首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein localization in living cells and tissues using FRET and FLIM   总被引:8,自引:0,他引:8  
Interacting proteins assemble into molecular machines that control cellular homeostasis in living cells. While the in vitro screening methods have the advantage of providing direct access to the genetic information encoding unknown protein partners, they do not allow direct access to interactions of these protein partners in their natural environment inside the living cell. Using wide-field, confocal, or two-photon (2p) fluorescence resonance energy transfer (FRET) microscopy, this information can be obtained from living cells and tissues with nanometer resolution. One of the important conditions for FRET to occur is the overlap of the emission spectrum of the donor with the absorption spectrum of the acceptor. As a result of spectral overlap, the FRET signal is always contaminated by donor emission into the acceptor channel and by the excitation of acceptor molecules by the donor excitation wavelength. Mathematical algorithms are required to correct the spectral bleed-through signal in wide-field, confocal, and two-photon FRET microscopy. In contrast, spectral bleed-through is not an issue in FRET/FLIM imaging because only the donor fluorophore lifetime is measured; also, fluorescence lifetime imaging microscopy (FLIM) measurements are independent of excitation intensity or fluorophore concentration. The combination of FRET and FLIM provides high spatial (nanometer) and temporal (nanosecond) resolution when compared to intensity-based FRET imaging. In this paper, we describe various FRET microscopy techniques and its application to protein-protein interactions.  相似文献   

2.
Quantitative analysis in Förster resonance energy transfer (FRET) experiments in live cells for protein interaction studies is still a challenging issue. In a two-component system (FRET and no FRET donor species), fitting of fluorescence lifetime imaging microscopy (FLIM) data gives the fraction of donor molecules involved in FRET (fD) and the intrinsic transfer efficiency. But when fast FLIM acquisitions are used to monitor dynamic changes in protein-protein interactions at high spatial and temporal resolutions in living cells, photon statistics and time resolution are limited. In this case, fitting procedures are not reliable, even for single lifetime donors. We introduce the new concept of a minimal fraction of donor molecules involved in FRET (mfD), coming from the mathematical minimization of fD. We find particular advantage in the use of mfD because it can be obtained without fitting procedures and it is derived directly from FLIM data. mfD constitutes an interesting quantitative parameter for live cell studies because it is related to the minimal relative concentration of interacting proteins. For multi-lifetime donors, the process of fitting complex fluorescence decays to find at least four reliable lifetimes is a near impossible task. Here, mfD extension for multi-lifetime donors is the only quantitative determinant. We applied this methodology for imaging the interaction between the bromodomains of TAFII250 and acetylated histones H4 in living cells at high resolution. We show the existence of discrete acetylated chromatin domains where the minimal fraction of bromodomain interacting with acetylated H4 oscillates from 0.26 to 0.36 and whose size is smaller than half of one micron cube. We demonstrate that mfD by itself is a useful tool to investigate quantitatively protein interactions in live cells, especially when using fast FRET-FLIM acquisition times.  相似文献   

3.
Trimethylammoniumdiphenylhexatriene (TMA-DPH) is a hydrophobic fluorescent probe with a high quantum yield, which was shown earlier to have specific localization properties in the plasma membranes of whole living cells. This probe was used in aqueous suspensions of L929 mouse fibroblasts, rat mast cells and ReH6 leukemic lymphocytes for determining plasma membrane fluidity from fluorescence stationary anisotropy measurements. TMA-DPH was only partially incorporated into the membranes, most of it remained as a stable form in the buffer solution; the distribution was governed by an equilibrium. The measurements were influenced by unavoidable parasitic scattered light and an appropriate correction is described. A set of precautions for the proper use of the probe is proposed. The results indicated that the fluidity was considerably lower in whole cells than in isolated membranes from the same system.  相似文献   

4.
Imaging molecular interactions in living cells by FRET microscopy   总被引:7,自引:0,他引:7  
F?rster resonance energy transfer (FRET) is applied extensively in all fields of biological research and technology, generally as a 'nanoruler' with a dynamic range corresponding to the intramolecular and intermolecular distances characterizing the molecular structures that regulate cellular function. The complex underlying network of interactions reflects elementary reactions operating under strict spatio-temporal control: binding, conformational transition, covalent modification and transport. FRET imaging provides information about all these molecular processes with high specificity and sensitivity via probes expressed by or introduced from the external medium into the cell, tissue or organism. Current approaches and developments in the field are discussed with emphasis on formalism, probes and technical implementation.  相似文献   

