首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The RAVE complex is required for stable assembly of the yeast vacuolar proton-translocating ATPase (V-ATPase) during both biosynthesis of the enzyme and regulated reassembly of disassembled V(1) and V(0) sectors. It is not yet known how RAVE effects V-ATPase assembly. Previous work has shown that V(1) peripheral or stator stalk subunits E and G are critical for binding of RAVE to cytosolic V(1) complexes, suggesting that RAVE may play a role in docking of the V(1) peripheral stalk to the V(0) complex at the membrane. Here we provide evidence for an interaction between the RAVE complex and V(1) subunit C, another subunit that has been assigned to the peripheral stalk. The C subunit is unique in that it is released from both V(1) and V(0) sectors during disassembly, suggesting that subunit C may control the regulated assembly of the V-ATPase. Mutants lacking subunit C have assembly phenotypes resembling that of RAVE mutants. Both are able to assemble V(1)/V(0) complexes in vivo, but these complexes are highly unstable in vitro, and V-ATPase activity is extremely low. We show that in the absence of the RAVE complex, subunit C is not able to stably assemble with the vacuolar ATPase. Our data support a model where RAVE, through its interaction with subunit C, is facilitating V(1) peripheral stalk subunit interactions with V(0) during V-ATPase assembly.  相似文献   

2.
The V-ATPase H subunit (encoded by the VMA13 gene) activates ATP-driven proton pumping in intact V-ATPase complexes and inhibits MgATPase activity in cytosolic V1 sectors (Parra, K. J., Keenan, K. L., and Kane, P. M. (2000) J. Biol. Chem. 275, 21761-21767). Yeast diploids heterozygous for a vma13Delta mutation show the pH- and calcium-dependent conditional lethality characteristic of mutants lacking V-ATPase activity, although they still contain one wild-type copy of VMA13. Vacuolar vesicles from this strain have approximately 50% of the ATPase activity of those from a wild-type diploid but do not support formation of a proton gradient. Compound heterozygotes with a second heterozygous deletion in another V1 subunit gene exhibit improved growth, vacuolar acidification, and ATP-driven proton transport in vacuolar vesicles. In contrast, compound heterozygotes with a second deletion in a Vo subunit grow even more poorly than the vma13Delta heterozygote, have very little vacuolar acidification, and have very low levels of V-ATPase subunits in isolated vacuoles. In addition, cytosolic V1 sectors from this strain and from the strain containing only the heterozygous vma13Delta mutation have elevated MgATPase activity. The results suggest that balancing levels of subunit H with those of other V-ATPase subunits is critical, both for allowing organelle acidification and for preventing unproductive hydrolysis of cytosolic ATP.  相似文献   

3.
The H subunit of the yeast V-ATPase is an extended structure with two relatively independent domains, an N-terminal domain consisting of amino acids 1-348 and a C-terminal domain consisting of amino acids 352-478. We have expressed these two domains independently and together in a yeast strain lacking the H subunit (vma13Delta mutant). The N-terminal domain partially complements the growth defects of the mutant and supports approximately 25% of the wild-type Mg(2+)-dependent ATPase activity in isolated vacuolar vesicles, but surprisingly, this activity is both largely concanamycin-insensitive and uncoupled from proton transport. The C-terminal domain does not complement the growth defects, and supports no ATP hydrolysis or proton transport, even though it is recruited to the vacuolar membrane. Expression of both domains in a vma13Delta strain gives better complementation than either fragment alone and results in higher concanamycin-sensitive ATPase activity and ATP-driven proton pumping than the N-terminal domain alone. Thus, the two domains make complementary contributions to structural and functional coupling of the peripheral V(1) and membrane V(o) sectors of the V-ATPase, but this coupling does not require that they be joined covalently. The N-terminal domain alone is sufficient for activation of ATP hydrolysis in V(1), but the C-terminal domain is essential for proper communication between the V(1) and V(o) sectors.  相似文献   

