首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The unicellular green alga Chlamydomonas reinhardtii possesses a CO2-concentrating mechanism. In order to measure the CO2 permeability coefficients of the plasma membranes (PMs), carbonic anhydrase (CA) loaded vesicles were isolated from C. reinhardtii grown either in air enriched with 50 mL CO2 · L?1} (high-Ci cells) or in ambient air (350 μL CO2 · L?1}; low-Ci cells). Marker-enzyme measurements indicated less than 1% contamination with thylakoid and mitochondrial membranes, and that more than 90% of the PMs from high and low-Ci cells were orientated right-side-out. The PMs appeared to be sealed as judged from the ability of vesicles to accumulate [14C]acetate along a proton gradient for at least 10 min. Carbonic anhydrase-loaded PMs from high and low-Ci cells of C. reinhardtii were used to measure the exchange of 18O between doubly labelled CO2 (13C18O2) and H2O in stirred suspensions by mass spectrometry. Analysis of the kinetics of the 18O depletion from 13C18O2 in the external medium provides a powerful tool to study CO2 diffusion across the PM to the active site of CA which catalyses 18O exchange only inside the vesicles but not in the external medium (Silverman et al., 1976, J Biol Chem 251: 4428–4435). The activity of CA within loaded PM vesicles was sufficient to speed-up the 18O loss to H2O to 45360–128800 times the uncatalysed rate, depending on the efficiency of CA-loading and PM isolation. From the 18O-depletion kinetics performed at pH 7.3 and 7.8, CO2 permeability coefficients of 0.76 and 1.49·10?3} cm·s?1}, respectively, were calculated for high Ci cells. The corresponding values for low-Ci cells were 1.21 and 1.8·10?3} cm·s?1}. The implications of the similar and rather high CO2 permeability coefficients (low CO2 resistance) in high and low-Ci cells for the COi-concentrating mechanism of C. reinhardtii are discussed.  相似文献   

2.
The ability of the morphologically complex cyanobacterium Chlorogloeopsis sp. ATCC 27193 to actively transport and accumulate inorganic carbon (C1= CO2+ HCO3?+ CO32?) for photosynthetic CO2 fixation was investigated. Mass-spectrometric assays revealed that Chlorogloeopsis cells grown under C1 limitation rapidly took up CO2 from the medium in a light-dependent reaction which was independent of CO2 fixation. Ethoxyzolamide, a carbonic anhydrase (CA) inhibitor, inhibited CO2 transport. Since electrometric and mass-spectrometric assays did not detect the presence of a periplasmic CA, it is suggested that CO2 transport was mediated by a CA-like activity which converted CO2 to HCO3? during passage across the membrane. Radiochemical assays, using H14CO3 as substrate, showed that C3-limited cells also had a high affinity (K0.5 HCO3?= 37 μM), Na+-independent HCO3? uptake mechanism. HCO3?uptake was light dependent and occurred against its electrochemical potential indicating a carrier-mediated, active transport process. The rate of Na+-independent HCO3? transport was sufficient to account for the steady state rate of CO2 fixation. Although not absolutely required. Na+ did specifically enhance the rate of HCO3? transport by up to 2-fold, but had no effect on the apparent affinity of the transport system for HCO3? Combined CO2 and HCO3? transport resulted in C1 accumulation as high as 25 mM and in excess of 300 times the external concentration. The C1 pool was the source of CO2 for photo-synthetic fixation and was generated, presumably, by the dehydration of HCO3? catalyzed by an intracellular CA. The collective evidence indicates that Chlorogloeopsis has a physiologically functional CO2-concentrating mechanism which is essential for photosynthesis.  相似文献   

