首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Here, we review recent studies that suggest that Notch signaling has two roles during neural crest development: first in establishing the neural crest domain within the ectoderm via lateral induction and subsequently in diversifying the fates of cells that arise from the neural crest via lateral inhibition. The first of these roles, specification of neural crest via lateral induction, has been explored primarily in the cranial neural folds from which the cranial neural crest arises. Evidence for such a role has thus far only been obtained from chick and frog; results from these two species differ, but share the feature that Notch signaling regulates genes that are expressed by cranial neural crest through effects on expression of Bmp family members. The second of these roles, diversification of neural crest progeny via lateral inhibition, has been identified thus far only in trunk neural crest. Evidence from several species suggests that Notch-mediated lateral inhibition functions in multiple episodes in this context, in each case inhibiting neurogenesis. In the 'standard' mode of lateral inhibition, Notch promotes proliferation and in the 'instructive' mode, it promotes specific secondary fates, including cell death or glial differentiation. We raise the possibility that a single molecular mechanism, inhibition of so-called proneural bHLH genes, underlies both modes of lateral inhibition mediated by Notch signaling.  相似文献   

3.
4.
Many of the major pathways that govern early development in higher animals have been identified in cnidarians, including the Wnt, TGFbeta and tyrosine kinase signaling pathways. We show here that Notch signaling is also conserved in these early metazoans. We describe the Hydra Notch receptor (HvNotch) and provide evidence for the conservation of the Notch signaling mode via regulated intramembrane proteolysis. We observed that nuclear translocation of the Notch intracellular domain (NID) was inhibited by the synthetic gamma-secretase inhibitor DAPT. Moreover, DAPT treatment of hydra polyps caused distinct differentiation defects in their interstitial stem cell lineage. Nerve cell differentiation proceeded normally but post-mitotic nematocyte differentiation was dramatically reduced. Early female germ cell differentiation was inhibited before exit from mitosis. From these results we conclude that gamma-secretase activity and presumably Notch signaling are required to control differentiation events in the interstitial cell lineage of Hydra.  相似文献   

5.
Notch信号通路是在进化上非常保守的单次跨膜信号受体蛋白家族,广泛表达于脊椎动物与无脊椎动物中,主要由Notch受体、Notch配体及细胞内效应分子CSL蛋白组成。Notch信号通路是多种组织和器官早期发育所必需的细胞间调节信号,参与对细胞增殖、分化、凋亡的调控。近年的研究表明,Notch信号通路参与肺纤维化的发生发展,阻断或激活这一途径可以影响肺纤维化的进展,本文就Notch信号通路与肺纤维化的关系的研究进展做一综述。  相似文献   

6.
7.
杨曦  陈鹏  蒋霞  潘敏慧  鲁成 《昆虫学报》2021,64(2):250-258
Notch 信号通路由 Notch 受体、Notch 配体(DSL 蛋白)、CSL[C promoter binding factor-1(CBF1),Suppressor of hairless(Su(H)),Lag-1]转录因子、其他效应子和Notch调节分子构成,在动物组织的发育和器官的细胞命运决定中起着基础性的...  相似文献   

8.
Notch receptor-mediated signaling is an evolutionarily conserved pathway that regulates diverse developmental processes and its dysregulation has been implicated in a variety of developmental disorders and cancers. Notch functions in these processes by activating expression of its target genes. Septin 4 (SEPT4) is a polymerizing GTP-binding protein that serves as scaffold for diverse molecules and is involved in cell proliferation and apoptosis. After activation of the Notch signal, the expression of SEPT4 is up-regulated and cell proliferation is inhibited. When the Notch signal is inhibited by the CSL (CBF1/Su(H)/Lag-1)-binding-domain-negative Mastermind-like protein 1, the expression of SEPT4 is down-regulated, proliferation and colony formation of cells are promoted, but cell adhesion ability is decreased. Nevertheless, the SEPT4 expression is not affected after knock-down of CSL. Meanwhile, if SEPT4 activity is inhibited through RNA interference, the protein level and activity of NOTCH1 remains unchanged, but cell proliferation is dysregulated. This indicates that SEPT4 is a Notch target gene. This relationship between Notch signaling pathway and SEPT4 offers a potential basis for further study of developmental control and carcinogenesis.  相似文献   

9.
Originally discovered nearly a century ago, the Notch signaling pathway is critical for virtually all developmental programs and modulates an astounding variety of pathogenic processes. The DSL (Delta, Serrate, LAG-2 family) proteins have long been considered canonical activators of the core Notch pathway. More recently, a wide and expanding network of non-canonical extracellular factors has also been shown to modulate Notch signaling, conferring newly appreciated complexity to this evolutionarily conserved signal transduction system. Here, I review current concepts in Notch signaling, with a focus on work from the last decade elucidating novel extracellular proteins that up- or down-regulate signal potency.  相似文献   

10.
Notch receptor signaling controls cell-fate specification, self-renewal, differentiation, proliferation and apoptosis throughout development and regeneration in all animal species studied to date. Its dysfunction causes several developmental defects and diseases in the adult. A key feature of Notch signaling is its remarkable cell-context dependency. In this review, we summarize the influences of the cellular context that regulate Notch activity and propose a model how the interplay between the cell-intrinsically established chromatin state and the cell-extrinsic signals that modify chromatin may select for Notch target accessibility and activation in different cellular contexts.  相似文献   