4.
Mutants of Saccharomyces cerevisiae that lack vacuolar proton-translocating ATPase (V-ATPase) activity show a well-defined set of Vma (stands for vacuolar membrane ATPase activity) phenotypes that include pH-conditional growth, increased calcium sensitivity, and the inability to grow on nonfermentable carbon sources. By screening based on these phenotypes and the inability of vma mutants to accumulate the lysosomotropic dye quinacrine in their vacuoles, five new vma complementation groups (vma41 to vma45) were identified. The VMA45 gene was cloned by complementation of the pH-conditional growth of the vma45-1 mutant strain and shown to be allelic to the previously characterized KEX2 gene, which encodes a serine endoprotease localized to the late Golgi compartment. Both vma45-1 mutants and kex2 null mutants exhibit the full range of Vma growth phenotypes and show no vacuolar accumulation of quinacrine, indicating loss of vacuolar acidification in vivo. However, immunoprecipitation of the V-ATPase from both strains under nondenaturing conditions revealed no defect in assembly of the enzyme, vacuolar vesicles isolated from a kex2 null mutant showed levels of V-ATPase activity and proton pumping comparable to those of wild-type cells, and the V-ATPase complex purified from kex2 null mutants was structurally indistinguishable from that of wild-type cells. The results suggest that kex2 mutations exert an inhibitory effect on the V-ATPase in the intact cell but that the ATPase is present in the mutant strains in a fully assembled state, potentially capable of full enzymatic activity. This is the first time a mutation of this type has been identified.  相似文献   

5.
The subunit architecture of the yeast vacuolar ATPase (V-ATPase) was analyzed by single particle transmission electron microscopy and electrospray ionization (ESI) tandem mass spectrometry. A three-dimensional model of the intact V-ATPase was calculated from two-dimensional projections of the complex at a resolution of 25 angstroms. Images of yeast V-ATPase decorated with monoclonal antibodies against subunits A, E, and G position subunit A within the pseudo-hexagonal arrangement in the V1, the N terminus of subunit G in the V1-V0 interface, and the C terminus of subunit E at the top of the V1 domain. ESI tandem mass spectrometry of yeast V1-ATPase showed that subunits E and G are most easily lost in collision-induced dissociation, consistent with a peripheral location of the subunits. An atomic model of the yeast V-ATPase was generated by fitting of the available x-ray crystal structures into the electron microscopy-derived electron density map. The resulting atomic model of the yeast vacuolar ATPase serves as a framework to help understand the role the peripheral stalk subunits are playing in the regulation of the ATP hydrolysis driven proton pumping activity of the vacuolar ATPase.  相似文献   

6.
The Golgi-localized Ca2+- and Mn2+-transporting ATPase Pmr1 is important for secretory pathway functions. Yeast mutants lacking Pmr1 show growth sensitivity to multiple drugs (amiodarone, wortmannin, sulfometuron methyl, and tunicamycin) and ions (Mn2+ and Ca2+). To find components that function within the same or parallel cellular pathways as Pmr1, we identified genes that shared multiple pmr1 phenotypes. These genes were enriched in functional categories of cellular transport and interaction with cellular environment, and predominantly localize to the endomembrane system. The vacuolar-type H+-transporting ATPase (V-ATPase), rather than other Ca2+ transporters, was found to most closely phenocopy pmr1Delta, including a shared sensitivity to Zn2+ and calcofluor white. However, we show that pmr1Delta mutants maintain normal vacuolar and prevacuolar pH and that the two transporters do not directly influence each other's activity. Together with a synthetic fitness defect of pmr1DeltavmaDelta double mutants, this suggests that Pmr1 and V-ATPase work in parallel toward a common function. Overlaying data sets of growth sensitivities with functional screens (carboxypeptidase secretion and Alcian Blue binding) revealed a common set of genes relating to Golgi function. We conclude that overlapping phenotypes with Pmr1 reveal Golgi-localized functions of the V-ATPase and emphasize the importance of calcium and proton transport in secretory/prevacuolar traffic.  相似文献   