3.
Mass-spectrometric measurements of 18O exchange from 13C18O2 were used to follow changes in the intracellular carbonic anhydrase (CA) activity of cells of Chlamydomonas reinhardtii Dang, wild type and the ca-1 mutant during adaptation to air. With intact cells as well as with crude homogenates total intracellular CA activity in wild-type cells increased six to tenfold within 4 h after transferring cells from 5% CO2 (high inorganic carbon, Ci) to ambient air (air adapted). After that time the activity slowly declined to a level similar to that observed with cells which had been continuously grown in air (low-Ci grown). In the ca-1 mutant, total CA was induced to a similar extent during 4 h of adaptation; however, absolute activities were two to three times lower in ca-1 than in the wild type regardless of the CO2 supply. When crude extracts from wild-type cells were separated into soluble and insoluble fractions, each fraction contained about half of the internal CA activity. Within 4 h of adaptation, both forms of CA activity were simultaneously enhanced by nine to tenfold, reaching levels similar to those found in low-Cigrown cells. In contrast, in the ca-1 mutant the soluble CA activity was only enhanced by about eightfold while the level of insoluble CA was very low even in low-Ci cells. After isolation of intact chloroplasts from wild-type cells and further subfractionation, around 70–80% of total chloroplastic CA activity was found to be in the insoluble fraction while 17–20% remained in the soluble fraction. Both chloroplastic CA activities were inducible within the first 4 h of adaptation to air, with each of them being eight to ten times higher than in high-Ci algae. After that time their activities were similar to the corresponding CA values in low-Ci-grown cells. In contrast, plastids from high-Ci cells of the ca-1 mutant showed 40% less insoluble-CA activity compared to the wild type and this insoluble-CA activity was not increased at all by transferring algae to air. In addition, no soluble-CA activity was detected in chloroplasts from high-Ci and air-adapted ca-1 cells. These results indicate the presence of three intracellular CA activities in high-Ci air-adapted and low-Ci cells of the wild type and that two of them are associated with the chloroplasts. All three activities are completely induced within the first 4 h of adaptation to air in wild-type cells. In contrast, it was not possible to induce any of the chloroplastic CA activities in the ca-1 mutant. The possibility that the soluble chloroplastic CA represents a pyrenoid-located CA is discussed.This work is dedicated to Professor A. Wild on the occasion of his 65th birthday  相似文献   

4.
Mass-spectrometric measurements of 16O2 and 18O2 were made to compare the rates of light-dependent O2 evolution and uptake by Chlamydomonas reinhardtii Dang. grown in air (0.035% CO2; low-Ci cells) or CO2-enriched air (5% CO2; high-Ci cells) at pH 5.5 and 8.0. While at pH 5.5, no differences were observed in the isotopic O2-gas exchange of high- and low-Ci cells, at pH 8.0 the rates of true O2 evolution and uptake were considerably higher in low-Ci than in high-Ci cells. The enhanced rates of O2 uptake and evolution by low-Ci cells were completely inducible within 6 h after transferring high-Ci cells to ambient air. At pH 8.0, O2 uptake in the light was inhibited by 2 M 3-(3,4-dichlorophenyl)-1,1 dimethylurea in both types of alga, but this effect was more pronounced in low-Ci than in high-Ci cells.When the cells were grown at pH 5.5 the activities of the superoxide-radical-degrading enzymes, superoxide dismutase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase and glutathione reductase, were similar regardless of the CO2 concentration provided during growth. At pH 8.0, however, the activities of these enzymes were 4 to 20 times higher in low-Ci than in high-Ci cells. When high-Ci cells were allowed to acclimate to ambient air for 6 h at pH 8.0, the activities of superoxide dismutase, ascorbate peroxidase and monodehydroascorbate dehydrogenase increased to more than 50% of the level observed with low-Ci cells. These results are consistent with an enhanced operation of O2 photoreduction which could provide energy to the inorganic-carbon-concentrating mechanism via pseudo-cyclic photophosphorylation.  相似文献   

5.
In high inorganic carbon grown (1% CO2 [volume/volume]) cells of the cyanobacterium Synechococcus PCC7942, the carbonic anhydrase (CA) inhibitor, ethoxyzolamide (EZ), was found to inhibit the rate of CO2 uptake and to reduce the final internal inorganic carbon (Ci) pool size reached. The relationship between CO2 fixation rate and internal Ci concentration in high Ci grown cells was little affected by EZ. This suggests that in intact cells internal CA activity was unaffected by EZ. High Ci grown cells readily took up CO2 but had little or no capacity for HCO3 uptake. These cells appear to possess a CO2 utilizing Ci pump that has a CA-like function associated with the transport step such that HCO3 is the species delivered to the cell interior. This CA-like step may be the site of inhibition by EZ. Low Ci grown cells possess both CO2 uptake and HCO3 uptake activities and EZ inhibited both activities to a similar degree, suggesting that a common step in CO2 and HCO3 uptake (such as the Ci pump) may have been affected. The inhibitor had no apparent effect on internal CO2/HCO3 equilibria (internal CA function) in low Ci grown cells.  相似文献   