5.
Steady-state and time-resolved fluorescence properties of probes incorporated into living cells give information about the microenvironment near the probe. We have extended studies of spatially averaged fluorescence anisotropy (r) by using an epifluorescence microscope, equipped with excitation and emission polarizers and an image analysis system, to map r of nonoriented fluorophores incorporated into cultured cells. With this imaging system, r for reflected light or glycogen scattering solutions was greater than 0.98. Measurement of r over the range 0.01-0.35 for fluorophores in bulk solution and in thin capillary tubes placed side-by-side gave values equivalent to r measured by cuvette fluorometry. Cytoplasmic viscosity (eta) in Madin-Darby canine kidney (MDCK) cells and Swiss 3T3 fibroblasts was examined from anisotropy images and time-resolved fluorescence decay of the cytoplasmic probes 2,7-bis-carboxyethyl-5 (and 6)-carboxy-fluorescein (BCECF) and indo-1. Nanosecond lifetimes and anisotropy decay were measured using a pulsed light source and gated detector interfaced to the epifluorescence microscope. Anisotropy images of BCECF in MDCK cells revealed two distinct regions of r: one from the cytoplasm (r = 0.144 +/- 0.008) and a second appearing at late times from the interstitial region (r = 0.08 +/- 0.03), representing BCECF trapped beneath the tight junctions. Anisotropy values, taken together with intracellular life-times and the calibration between r and eta/tau f for water/glycerol mixtures, gave eta values of 10-13 cP at 23 degrees C. These values assume little fluorophore binding to intracellular components and are therefore upper limits to cytoplasmic viscosity. These data establish a new methodology to map anisotropy in intact cells to examine the role of fluidity in cellular physiology.  相似文献   

6.
The interaction of activated epidermal growth factor receptor (EGFR) with the Src homology 2 (SH2) domain of the growth-factor-receptor binding protein Grb2 initiates signaling through Ras and mitogen-activated protein kinase (MAP kinase) [1,2]. Activation of EGFRs by ligand also triggers rapid endocytosis of EGF-receptor complexes. To analyze the spatiotemporal regulation of EGFR-Grb2 interactions in living cells, we have combined imaging microscopy with a modified method of measuring fluorescence resonance energy transfer (FRET) on a pixel-by-pixel basis using EGFR fused to cyan fluorescent protein (CFP) and Grb2 fused to yellow fluorescent protein (YFP). Efficient energy transfer between CFP and YFP should only occur if CFP and YFP are less than 50A apart, which requires direct interaction of the EGFR and Grb2 fused to these fluorescent moieties [3]. Stimulation by EGF resulted in the recruitment of Grb2-YFP to cellular compartments that contained EGFR-CFP and a large increase in FRET signal amplitude. In particular, FRET measurements indicated that activated EGFR-CFP interacted with Grb2-YFP in membrane ruffles and endosomes. These results demonstrate that signaling via EGFRs can occur in the endosomal compartment. The work also highlights the potential of FRET microscopy in the study of subcellular compartmentalization of protein-protein interactions in living cells.  相似文献   

7.
Microtubules tightly regulate various cellular activities. Our understanding of microtubules is largely based on experiments using microtubule‐targeting agents, which, however, are insufficient to dissect the dynamic mechanisms of specific microtubule populations, due to their slow effects on the entire pool of microtubules. To overcome this technological limitation, we have used chemo and optogenetics to disassemble specific microtubule subtypes, including tyrosinated microtubules, primary cilia, mitotic spindles, and intercellular bridges, by rapidly recruiting engineered microtubule‐cleaving enzymes onto target microtubules in a reversible manner. Using this approach, we show that acute microtubule disassembly swiftly halts vesicular trafficking and lysosomal dynamics. It also immediately triggers Golgi and ER reorganization and slows the fusion/fission of mitochondria without affecting mitochondrial membrane potential. In addition, cell rigidity is increased after microtubule disruption owing to increased contractile stress fibers. Microtubule disruption furthermore prevents cell division, but does not cause cell death during interphase. Overall, the reported tools facilitate detailed analysis of how microtubules precisely regulate cellular architecture and functions.  相似文献   