7.
One mechanism of regulating V-ATPase activity in vivo involves reversible dissociation into its component V(1) and V(0) domains, which in yeast occurs in response to glucose depletion. V-ATPase complexes containing the Vph1p isoform of subunit a (VCC) are targeted to the vacuole, and Stv1p-containing complexes (SCC) are targeted to the Golgi. Overexpression of Stv1p results in mistargeting of SCC to the vacuole. We have investigated the role of the a subunit isoform and cellular environment in controlling dissociation using vacuolar protein sorting (vps) mutants that accumulate proteins in either the prevacuolar compartment (PVC) (vps27Delta) or a post-Golgi compartment (PGC) (vps21Delta). Dissociation of both VCC and SCC depends upon cellular environment, with dissociation most complete in the vacuole and least complete in the PVC. The dependence of dissociation on V-ATPase activity was also investigated using both concanamycin and inactivating mutations. Concanamycin partly blocks dissociation of both VCC and SCC in all three compartments, with inhibition generally greater for SCC than VCC. The R735Q mutant of Vph1p results in loss of both ATPase and proton transport, whereas the R735K mutant lacks proton transport but has 10% of wild type ATPase activity. For VCC in the vacuole, dissociation is completely blocked for the R735Q but not the R735K mutant. Significant dissociation of VCC is observed for both mutants in the PVC and PGC, indicating that V-ATPase activity is not absolutely required for dissociation. Similar results were obtained for SCC, although dissociation of SCC is again generally more sensitive to activity than VCC. These results suggest that the cellular environment is important both in controlling in vivo dissociation of the V-ATPase and the dependence of this process on catalytic activity. Moreover, catalytic activity is not absolutely required for V-ATPase dissociation.  相似文献   

8.
Vacuolar proton-translocating ATPase pumps consist of two domains, V(1) and V(o). Subunit d is a component of V(o) located in a central stalk that rotates during catalysis. By generating mutations, we showed that subunit d couples ATP hydrolysis and proton transport. The mutation F94A strongly uncoupled the enzyme, preventing proton transport but not ATPase activity. C-terminal mutations changed coupling as well; ATPase activity was decreased by 59-72%, whereas proton transport was not measurable (E328A) or was moderately reduced (E317A and C329A). Except for W325A, which had low levels of V(1)V(o), mutations allowed wild-type assembly regardless of the fact that subunits E and d were reduced at the membrane. N- and C-terminal deletions of various lengths were inhibitory and gradually destabilized subunit d, limiting V(1)V(o) formation. Both N and C terminus were required for V(o) assembly. The N-terminal truncation 2-19Delta prevented V(1)V(o) formation, although subunit d was available. The C terminus was required for retention of subunits E and d at the membrane. In addition, the C terminus of its bacterial homolog (subunit C from T. thermophilus) stabilized the yeast subunit d mutant 310-345Delta and allowed assembly of the rotor structure with subunits A and B. Structural features conserved between bacterial and eukaryotic subunit d and the significance of domain 3 for vacuolar proton-translocating ATPase function are discussed.  相似文献   

9.
The vacuoles play important roles in cellular homeostasis and their functions include the digestion of cytoplasmic material and organelles derived from autophagy. Conserved nutrient signaling pathways regulate vacuolar function and autophagy, ensuring normal cell and organismal development and aging. Recent evidence implicates sphingolipids in the modulation of these processes, but the impact of ceramide signaling on vacuolar dynamics and autophagy remains largely unknown. Here, we show that yeast cells lacking Isc1p, an orthologue of mammalian neutral sphingomyelinase type 2, exhibit vacuolar fragmentation and dysfunctions, namely decreased Pep4p-mediated proteolysis and V-ATPase activity, which impairs vacuolar acidification. Moreover, these phenotypes are suppressed by downregulation of the ceramide-activated protein phosphatase Sit4p. The isc1Δ cells also exhibit defective Cvt and vesicular trafficking in a Sit4p-dependent manner, ultimately contributing to a reduced autophagic flux. Importantly, these phenotypes are also suppressed by downregulation of the nutrient signaling kinase TORC1, which is known to inhibit Sit4p and autophagy, or Sch9p. These results support a model in which Sit4p functions downstream of Isc1p in a TORC1-independent, ceramide-dependent signaling branch that impairs vacuolar function and vesicular trafficking, leading to autophagic defects in yeast.  相似文献   