6.
The effect of CO2 concentration on the rate of photorespiratory ammonium excretion and on glutamine synthetase (GS) and carbonic anhydrase (CA) isoenzymes activities has been studied in Chlamydomonas reinhardtii cw-15 mutant (lacking cell wall) and in the high CO2-requiring double mutant cia-3/cw-15 (lacking cell wall and chloroplastic carbonic anhydrase). In cw-15 cells, both the extracellular (CAext) and chloroplastic (CAchl) CA activities increased after transferring cells from media bubbled with 5% CO2 in air (v/v, high-Ci cells) to 0.03% CO2 (low-Ci cells), whereas in cia-3/cw-15 cells only the CAext was induced after adaptation to low-Ci conditions and the CAchl activity was negligible. During adaptation to low-Ci conditions in the presence of 1 mM of l-methionine-D,L-sulfoximine (MSX), a specific inhibitor of GS activity, both mutant strains excreted photorespiratory ammonium into nitrogen free medium. In addition, the ammonium excretion rate by cw-15 in the presence of MSX was lower in cells grown and kept at 5% CO2 than in high-Ci cells adapted to 0.03% CO2. The double mutant cia-3/cw-15 excreted photorespiratory ammonium at a higher rate than did cw-15. Total GS activity (GS-1 plus GS-2) increased during adaptation to 0.03% CO2 in both strains of C. reinhardtii. However, only the activity GS-2, which is located in the chloroplast, increased during the adaptation to low CO2, whereas the cytosolic GS-1 levels remained similar in high and low-Ci cells. We conclude that: (1) cia-3/cw-15 cells lack chloroplastic CA activity; (2) in C. reinhardtii photorespiratory ammonium is refixed in the chloroplasts through the GS-2/GOGAT cycle; and (3) chloroplastic GS-2 concentration changes in response to the variation of environmental CO2 concentration.  相似文献   

7.
Induction of the carbon concentrating mechanism (CCM) has been investigated during the acclimation of 5% CO2‐grown Chlamydomonas reinhardtii 2137 mt + cells to well‐defined dissolved inorganic carbon (Ci) limited conditions. The CCM components investigated were active HCO3? transport, active CO2 transport and extracellular carbonic anhydrase (CAext) activity. The CAext activity increased 10‐fold within 6 h of acclimation to 0·035% CO2 and there was a further slight increase over the next 18 h. The CAext activity also increased substantially after an 8 h lag period during acclimation to air in darkness. Active CO2 and HCO3? uptake by C. reinhardtii cells were induced within 2 h of acclimation to air, but active CO2 transport was induced prior to active HCO3? transport. Similar results were obtained during acclimation to air in darkness. The critical Ci concentrations effecting the induction of active Ci transport and CAext activity were determined by allowing cells to acclimate to various inflow CO2 concentrations in the range 0·035–0·84% at constant pH. The total Ci concentration eliciting the induction and repression of active Ci transport was higher during acclimation at pH 7·5 than at pH 5·5, but the external CO2 concentration was the same at both pHs of acclimation. The concentration of external CO2 required for the full induction and repression of Ci transport and CAext activity were 10 and 100 μM , respectively. The induction of CAext and active Ci transport are not correlated temporally, but are regulated by the same critical CO2 concentration in the medium.  相似文献   