8.
Spectroscopic responses of the potentiometric probe 2-(4-(dimethylamino)styryl)-1-methylpyridinium iodide (DASPMI) were investigated in living cells by means of a time- and space-correlated single photon counting technique. Spatially resolved fluorescence decays from single mitochondria or only a very few organelles of XTH2 cells exhibited three-exponential decay kinetics. Based on DASPMI photophysics in a variety of solvents, these lifetimes were attributed to the fluorescence from the locally excited state, intramolecular charge transfer state, and twisted intramolecular charge transfer state. A considerable variation in lifetimes among mitochondria of different morphologies and within single cells was evident, corresponding to high physiological variations within single cells. Considerable shortening of the short lifetime component (τ1) under a high-membrane-potential condition, such as in the presence of ATP and/or substrate, was similar to quenching and a dramatic decrease of lifetime in polar solvents. Under these conditions τ2 and τ3 increased with decreasing contribution. Inhibiting respiration by cyanide resulted in a notable increase in the mean lifetime and a decrease in mitochondrial fluorescence. Increased DASPMI fluorescence under conditions that elevate the mitochondrial membrane potential has been attributed to uptake according to Nernst distributions, delocalization of π-electrons, quenching processes of the methyl pyridinium moiety, and restricted torsional dynamics at the mitochondrial inner membrane. Accordingly, determination of anisotropy in DASPMI-stained mitochondria in living cells revealed a dependence of anisotropy on the membrane potential. The direct influence of the local electric field on the transition dipole moment of the probe and its torsional dynamics monitor changes in mitochondrial energy status within living cells.  相似文献   

9.
Shyu YJ  Suarez CD  Hu CD 《Nature protocols》2008,3(11):1693-1702
Studies of protein interactions have increased our understanding and knowledge of biological processes. Assays that utilize fluorescent proteins, such as fluorescence resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC), have enabled direct visualization of protein interactions in living cells. However, these assays are primarily suitable for a pair of interacting proteins, and methods to visualize and identify multiple protein complexes in vivo are very limited. This protocol describes the recently developed BiFC-FRET assay, which allows visualization of ternary complexes in living cells. We discuss how to design the BiFC-FRET assay on the basis of the validation of BiFC and FRET assays and how to perform transfection experiments for acquisition of fluorescent images for net FRET calculation. We also provide three methods for normalization of the FRET efficiency. The assay employs a two-chromophore and three-filter FRET setup and is applicable to epifluorescence microscopes. The entire protocol takes about 2-3 weeks to complete.  相似文献   

10.
Barrier-to-autointegration factor (BAF) is a conserved 10 kDa DNA-binding protein. BAF interacts with LEM-domain proteins including emerin, LAP2 beta, and MAN1 in the inner nuclear membrane. Using fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP), we compared the mobility of BAF to its partners emerin, LAP2 beta, and MAN1 in living HeLa cells. Like endogenous BAF, GFP-BAF was enriched at the nuclear envelope, and found inside the nucleus and in the cytoplasm during interphase. At every location, FRAP and FLIP analysis showed that GFP-BAF diffused rapidly; the halftimes for recovery in a 0.8 microm square area were 260 ms at the nuclear envelope, and even faster inside the nucleus and in the cytoplasm. GFP-fused emerin, LAP2 beta, and MAN1 were all relatively immobile, with recovery halftimes of about 1 min, for a 2 microm square area. Thus, BAF is dynamic and mobile during interphase, in stark contrast to its nuclear envelope partners. FLIP results further showed that rapidly diffusing cytoplasmic and nuclear pools of GFP-BAF were distinctly regulated, with nuclear GFP-BAF unable to replenish cytoplasmic BAF. Fluorescence resonance energy transfer (FRET) results showed that CFP-BAF binds directly to YFP-emerin at the inner nuclear membrane of living cells. We propose a "touch-and-go" model in which BAF binds emerin frequently but transiently during interphase. These findings contrast with the slow mobility of both GFP-BAF and GFP-emerin during telophase, when they colocalized at the 'core' region of telophase chromosomes at early stages of nuclear assembly.  相似文献   

11.
Time-domain Fluorescence Lifetime Imaging Microscopy (FLIM) is a remarkable tool to monitor the dynamics of fluorophore-tagged protein domains inside living cells. We propose a Wide-Field Multi-Parameter FLIM method (WFMP-FLIM) aimed to monitor continuously living cells under minimum light intensity at a given illumination energy dose. A powerful data analysis technique applied to the WFMP-FLIM data sets allows to optimize the estimation accuracy of physical parameters at very low fluorescence signal levels approaching the lower bound theoretical limit. We demonstrate the efficiency of WFMP-FLIM by presenting two independent and relevant long-term experiments in cell biology: 1) FRET analysis of simultaneously recorded donor and acceptor fluorescence in living HeLa cells and 2) tracking of mitochondrial transport combined with fluorescence lifetime analysis in neuronal processes.  相似文献   