10.
The yeast cwh36Delta mutant was identified in a screen for yeast mutants exhibiting a Vma(-) phenotype suggestive of loss of vacuolar proton-translocating ATPase (V-ATPase) activity. The mutation disrupts two genes, CWH36 and a recently identified open reading frame on the opposite strand, YCL005W-A. We demonstrate that disruption of YCL005W-A is entirely responsible for the Vma(-) growth phenotype of the cwh36Delta mutant. YCL005W-A encodes a homolog of proteins associated with the Manduca sexta and bovine chromaffin granule V-ATPase. The functional significance of these proteins for V-ATPase activity had not been tested, but we show that the protein encoded by YCL005W-A, which we call Vma9p, is essential for V-ATPase activity in yeast. Vma9p is localized to the vacuole but fails to reach the vacuole in a mutant lacking one of the integral membrane subunits of the V-ATPase. Vma9p is associated with the yeast V-ATPase complex in vacuolar membranes, as demonstrated by co-immunoprecipitation with known V-ATPase subunits and glycerol gradient fractionation of solubilized vacuolar membranes. Based on this evidence, we propose that Vma9p is a genuine subunit of the yeast V-ATPase and that e subunits may be a functionally essential part of all eukaryotic V-ATPases.  相似文献   

11.
The vacuolar H(+)-ATPase (V-ATPase) along with ion channels and transporters maintains vacuolar pH. V-ATPase ATP hydrolysis is coupled with proton transport and establishes an electrochemical gradient between the cytosol and vacuolar lumen for coupled transport of metabolites. Btn1p, the yeast homolog to human CLN3 that is defective in Batten disease, localizes to the vacuole. We previously reported that Btn1p is required for vacuolar pH maintenance and ATP-dependent vacuolar arginine transport. We report that extracellular pH alters both V-ATPase activity and proton transport into the vacuole of wild-type Saccharomyces cerevisiae. V-ATPase activity is modulated through the assembly and disassembly of the V(0) and V(1) V-ATPase subunits located in the vacuolar membrane and on the cytosolic side of the vacuolar membrane, respectively. V-ATPase assembly is increased in yeast cells grown in high extracellular pH. In addition, at elevated extracellular pH, S. cerevisiae lacking BTN1 (btn1-Delta), have decreased V-ATPase activity while proton transport into the vacuole remains similar to that for wild type. Thus, coupling of V-ATPase activity and proton transport in btn1-Delta is altered. We show that down-regulation of V-ATPase activity compensates the vacuolar pH imbalance for btn1-Delta at early growth phases. We therefore propose that Btn1p is required for tight regulation of vacuolar pH to maintain the vacuolar luminal content and optimal activity of this organelle and that disruption in Btn1p function leads to a modulation of V-ATPase activity to maintain cellular pH homeostasis and vacuolar luminal content.  相似文献   

12.
In plant cells, vacuolar matrix proteins are separated from the secretory proteins at the Golgi complex for transport to the vacuoles. To investigate the involvement of vacuolar-type ATPase (V-ATPase) in the vacuolar targeting of soluble proteins, we analyzed the effects of bafilomycin A1 and concanamycin A on the transport of vacuolar protein precursors in tobacco cells. Low concentrations of these inhibitors caused the missorting of several vacuolar protein precursors; sorting was more sensitive to concanamycin A than to bafilomycin A1. Secretion of soluble proteins from tobacco cells was also inhibited by bafilomycin A1 and concanamycin A. We next analyzed the subcellular localization of V-ATPase. V-ATPase was found in a wide variety of endomembrane organelles. Both ATPase activity and ATP-dependent proton-pumping activity in the Golgi-enriched fraction were more sensitive to concanamycin A than to bafilomycin A1, whereas these activities in the tonoplast fraction were almost equally sensitive to both reagents. Our observations indicate that the V-ATPase in the organelle that was recovered in the Golgi-enriched fraction is required for the transport of vacuolar protein precursors and that this V-ATPase is distinguishable from the tonoplast-associated V-ATPase.  相似文献   