8.
Using mass-spectrometric measurements of 18O exchange from 13C18O2 intracellular carbonic anhydrase (CA) activity was investigated in the unicellular green algae Dunaliella tertiolecta and Chlamydomonas reinhardtii which were either grown on air enriched with 5% CO2 (high-Ci cells) or on air (low-Ci cells). In D. tertiolecta high- and low-Ci cells had detectable levels of internal CA activity when measured under in-vivo conditions and this activity could be split up into three distinct forms. One CA was not associated with the chloroplasts, while two isozymes were found to be located within the plastids. The activities of all intracellular CAs were always about twofold higher in low than in high-Ci cells of D. tertiolecta and the chloroplastic enzymes were completely induced within 4 h of adaptation to air. One of the chloroplastic CAs was found to be soluble the other was insoluble. In addition to the physical differences, MgSO4 in vitro caused a more than twofold stimulation of the soluble activity while the insoluble form of CA remained rather unaffected. In C. reinhardtii, MgSO4 increased the soluble CA activity by 346% and the concentration of MgSO4 required for half-maximum stimulation was between 10 and 15 mM. Again, the insoluble CA activity was not affected by MgSO4. Furthermore, the soluble isoenzyme was considerably more sensitive to ethoxyzolamide, a potent inhibitor of CA, than the insoluble enzyme. The concentration of inhibitor causing 50% inhibition of soluble CA activity was 110 and 85 μM ethoxyzolamide for D. tertiolecta and C. reinhardtii, respectively. From these data we conclude that the two chloroplast-associated CAs are distinct enzymes.  相似文献   

9.
Unicellular algae grown under low-CO2 conditions (0.03% CO2) have developed a means of concentrating CO2 at the site of ribulose-1,5-bisphosphate carboxylase/oxygenase. Cells with the CO2-concentrating mechanism (CCM) acquire the ability to accumulate inorganic carbon to a level higher than that obtained by simple diffusion. To identify proteins which are involved in the organization of the CCM, cells of Scenedesumus obliquus and Chlorella vulgaris grown in high CO2 (5% CO2 in air) were transferred to low-CO2 (0.03%) conditions in the presence of 35SO inf4 sup2? and, thereafter, polypeptides labeled with 35S were detected. Under low-CO2 conditions the inducton of 36-, 39-, 94- and 110- to 116kDa polypeptides were particularly observed in S. obliquus and 16-, 19-, 27-, 36-, 38- and 45-kDa polypeptides were induced in C. vulgaris. Western blots with antibodies raised against 37-kDa subunits of the periplasmic carbonic anhydrase (CA) of Chlamydomonas reinhardtii showed immunoreactive bands with the 39-kDa polypeptide in the whole-cell homogenates from S. obliquus and with 36 and 38-kDa polypeptides in both high- and low-CO2grown cells of C. vulgaris. Anti-pea-chloroplast CA antibodies cross-reacted with a single polypeptide of 30 kDa in the whole-cell homogenates but not with thylakoid membranes. The CA activity was associated with soluble and membrane-bound fractions, except thylakoid membranes.  相似文献   

10.
Mass-spectrometric disequilibrium analysis was applied to investigate CO2 uptake and HCO3 transport in cells and chloroplasts of the microalgae Dunaliella tertiolecta and Chlamydomonas reinhardtii, which were grown in air enriched with 5% (v/v) CO2 (high-Ci cells) or in ambient air (low-Ci cells). High- and low-Ci cells of both species had the capacity to transport CO2 and HCO3, with maximum rates being largely unaffected by the growth conditions. In high- and low-Ci cells of D. tertiolecta, HCO3 was the dominant inorganic C species taken up, whereas HCO3 and CO2 were used at similar rates by C. reinhardtii. The apparent affinities of HCO3 transport and CO2 uptake increased 3- to 9-fold in both species upon acclimation to air. Photosynthetically active chloroplasts isolated from both species were able to transport CO2 and HCO3. For chloroplasts from C. reinhardtii, the concentrations of HCO3 and CO2 required for half-maximal activity declined from 446 to 33 μm and 6.8 to 0.6 μm, respectively, after acclimation of the parent cells to air; the corresponding values for chloroplasts from D. tertiolecta decreased from 203 to 58 μm and 5.8 to 0.5 μm, respectively. These results indicate the presence of inducible high-affinity HCO3 and CO2 transporters at the chloroplast envelope membrane.  相似文献   