12.
A method for determination of membrane fluidity (microviscosity) in Bacillus subtilis cytoplasmic membrane under in vivo conditions is described. The membranes were labelled with the hydrophobic fluorescent probe 1,6-diphenyl-1,3,5-hexatriene during the exponential phase of growth. Fluorescence anisotropy measurements were carried out in an intact cell suspension having absorbance A as high as 0.2-0.3 (corresponding to a cell concentration of 100-300/nL).  相似文献   

13.
Nearly every major process in a cell is carried out by assemblies of multiple dynamically interacting protein molecules. To study multi-protein interactions within such molecular machineries, we have developed a fluorescence microscopy method called three-chromophore fluorescence resonance energy transfer (3-FRET). This method allows analysis of three mutually dependent energy transfer processes between the fluorescent labels, such as cyan, yellow and monomeric red fluorescent proteins. Here, we describe both theoretical and experimental approaches that discriminate the parallel versus the sequential energy transfer processes in the 3-FRET system. These approaches were established in vitro and in cultured mammalian cells, using chimeric proteins consisting of two or three fluorescent proteins linked together. The 3-FRET microscopy was further applied to the analysis of three-protein interactions in the constitutive and activation-dependent complexes in single endosomal compartments. These data highlight the potential of 3-FRET microscopy in studies of spatial and temporal regulation of signaling processes in living cells.  相似文献   

14.
Genetically encoded reporters based on fluorescence resonance energy transfer (FRET) are being developed for analyzing spatiotemporal dynamics of kinase activities in living cells, as the activities of this class of enzymes are often dynamically regulated and spatially compartmentalized within specific signaling context. Here we describe a general modular design and engineering strategies for the development of activity reporters for kinases of interest, using A-kinase activity reporter (AKAR) as an illustrative example. Discussed here are basic structure of such reporters, design considerations, reporter gene construction, cellular and in vitro characterization. Strategies for improving specificity, dynamic range or sensitivity, reversibility and integrity of the reporter as well as basic methods for live-cell time-lapse imaging using these reporters are summarized. Discussion of using this approach in the study of MAPK cascades is also provided. These FRET-based kinase activity reporters, along with analogous probes based on alternative designs, provide real-time tracking of kinase dynamics with subcellular resolution, which should complement other methods and offer great opportunities to delineate the molecular mechanisms underlying the complex regulation of kinases.  相似文献   

15.
Dual FRET molecular beacons for mRNA detection in living cells   总被引:5,自引:8,他引:5       下载免费PDF全文
The ability to visualize in real-time the expression level and localization of specific endogenous RNAs in living cells can offer tremendous opportunities for biological and disease studies. Here we demonstrate such a capability using a pair of molecular beacons, one with a donor and the other with an acceptor fluorophore that hybridize to adjacent regions on the same mRNA target, resulting in fluorescence resonance energy transfer (FRET). Detection of the FRET signal significantly reduced false positives, leading to sensitive imaging of K-ras and survivin mRNAs in live HDF and MIAPaCa-2 cells. FRET detection gave a ratio of 2.25 of K-ras mRNA expression in stimulated and unstimulated HDF, comparable to the ratio of 1.95 using RT–PCR, and in contrast to the single-beacon result of 1.2. We further revealed intriguing details of K-ras and survivin mRNA localization in living cells. The dual FRET molecular beacons approach provides a novel technique for sensitive RNA detection and quantification in living cells.  相似文献   

16.
Imaging protein phosphorylation by fluorescence in single living cells   总被引:6,自引:0,他引:6  
Protein phosphorylation by intracellular kinases plays one of the most pivotal roles in signaling pathways within cells. To reveal the biological issues related to the kinase proteins, electrophoresis, immunocytochemistry, and in vitro kinase assay have been used. However, these conventional methods do not provide enough information about spatial and temporal dynamics of the signal transduction based on protein phosphorylation and dephosphorylation in living cells. To overcome the limitation for investigating the kinase signaling, we developed genetically encoded fluorescent indicators for visualizing the protein phosphorylation in living cells. Using these indicators, we visualized under a fluorescence microscope when, where, and how the protein kinases are activated in single living cells.  相似文献   