13.
To investigate the role of the prevacuolar secretion pathway in the trafficking of vacuolar proteins in Candida albicans, the C. albicans homolog of the Saccharomyces cerevisiae vacuolar protein sorting gene VPS4 was cloned and analyzed. Candida albicans VPS4 encodes a deduced AAA-type ATPase that is 75.6% similar to S. cerevisiae Vps4p, and plasmids bearing C. albicans VPS4 complemented the abnormal vacuolar morphology and carboxypeptidase missorting in S. cerevisiae vps4 null mutants. Candida albicans vps4Delta null mutants displayed a characteristic class E vacuolar morphology and multilamellar structures consistent with an aberrant prevacuolar compartment. The C. albicans vps4Delta mutant degraded more extracellular bovine serum albumin than did wild-type strains, which implied that this mutant secreted more extracellular protease activity. These phenotypes were complemented when a wild-type copy of VPS4 was reintroduced into its proper locus. Using a series of protease inhibitors, the origin of this extracellular protease activity was identified as a serine protease, and genetic analyses using a C. albicans vps4Deltaprc1Delta mutant identified this missorted vacuolar protease as carboxypeptidase Y. Unexpectedly, C. albicans Sap2p was not detected in culture supernatants of the vps4Delta mutants. These results indicate that C. albicans VPS4 is required for vacuolar biogenesis and proper sorting of vacuolar proteins.  相似文献   

14.
Sambade M  Alba M  Smardon AM  West RW  Kane PM 《Genetics》2005,170(4):1539-1551
V-ATPases acidify multiple organelles, and yeast mutants lacking V-ATPase activity exhibit a distinctive set of growth defects. To better understand the requirements for organelle acidification and the basis of these growth phenotypes, approximately 4700 yeast deletion mutants were screened for growth defects at pH 7.5 in 60 mm CaCl(2). In addition to 13 of 16 mutants lacking known V-ATPase subunits or assembly factors, 50 additional mutants were identified. Sixteen of these also grew poorly in nonfermentable carbon sources, like the known V-ATPase mutants, and were analyzed further. The cwh36Delta mutant exhibited the strongest phenotype; this mutation proved to disrupt a previously uncharacterized V-ATPase subunit. A small subset of the mutations implicated in vacuolar protein sorting, vps34Delta, vps15Delta, vps45Delta, and vps16Delta, caused both Vma- growth phenotypes and lower V-ATPase activity in isolated vacuoles, as did the shp1Delta mutation, implicated in both protein sorting and regulation of the Glc7p protein phosphatase. These proteins may regulate V-ATPase targeting and/or activity. Eight mutants showed a Vma- growth phenotype but no apparent defect in vacuolar acidification. Like V-ATPase-deficient mutants, most of these mutants rely on calcineurin for growth, particularly at high pH. A requirement for constitutive calcineurin activation may be the predominant physiological basis of the Vma- growth phenotype.  相似文献   

15.
The lumen of endosomal organelles becomes increasingly acidic when going from the cell surface to lysosomes. Luminal pH thereby regulates important processes such as the release of internalized ligands from their receptor or the activation of lysosomal enzymes. The main player in endosomal acidification is the vacuolar ATPase (V-ATPase), a multi-subunit transmembrane complex that pumps protons from the cytoplasm to the lumen of organelles, or to the outside of the cell. The active V-ATPase is composed of two multi-subunit domains, the transmembrane V(0) and the cytoplasmic V(1). Here we found that the ratio of membrane associated V(1)/Vo varies along the endocytic pathway, the relative abundance of V(1) being higher on late endosomes than on early endosomes, providing an explanation for the higher acidity of late endosomes. We also found that all membrane-bound V-ATPase subunits were associated with detergent resistant membranes (DRM) isolated from late endosomes, raising the possibility that association with lipid-raft like domains also plays a role in regulating the activity of the proton pump. In support of this, we found that treatment of cells with U18666A, a drug that leads to the accumulation of cholesterol in late endosomes, affected acidification of late endosome. Altogether our findings indicate that the activity of the vATPase in the endocytic pathway is regulated both by reversible association/dissociation and the interaction with specific lipid environments.  相似文献   