11.
In order to investigate the possible impacts of increased atmospheric CO2 levels on algal growth and photosynthesis, the influence of CO2 concentration was tested on three planktonic algae (Chlamydomonas reinhardtii, Chlorella pyrenoidosa, and Scenedesmus obliquus). Increased CO2 concentration enhanced significantly the growth rate of all three species. Specific growth rates reached maximal values at 30, 100, and 60 M CO2 in C. reinhardtii, C. pyrenoidosa, and S. obliquus, respectively. Such significant enhancement of growth rate with enriched CO2 was also confirmed at different levels of inorganic N and P, being more profound at limiting levels of N inC. pyrenoidosa and P in S. obliquus. The maximal rates of net photosynthesis, photosynthetic efficiency and light-saturating point increased significantly (p < 0.05) in high-CO2-grown cells. Elevation of the CO2 levels in cultures enhanced the photoinhibition of C. reinhardtii, but reduced that of C. pyrenoidosa and S. obliquus when exposed to high photon flux density. The photoinhibited cells recovered to some extent (from 71% to 99%) when placed under dim light or in darkness, with better recovery in high-CO2-grownC. pyrenoidosa and S. obliquus. Although pH and pCO2 effects cannot be distinguished from this study, it can be concluded that increased CO2 concentrations with decreased pH could affect the growth rate and photosynthetic physiology of C. reinhardtii, C. pyrenoidosa, and S. obliquus.  相似文献   

12.
Net O2 evolution, gross CO2 uptake and net HCO inf3 su– uptake during steady-state photosynthesis were investigated by a recently developed mass-spectrometric technique for disequilibrium flux analysis with cells of the marine cyanobacterium Synechococcus PCC7002 grown at different CO2 concentrations. Regardless of the CO2 concentration during growth, all cells had the capacity to transport both CO2 and HCO inf3 su– ; however, the activity of HCO inf3 su– transport was more than twofold higher than CO2 transport even in cyanobacteria grown at high concentration of inorganic carbon (Ci = CO2 + HCO inf3 su– ). In low-Ci cells, the affinities of CO2 and HCO inf3 su– transport for their substrates were about 5 (CO2 uptake) and 10 (HCO inf3 su– uptake) times higher than in high-Ci cells, while air-grown cells formed an intermediate state. For the same cells, the intracellular accumulated Ci pool reached 18, 32 and 55 mM in high-Ci, air-grown and low-Ci cells, respectively, when measured at 1 mM external Ci. Photosynthetic O2 evolution, maximal CO2 and HCO inf3 su– transport activities, and consequently their relative contribution to photosynthesis, were largely unaffected by the CO2 provided during growth. When the cells were adapted to freshwater medium, results similar to those for artificial seawater were obtained for all CO2 concentrations. Transport studies with high-Ci cells revealed that CO2 and HCO inf3 su– uptake were equally inhibited when CO2 fixation was reduced by the addition of glycolaldehyde. In contrast, in low-Ci cells steady-state CO2 transport was preferably reduced by the same inhibitor. The inhibitor of carbonic anhydrase ethoxyzolamide inhibited both CO2 and HCO inf3 su– uptake as well as O2 evolution in both cell types. In high-Ci cells, the degree of inhibition was similar for HCO inf3 su– transport and O2 evolution with 50% inhibition occurring at around 1 mM ethoxyzolamide. However, the uptake of CO2 was much more sensitive to the inhibitor than HCO inf3 su– transport, with an apparent I50 value of around 250 M ethoxyzolamide for CO2 uptake. The implications of our results are discussed with respect to Ci utilisation in the marine Synechococcus strain.Abbreviations Chl chlorophyll - Ci inorganic carbon (CO2 + HCO inf3 su– ) - CA carbonic anhydrase - CCM CO2-concentrating mechanism - EZA ethoxyzolamide - GA glycolaldehyde - K1/2 concentration required for half-maximal response - Rubisco ribulose-1,5,-bisphosphate carboxylase-oxygenase D.S. is a recipient of a research fellowship from the Deutsche Forschungsgemeinschaft (D.F.G.). In addition, we are grateful to Donald A. Bryant, Department of Molecular and Cell Biology and Center of Biomolecular Structure Function, Pennsylvania State University, USA, for sending us the wild-type strain of Synechococcus PCC7002.  相似文献   