17.
Deregulation of epidermal growth factor receptor (EGFR) signaling has been correlated with the development of a variety of human carcinomas. EGF-induced receptor dimerization and consequent trans- auto-phosphorylation are among the earliest events in signal transduction. Binding of EGF is thought to induce a conformational change that consequently unfolds an ectodomain loop required for dimerization indirectly. It may also induce important allosteric changes in the cytoplasmic domain. Despite extensive knowledge on the physiological activation of EGFR, the effect of targeted therapies on receptor conformation is not known and this particular aspect of receptor function, which can potentially be influenced by drug treatment, may in part explain the heterogeneous clinical response among cancer patients. Here, we used Förster resonance energy transfer/fluorescence lifetime imaging microscopy (FRET/FLIM) combined with two-color single-molecule tracking to study the effect of ATP-competitive small molecule tyrosine kinase inhibitors (TKIs) and phosphatase-based manipulation of EGFR phosphorylation on live cells. The distribution of dimer on-times was fitted to a monoexponential to extract dimer off-rates (koff). Our data show that pretreatment with gefitinib (active conformation binder) stabilizes the EGFR ligand-bound homodimer. Overexpression of EGFR-specific DEP-1 phosphatase was also found to have a stabilizing effect on the homodimer. No significant difference in the koff of the dimer could be detected when an anti-EGFR antibody (425 Snap single-chain variable fragment) that allows for dimerization of ligand-bound receptors, but not phosphorylation, was used. These results suggest that both the conformation of the extracellular domain and phosphorylation status of the receptor are involved in modulating the stability of the dimer. The relative fractions of these two EGFR subpopulations (interacting versus free) were obtained by a fractional-intensity analysis of ensemble FRET/FLIM images. Our combined imaging approach showed that both the fraction and affinity (surrogate of conformation at a single-molecule level) increased after gefitinib pretreatment or DEP-1 phosphatase overexpression. Using an EGFR mutation (I706Q, V948R) that perturbs the ability of EGFR to dimerize intracellularly, we showed that a modest drug-induced increase in the fraction/stability of the EGFR homodimer may have a significant biological impact on the tumor cell’s proliferation potential.  相似文献   

18.
19.
We have developed a system for extending stopped-flow analysis to the kinetics of ligand capture and release by cell surface receptors in living cells. While most mammalian cell lines cannot survive the shear forces associated with turbulent, stopped-flow mixing, we determined that 32D cells, murine hematopoietic precursor cells, can survive rapid mixing, even at the high flow rates necessary to achieve dwell times as short as 10 msec. In addition, 32D cells do not express any member of the ErbB family of receptors, providing a null background for studying this receptor family. We have established a series of stable, monoclonal 32D-derived cell lines that express the epidermal growth factor (EGF) receptor, ErbB2, or a combination of both at different ratios. Using these cell lines and a homogeneous fluorescent derivative of H22Y-mEGF modified with fluorescein at the amino terminus (F-EGF), we have measured association and dissociation of F-EGF with its receptor. Association was measured by following the time-dependent changes in fluorescence anisotropy after rapidly mixing cells at various cell densities with F-EGF at 1-15nM. Dissociation was measured both by chase experiments in which unlabeled EGF was mixed with cells pre-equilibrated with F-EGF or by dilution of cells equilibrated with F-EGF. Comparison of these dissociation experiments demonstrated that little or no ligand-induced dissociation occurs in the chase dissociation experiments. For each cell line, data from a series of association experiments and dilution dissociation experiments were subjected to global analysis using a two independent receptor-class model. Our analysis is consistent with the presence of two distinct receptor populations, even in cells bearing only the EGF receptor. Increasing the relative expression of ErbB2 leads to an increase in the fraction of high affinity class receptors observed, without altering the total number of EGF binding sites.  相似文献   

20.
Matrix metalloproteinases (MMPs) are secretory endopeptidases. They have been associated with invasion by cancer-cell and metastasis. Previous studies have demonstrated that proteolytic activity could be detected using fluorescence resonance energy transfer (FRET) with mutants of GFP. To monitor MMP activity, we constructed vectors that encoded a MMP Substrate Site (MSS) between YFP and CFP. In vitro, YFP-MSS-CFP can be used to detect MMP activity and 1,10-phenathroline inhibition of MMP activity. In living cells, MMPs are secreted proteins and act outside of the cell, and therefore YFP-MSS-CFPdisplay was anchored on the cellular surface to detect extracellular MMP. A pDisplay-YC vector expressing the YFP-MSS-CFPdisplay on the cellular surface was transfected into MCF-7 cells that expressed low levels of MMP. Efficient transfer of energy from excited CFP to YFP within the YFP-MSS-CFPdisplay molecule was observed, and real-time FRET was declined when MCF-7 was incubated with MMP2. However, no such transfer of energy was detected in the YFP-MSS-CFPdisplay expressing MDA-MB 435s cells, in which high secretory MMP2 were expressed. The FRET sensor YFP-MSS-CFPdisplay can sensitively and reliably monitor MMP activation in living cells and can be used for high-throughput screening of MMP inhibitors for anti-cancer treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号