16.
Yeast mutants lacking vacuolar proton-translocating ATPase (V-ATPase) subunits (vma mutants) were sensitive to several different oxidants in a recent genomic screen (Thorpe, G. W., Fong, C. S., Alic, N., Higgins, V. J., and Dawes, I. W. (2004) Proc. Natl. Acad. Sci. U. S. A. 101, 6564-6569). We confirmed that mutants lacking a V(1) subunit (vma2Delta), V(o) subunit, or either of the two V(o) a subunit isoforms are acutely sensitive to H(2)O(2) and more sensitive to menadione and diamide than wild-type cells. The vma2Delta mutant contains elevated levels of reactive oxygen species and high levels of oxidative protein damage even in the absence of an applied oxidant, suggesting an endogenous source of oxidative stress. vma2Delta mutants lacking mitochondrial DNA showed neither improved growth nor decreased sensitivity to peroxide, excluding respiration as the major source of the endogenous reactive oxygen species in the mutant. Double mutants lacking both VMA2 and components of the major cytosolic defense systems exhibited synthetic sensitivity to H(2)O(2). Microarray analysis comparing wild-type and vma2Delta mutant cells grown at pH 5, permissive conditions for the vma2Delta mutant, indicated high level up-regulation of several iron uptake and metabolism genes that are part of the Aft1/Aft2 regulon. TSA2, which encodes an isoform of the cytosolic thioredoxin peroxidase, was strongly induced, but other oxidative stress defense systems were not induced. The results indicate that V-ATPase activity helps to protect cells from endogenous oxidative stress.  相似文献   

17.
Vacuolar proton-translocating ATPase (V-ATPase) is a central regulator of cellular pH homeostasis, and inactivation of all V-ATPase function has been shown to prevent infectivity in Candida albicans. V-ATPase subunit a of the Vo domain (Voa) is present as two fungal isoforms: Stv1p (Golgi) and Vph1p (vacuole). To delineate the individual contribution of Stv1p and Vph1p to C. albicans physiology, we created stv1Δ/Δ and vph1Δ/Δ mutants and compared them to the corresponding reintegrant strains (stv1Δ/ΔR and vph1Δ/ΔR). V-ATPase activity, vacuolar physiology, and in vitro virulence-related phenotypes were unaffected in the stv1Δ/Δ mutant. The vph1Δ/Δ mutant exhibited defective V1Vo assembly and a 90% reduction in concanamycin A-sensitive ATPase activity and proton transport in purified vacuolar membranes, suggesting that the Vph1p isoform is essential for vacuolar V-ATPase activity in C. albicans. The vph1Δ/Δ cells also had abnormal endocytosis and vacuolar morphology and an alkalinized vacuolar lumen (pHvph1Δ/Δ = 6.8 versus pHvph1Δ/ΔR = 5.8) in both yeast cells and hyphae. Secreted protease and lipase activities were significantly reduced, and M199-induced filamentation was impaired in the vph1Δ/Δ mutant. However, the vph1Δ/Δ cells remained competent for filamentation induced by Spider media and YPD, 10% FCS, and biofilm formation and macrophage killing were unaffected in vitro. These studies suggest that different virulence mechanisms differentially rely on acidified vacuoles and that the loss of both vacuolar (Vph1p) and non-vacuolar (Stv1p) V-ATPase activity is necessary to affect in vitro virulence-related phenotypes. As a determinant of C. albicans pathogenesis, vacuolar pH alone may prove less critical than originally assumed.  相似文献   