13.
CO2 uptake and transport in leaf mesophyll cells   总被引:1,自引:3,他引:1  
Abstract The acquisition of inorganic carbon for photosynthetic assimilation by leaf mesophyll cells and chloroplasts is discussed with particular reference to membrane permeation of CO2 and HCO?3. Experimental evidence indicates that at the apoplast pH normally experienced by leaf mesophyll cells (pH 6–7) CO2 is the principal species of inorganic carbon taken up. Uptake of HCO?3 may also occur under certain circumstances (i.e. pH 8.5), but its contribution to the net flux of inorganic carbon is small and HCO?3 uptake does not function as a CO2-concentrating mechanism. Similarly, CO2 rather than HCO?3 appears to be the species of inorganic carbon which permeates the chloroplast envelope. In contrast to many C3 aquatic plants and C4 plants, C3 terrestrial plants lack specialized mechanisms for the acquisition and transport of inorganic carbon from the intercellular environment to the site of photosynthetic carboxylation, but rely upon the diffusive uptake of CO2.  相似文献   

14.
The role of extracellular carbonic anhydrase (CAex) for dissolved inorganic carbon (DIC) accumulation in the green alga Chlamydomonas reinhardtii was investigated. It was found that when algal cells were bubbled with ambient air, cell-wall-less mutant cells exhibited the same high photosynthetic affinity for CO2 as wild-type cells despite a 10 times lower activity of CAex. It was also found that the affinity for CO2 was further increased when the total DIC concentration of the algal medium was reduced from that in equilibrium with ambient air to even lower levels. This increased affinity was not correlated with any further increase in the CAex activity. Dextran-bound sulfonamide (DBS. 100 μM bound ligand) completely inhibited the activity of CAex in intact, low-DIC grown, wild-type cells, while photosynthesis at <2 μM CO2(aq) proceeded at a far greater rate than could be maintained by CO2 supplied from the spontaneous dehydration of HCO?3. DBS-inhibition of CAex, during the induction of the DIC-accumulating mechanism in previously high-DIC grown cells, only caused a 50% inhibition of photosynthesis at 10 μM CO2(aq) after 1 h of low-DIC acclimation. It was also shown that 50 μM acetazolamide (AZ) inhibited photosynthesis at low DIC concentrations to a relatively higher degree than DBS, suggesting that AZ inhibited intracellular CA as well. Taken together, these results suggest that low-DIC grown cells of C. reinhardtii have the ability to transport HCO?3 across the plasma membrane in addition to the CAex-mediated, facilitated diffusion and/or transport of CO2. It is also suggested that the relative importance of these two fluxes (CO2 or HCO?3) is dependent on the growth and experimental conditions. Facilitated CO2 uptake seems to be most prevalent, supported by HCO?3-transport under more or less extreme situations, such as a reduction of CO2 to extremely low concentrations, leakage of CAex to the medium as in cultures of cell-wall-less mutant cells or when the activity of CAex has been artificially inhibited.  相似文献   

15.
Mass spectromelry has been used to investigate the uptake of CO2 by two marine diatoms, Phaeodactylum tricornutum and Cyclotella sp. The time course of CO2 formation in the dark after addition of 100 mmol m?3 dissolved inorganic carbon (DIC) to cell suspensions showed that external carbonic anhydrase (CA) was not present in cells of P. tricornutum but was present in Cyclotella sp. In the absence of external CA, or when it was inhibited by 5 mmol m?3 acetazolamide, cells of both species preincubated with 100 mmol m?3 DIG rapidly depleted almost all of the free CO2 (3·2mmol m?31 at pH7·5) from the suspending medium within seconds of illumination and prior to the onset of steady-state photosynthesis. Addition of bovine CA quickly restored the HCO3?–CO2 equilibrium in the medium, indicating that the initial depletion of CO2 resulted from the selective uptake of CO2 rather than uptake of all DIG species. Transfer of cells to the dark caused a rapid increase in the CO2 concentration in the medium, largely as a result of the efflux of unfixed inorganic carbon from the cells. The measured CO2 uptake rates for both species accounted for 50% of the total DIG uptake at HCO3?–CO2 equilibrium, indicating that HCOHCO3? was also being taken up. These results indicate that both Phaeodactylum tricornutum and Cyclotella sp. have the capacity to transport CO2 actively against concentration and pH gradients.  相似文献   

