit of Ns, the GTP-binding protein involved in activation of adenylate cyclase. 2) beta gamma from either alpha 41 beta gamma or alpha 39 beta gamma inhibited the catalyst in a manner not competitive with the activator such as forskolin or the alpha-subunit of Ns. 3) The ADP-ribosylation of alpha 41 beta gamma by islet-activating protein did not exert any influence on the subsequent GTP gamma S-induced resolution and the ability of the resolved GTP gamma S-bound alpha 41 to inhibit the catalyst. 4) The beta gamma-induced inhibition of the catalyst was additive to the inhibition caused by GTP gamma S-bound alpha 41. Thus, the direct inhibition of the catalyst by beta gamma or GTP gamma S-bound alpha 41 is a likely mechanism involved in receptor-mediated inhibition of adenylate cyclase, in addition to the previously proposed indirect inhibition due to the reduction of the concentration of the active alpha-subunit of Ns by reassociation with beta gamma.  相似文献   

19.
Prefoldin (PFD) is a molecular chaperone that stabilizes and then delivers unfolded proteins to a chaperonin for facilitated folding. The PFD hexamer has undergone an evolutionary change in subunit composition, from two PFDalpha and four PFDbeta subunits in archaea to six different subunits (two alpha-like and four beta-like subunits) in eukaryotes. Here, we show by electron microscopy that PFD from the archaeum Pyrococcus horikoshii (PhPFD) selectively uses an increasing number of subunits to interact with nonnative protein substrates of larger sizes. PhPFD stabilizes unfolded proteins by interacting with the distal regions of the chaperone tentacles, a mechanism different from that of eukaryotic PFD, which encapsulates its substrate inside the cavity. This suggests that although the fundamental functions of archaeal and eukaryal PFD are conserved, their mechanism of substrate interaction have diverged, potentially reflecting a narrower range of substrates stabilized by the eukaryotic PFD.  相似文献   

20.
Two proteins serving as substrates for ADP-ribosylation catalyzed by islet-activating protein (IAP), pertussis toxin, and binding guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) with high affinities were purified from the cholate extract of rat brain membranes. The purified proteins had the same heterotrimeric structure (alpha beta gamma) as the IAP substrates previously purified from rabbit liver and bovine brain and differed from each other in alpha only; the molecular weight of alpha was 41,000 (alpha 41 beta gamma) and 39,000 (alpha 39 beta gamma). Both were further resolved into alpha (alpha 41 or alpha 39) and beta gamma which were also purified to homogeneity to compare the activities of alpha-monomers with the original trimers. The maintenance of the rigid trimeric structure by combining alpha 41 or alpha 39 with beta gamma in the absence of Mg2+ was essential for the alpha-subunit to be ADP-ribosylated by IAP. The alpha-subunit was very stable but displayed the only partial GTP gamma S-binding activity under these conditions. Isolated alpha-monomers exhibited high GTPase activities when assayed in the presence of submicromolar Mg2+ but were very unstable at 30 degrees C and not ADP-ribosylated by IAP. The most favorable conditions for the GTP gamma S binding to alpha-subunits were achieved by combining alpha 41 or alpha 39 with beta gamma in the presence of millimolar Mg2+, probably due to the increase in stability and unmasking of the GTP-binding sites. There was no qualitative difference in these properties between alpha 41 beta gamma (alpha 41) and alpha 39 beta gamma (alpha 39). But alpha 39 beta gamma (or alpha 39) was usually more active than alpha 41 beta gamma (or alpha 41), at least partly due to its higher affinity for Mg2+ and lower affinity for beta gamma. Relation of these differences in activity between alpha 41 beta gamma and alpha 39 beta gamma to their physiological roles in signal transduction is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号