18.
The vesicle population beneath the apical plasma membrane of the most superficial urothelial cells is heterogeneous and their traffic and activity seems to be dependent on their membrane composition and inversely related to their development stage. Although the uroplakins, the major proteins of the highly differentiated urinary bladder umbrella cells, can maintain the bladder permeability barrier, the role of the membrane lipid composition still remains elusive. We have recently reported the lipid induced leakage of the vesicular content as a path of diversion in the degradative pathway. To extend the knowledge on how the lipid environment can affect vesicular acidification and membrane traffic through the regulation of the V-ATPase (vacuolar ATPase), we studied the proton translocation and ATP hydrolytic capacity of endocytic vesicles having different lipid composition obtained from rats fed with 18:1n-9 and 18:2n-6 fatty acid enriched diets. The proton translocation rate decreases while the enzymatic activity increases in oleic acid-rich vesicles (OAV), revealing an uncoupled state of V-ATPase complex which was further demonstrated by Western Blotting. A decrease of the very long fatty acyl chains length (C20–C24) and increase of the C16–C18 chains length in OAV membranes was observed, concomitant with increased hydrolytic activity of the V-ATPase. This response of the urothelial V-ATPase was similar to that of the Na–K ATPase when the activity of the latter was probed in reconstituted systems with lipids bearing different lengths of fatty acid chains. The studies describe for the first time a lipid composition-dependent activity of the urothelial V-ATPase, identified by immunofluorescence microscopy which is related to an effective coupling between the channel proton flux and ATP hydrolysis.  相似文献   

19.
V-ATPases are multimeric proton pumps. The 100-kDa "a" subunit is encoded by four isoforms (a1-a4) in mammals and two (Vph1p and Stv1p) in yeast. a3 is enriched in osteoclasts and is essential for bone resorption, whereas a4 is expressed in the distal nephron and acidifies urine. Mutations in human a3 and a4 result in osteopetrosis and distal renal tubular acidosis, respectively. Human a3 (G405R and R444L) and a4 (P524L and G820R) mutations were recreated in the yeast ortholog Vph1p, a3 (G424R and R462L), and a4 (W520L and G812R). Mutations in a3 resulted in wild type vacuolar acidification and growth on media containing 4 mM ZnCl2, 200 mM CaCl2, or buffered to pH 7.5 with V-ATPase hydrolytic and pumping activity decreased by 30-35%. Immunoblots confirmed wild type levels for V-ATPase a, A, and B subunits on vacuolar membranes. a4 G812R resulted in defective growth on selective media with V-ATPase hydrolytic and pumping activity decreased by 83-85% yet with wild type levels of a, A, and B subunits on vacuolar membranes. The a4 W520L mutation had defective growth on selective media with no detectable V-ATPase activity and reduced expression of a, A, and B subunits. The a4 W520L mutation phenotypes were dominant negative, as overexpression of wild type yeast a isoforms, Vph1p, or Stv1p, did not restore growth. However, deletion of endoplasmic reticulum assembly factors (Vma12p, Vma21p, and Vma22p) partially restored a and B expression. That a4 W520L affects both Vo and V1 subunits is a unique phenotype for any V-ATPase subunit mutation and supports the concerted pathway for V-ATPase assembly in vivo.  相似文献   

20.
The vacuolar (H+)-ATPases (V-ATPases) are multisubunit complexes responsible for ATP-dependent proton transport across both intracellular and plasma membranes. The V-ATPases are composed of a peripheral domain (V1) that hydrolyzes ATP and an integral domain (V0) that conducts protons. Dissociation of V1 and V0 is an important mechanism of controlling V-ATPase activity in vivo. The crystal structure of subunit C of the V-ATPase reveals two globular domains connected by a flexible linker (Drory, O., Frolow, F., and Nelson, N. (2004) EMBO Rep. 5, 1-5). Subunit C is unique in being released from both V1 and V0 upon in vivo dissociation. To localize subunit C within the V-ATPase complex, unique cysteine residues were introduced into 25 structurally defined sites within the yeast C subunit and used as sites of attachment of the photoactivated sulfhydryl reagent 4-(N-maleimido)benzophenone (MBP). Analysis of photocross-linked products by Western blot reveals that subunit E (part of V1) is in close proximity to both the head domain (residues 166-263) and foot domain (residues 1-151 and 287-392) of subunit C. By contrast, subunit G (also part of V1) shows cross-linking to only the head domain whereas subunit a (part of V0) shows cross-linking to only the foot domain. The localization of subunit C to the interface of the V1 and V0 domains is consistent with a role for this subunit in controlling assembly of the V-ATPase complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号