16.
In response to high CO2 environmental variability, green algae, such as Chlamydomonas reinhardtii, have evolved multiple physiological states dictated by external CO2 concentration. Genetic and physiological studies demonstrated that at least three CO2 physiological states, a high CO2 (0.5–5% CO2), a low CO2 (0.03–0.4% CO2) and a very low CO2 (< 0.02% CO2) state, exist in Chlamydomonas. To acclimate in the low and very low CO2 states, Chlamydomonas induces a sophisticated strategy known as a CO2‐concentrating mechanism (CCM) that enables proliferation and survival in these unfavorable CO2 environments. Active uptake of Ci from the environment is a fundamental aspect in the Chlamydomonas CCM, and consists of CO2 and HCO3 uptake systems that play distinct roles in low and very low CO2 acclimation states. LCI1, a putative plasma membrane Ci transporter, has been linked through conditional overexpression to active Ci uptake. However, both the role of LCI1 in various CO2 acclimation states and the species of Ci, HCO3 or CO2, that LCI1 transports remain obscure. Here we report the impact of an LCI1 loss‐of‐function mutant on growth and photosynthesis in different genetic backgrounds at multiple pH values. These studies show that LCI1 appears to be associated with active CO2 uptake in low CO2, especially above air‐level CO2, and that any LCI1 role in very low CO2 is minimal.  相似文献   

17.
Influx and efflux of inorganic carbon in Synechococcus UTEX625   总被引:1,自引:0,他引:1  
The CO2 and HCO3? fluxes in air-grown cells of Synechococcus UTEX 625 al pH 8-0 were measured during dark to light and light to dark transitions using a mass spectrometer and sampling of the reaction medium. The kinetic parameters for initial uptake of CO2 and HCO3? were determined during the initial period of illumination. The development of the internal Ci pool was followed up to steady-state photosynthesis, which occurred when the size of the internal inorganic carbon pool remained apparently constant for a limited period. The experimental procedure confirmed that only CO2 transport occurred with 100mmolm?3 Na+ and that both CO2 and HCO?3 transport occurred with 25molm?3 Na+. The K1/2 values of initial CO2 and HCO3 uptake were 0.7 and 17.2 mmolm?3respectively and agreed closely with the K1/2 values of net CO2 and HCO3? transport during steady-state photosynthesis, which were 0.66 and 17.1 mmolm?3 respectively. Maximum rates of CO2and HCO3? transport were 423 and 219mmolh?1 g?1 Chl. Maximum CO2 efflux observed upon darkening was 118mmolh?1 g?1 Chl. A permeability coefficient of the cell for CO2 of 3 × 10?8 m s?1 was determined from the dark CO2 efflux assuming an internal pH of 7.2 in the dark. Following the initial CO2 uptake in the light, the extracellular [CO2] steadily declined when only CO2 transport was allowed, but an increase in the extracellular [CO2] when HCO3? transport was allowed to proceed suggested that an enhanced CO2 efflux occurred as a result of the larger size of the intracellular Ci pool.  相似文献   