11.
12.
13.
14.
Gastrointestinal (GI) carcinoid cells secrete multiple neuroendocrine (NE) markers and hormones including 5-hydroxytryptamine and chromogranin A. We were interested in determining whether activation of the Notch1 signal transduction pathway in carcinoid cells could modulate production of NE markers and hormones. Human pancreatic carcinoid cells (BON cells) were stably transduced with an estrogen-inducible Notch1 construct, creating BON-NIER cells. In the present study, we found that Notch1 is not detectable in human GI carcinoid tumor cells. The induction of Notch1 in human BON carcinoid cells led to high levels of functional Notch1, as measured by CBF-1 binding studies, resulting in activation of the Notch1 pathway. Similar to its developmental role in the GI tract, Notch1 pathway activation led to an increase in hairy enhancer of split 1 (HES-1) protein and a concomitant silencing of human Notch1/HES-1/achaete-scute homolog 1. Furthermore, Notch1 activation led to a significant reduction in NE markers. Most interestingly, activation of the Notch1 pathway caused a significant reduction in 5-hydroxytryptamine, an important bioactive hormone in carcinoid syndrome. In addition, persistent activation of the Notch1 pathway in BON cells led to a notable reduction in cellular proliferation. These results demonstrate that the Notch1 pathway, which plays a critical role in the differentiation of enteroendocrine cells, is highly conserved in the gut. Therefore, manipulation of the Notch1 signaling pathway may be useful for expanding the targets for therapeutic and palliative treatment of patients with carcinoid tumors.  相似文献   

15.
In cochlear development, the Notch signaling pathway is required for both the early prosensory phase and a later lateral inhibition phase. While it is known that Hes genes are important downstream mediators of Notch function in lateral inhibition, it is not known what genes function as mediators of the early prosensory function of Notch. We report that two members of the Hes-related gene family, Hesr1 and Hesr2, are expressed in the developing cochlea at a time and place that makes them excellent candidates as downstream mediators of Notch during prosensory specification. We also show that treatment of cochlear explant cultures at the time of prosensory specification with a small-molecule inhibitor of the Notch pathway mimics the results of conditional Jag1 deletion. This treatment also reduces Hesr1 and Hesr2 expression by as much as 80%. These results support the hypothesis that Hesr1 and Hesr2 are the downstream mediators of the prosensory function of Notch in early cochlear development.  相似文献   

16.
17.
Aberrant Notch signaling and Ras pathway had been highlighted a potential role for in human cancers. Yet, relatively little was known about the roles of wild type Notch signaling and Ras in human hepatocarcinogenesis. The aim of this study was to investigate the roles of Ras-Notch signaling cooperation in hepatic cells transformation and proliferation. Hepatocellular carcinoma specimens from 25 patients were analyzed for Notch-1, Ras and Late Simian Virus 40 Factor (LSF) expression using immunohistochemistry. Results showed that Notch-1(76%, 19/25, P < 0.0001), Ras (40%, 10/25, P < 0.01) and LSF (84%, 21/25, P < 0.0001) were significantly up-regulated in hepatocellular carcinoma compared with non-cancer samples. The correlations between the expression and the biological effects of Notch1 and Ras were analyzed by genetic and pharmacological methods. Constitutively active Notch1 alone failed to transform immortalized L02 cells in vivo, it synergized with the Ras pathway to promote hepatic cells transformation. However, their cooperation increased the levels of LSF mRNA and protein, which stimulates L02 cells proliferation. These results exhibited highly aggressive progression, suggesting that Notch-Ras cooperation maybe lead to poor prognosis. Thus, combining the inhibition of the two pathways provided an attractive avenue for therapeutic intervention to overcome this advanced disease.  相似文献   

18.
19.
ALK1 signaling inhibits angiogenesis by cooperating with the Notch pathway   总被引:4,自引:0,他引:4  
Activin receptor-like kinase 1 (ALK1) is an endothelial-specific member of the TGF-β/BMP receptor family that is inactivated in patients with hereditary hemorrhagic telangiectasia (HHT). How ALK1 signaling regulates angiogenesis remains incompletely understood. Here we show that ALK1 inhibits angiogenesis by cooperating with the Notch pathway. Blocking Alk1 signaling during postnatal development in mice leads to retinal hypervascularization and the appearance of arteriovenous malformations (AVMs). Combined blockade of Alk1 and Notch signaling further exacerbates hypervascularization, whereas activation of Alk1 by its high-affinity ligand BMP9 rescues hypersprouting induced by Notch inhibition. Mechanistically, ALK1-dependent SMAD signaling synergizes with activated Notch in stalk cells to induce expression of the Notch targets HEY1 and HEY2, thereby repressing VEGF signaling, tip cell formation, and endothelial sprouting. Taken together, these results uncover a direct link between ALK1 and Notch signaling during vascular morphogenesis that may be relevant to the pathogenesis of HHT vascular lesions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号