18.
The present work investigated the inorganic carbon (Ci) uptake, fluorescence quenching and photo‐inhibition of the edible cyanobacterium Ge‐Xian‐Mi (Nostoc) to obtain an insight into the role of CO2 concentrating mechanism (CCM) operation in alleviating photo‐inhibition. Ge‐Xian‐Mi used HCO3 in addition to CO2 for its photosynthesis and oxygen evolution was greater than the theoretical rates of CO2 production derived from uncatalysed dehydration of HCO3. Multiple transporters for CO2 and HCO3 operated in air‐grown Ge‐Xian‐Mi. Na+‐dependent HCO3 transport was the primary mode of active Ci uptake and contributed 53–62% of net photosynthetic activity at 250 µmol L?1 KHCO3 and pH 8.0. However, the CO2‐uptake systems and Na+‐independent HCO3 transport played minor roles in Ge‐Xian‐Mi and supported, respectively, 39 and 8% of net photosynthetic activity. The steady‐state fluorescence decreased and the photochemical quenching increased in response to the transport‐mediated accumulation of intracellular Ci. Inorganic carbon transport was a major factor in facilitating quenching during the initial stage and the initial rate of fluorescence quenching in the presence of iodoacetamide, an inhibitor of CO2 fixation, was 88% of control. Both the initial rate and extent of fluorescence quenching increased with increasing external dissolved inorganic carbon (DIC) and saturated at higher than 200 µmol L?1 HCO3. The operation of the CCM in Ge‐Xian‐Mi served as a means of diminishing photodynamic damage by dissipating excess light energy and higher external DIC in the range of 100–10000 µmol L?1 KHCO3 was associated with more severe photo‐inhibition under strong irradiance.  相似文献   

19.
The inorganic carbon (Ci) accumulation and the intracellular location of carbonic anhydrase (CA, EC 4.2.1.1) in the halotolerant unicellular alga Dunaliella salina have been investigated. The rate of HCO3 -dependent O2 evolution was determined by growth conditions. Algae grown under high CO2 conditions (5% CO2 in air, v/v; high Ci cells) had a very low affinity for HCO3? at pH 7.0 and 8.2, whereas algae grown under low CO2 conditions (0.03% CO2 in air; low Ci cells) showed a high affinity for HCO3? at both pH values and were sensitive to Dextran-bound sulfonamide (DBS), an inhibitor of extracellular CA. The photosynthetic rate or HCO4? dependent O2 evolution was always higher at pH 7.0 than at pH 8.2. Ethoxyzolamide (EZ), an inhibitor of total (extacellular plus intracellular) CA activity, strongly inhibited photosynthesis at both pH values. During adaptation from high to low CO2 conditions CA activity increased in chloroplasts in a process dependent on the novo protein synthesis. Carbonic anhydrase activity was found in the supernatant and pellet fractions of chloroplast homogenates. The rate of photosynthesis of chloroplasts from low Ci cells was higher at pH 7.0 than at pH 8.2. The alkalinization of the growth medium, which took place only in the presence of Ci, was partially inhibited by DBS and completely by EZ. We suggest that in D. salina CO2 is the general form of Ci transported across the plasma membrane and the chloroplast envelope and that bicarbonate enters the cell mainly, although not entirely, by an ‘indirect’ mechanism after dehydration to CO2.  相似文献   

20.
The occurrence of an active CO2 transport system and of carbonic anhydrase (CA) has been investigated by mass spectrometry in the marine, unicellular rhodophyte Porphyridium cruentum (S.F. Gray) Naegeli and two marine chlorophytes Nannochloris atomus Butcher and Nannochloris maculata Butcher. Illumination of darkened cells incubated with 100 μM H13CO3? caused a rapid initial drop, followed by a slower decline in the extracellular CO2 concentration. Addition of bovine CA to the medium raised the CO2 concentration by restoring the HCO3?–CO2 equilibrium, indicating that cells were taking up CO2 and were maintaining the CO2 concentration in the medium below its equilibrium value during photosynthesis. Darkening the cell suspensions caused a rapid increase in the extracellular CO2 concentration in all three species, indicating that the cells had accumulated an internal pool of unfixed inorganic carbon. CA activity was detected by monitoring the rate of exchange of 18O from 13C18O2 into water. Exchange of 18O was rapid in darkened cell suspensions, but was not inhibited by 500 μM acetazolamide, a membrane‐impermeable inhibitor of CA, indicating that external CA activity was not present in any of these species. In all three species, the rate of exchange was completely inhibited by 500 μM ethoxyzolamide, a membrane‐permeable CA‐inhibitor, showing that an intracellular CA was present. These results demonstrate that the three species are capable of CO2 uptake by active transport for use as a carbon source for photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号