首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gating-modifier toxins inhibit voltage-gated ion channels by binding the voltage sensors (VS) and altering the energetics of voltage-dependent gating. These toxins are thought to gain access to the VS via the membrane (i.e., by partitioning from water into the membrane before binding the VS). We used serial multiscale molecular-dynamics (MD) simulations, via a combination of coarse-grained (CG) and atomistic (AT) simulations, to study how the toxin VSTx1, which inhibits the archeabacterial voltage-gated potassium channel KvAP, interacts with an isolated membrane-embedded VS domain. In the CG simulations, VSTx1, which was initially located in water, partitioned into the headgroup/water interface of the lipid bilayer before binding the VS. The CG configurations were used to generate AT representations of the system, which were subjected to AT-MD to further evaluate the stability of the complex and refine the predicted VS/toxin interface. VSTx1 interacted with a binding site on the VS formed by the C-terminus of S1, the S1-S2 linker, and the N-terminus of S4. The predicted VS/toxin interactions are suggestive of toxin-mediated perturbations of the interaction between the VS and the pore domain of Kv channels, and of the membrane. Our simulations support a membrane-access mechanism of inhibition of Kv channels by VS toxins. Overall, the results show that serial multiscale MD simulations may be used to model a two-stage process of protein-bilayer and protein-protein interactions within a membrane.  相似文献   

2.
Voltage-gated ion channels are responsible for transmitting electrochemical signals in both excitable and non-excitable cells. Structural studies of voltage-gated potassium and sodium channels by X-ray crystallography have revealed atomic details on their voltage-sensor domains (VSDs) and pore domains, and were put in context of disparate mechanistic views on the voltage-driven conformational changes in these proteins. Functional investigation of voltage-gated channels in membranes, however, showcased a mechanism of lipid-dependent gating for voltage-gated channels, suggesting that the lipids play an indispensible and critical role in the proper gating of many of these channels. Structure determination of membrane-embedded voltage-gated ion channels appears to be the next frontier in fully addressing the mechanism by which the VSDs control channel opening. Currently electron crystallography is the only structural biology method in which a membrane protein of interest is crystallized within a complete lipid-bilayer mimicking the native environment of a biological membrane. At a sufficiently high resolution, an electron crystallographic structure could reveal lipids, the channel and their mutual interactions at the atomic level. Electron crystallography is therefore a promising avenue toward understanding how lipids modulate channel activation through close association with the VSDs.  相似文献   

3.
The VDAC channel of the mitochondrial outer membrane is voltage-gated like the larger, more complex voltage-gated channels of the plasma membrane. However, VDAC is a low molecular weight (30 kDa), abundant protein, which is readily purified and reconstituted, making it an ideal system for analyzing the molecular basis for ion selectivity and voltage-gating. We have probed the VDAC channel by subjecting the cloned yeast (S. cerevisiae) VDAC gene to site-directed mutagenesis and introducing the resulting mutant channels into planar bilayers to detect the effects of specific sequence changes on channel properties. This approach has allowed us to formulate and test a model of the open state structure of the VDAC channel. Now we have applied the same approach to analyzing the structure of the channel's low-conducting "closed state" (essentially closed to important metabolites). We have identified protein domains forming the wall of the closed conformation and domains that seem to be removed from the wall of the pore during channel closure. The latter can explain the reduction in pore diameter and volume and the dramatically altered channel selectivity resulting from the channel closure. This process would make a natural coupling between motion of the sensor and channel gating.  相似文献   

4.
Voltage-sensor domains (VSDs) in voltage-gated ion channels are thought to regulate the probability that a channel adopts an open conformation by moving vertically in the lipid bilayer. Here we characterized the movement of the VSDs of the prokaryotic voltage-gated sodium channel, NaChBac. Substitution of residue T110, which is located on the extracellular side of the fourth transmembrane helix of the VSD, by cysteine resulted in the formation of a disulfide bond between adjacent subunits in the channel. Our results suggest that T110 residues in VSDs of adjacent subunits can come into close proximity, implying that the VSDs can move laterally in the membrane and constitute a mechanism that regulates channel activity.  相似文献   

5.
The importance of voltage-gated calcium channels is underscored by the multitude of intracellular processes that depend on calcium, notably gene regulation and neurotransmission. Given their pivotal roles in calcium (and hence, cellular) homeostasis, voltage-gated calcium channels have been the subject of intense research, much of which has focused on channel regulation. While ongoing research continues to delineate the myriad of interactions that govern calcium channel regulation, an increasing amount of work has focused on the trafficking of voltage-gated calcium channels. This includes the mechanisms by which calcium channels are targeted to the plasma membrane, and, more specifically, to their appropriate loci within a given cell. In addition, we are beginning to gain some insights into the mechanisms by which calcium channels can be removed from the plasma membrane for recycling and/or degradation. Here we highlight recent advances in our understanding of these fundamentally important mechanisms.  相似文献   

6.
To understand gating events with a time-base many orders-of-magnitude slower than that of atomic motion in voltage-gated ion channels such as the Shaker-type KV channels, a multiscale physical model is constructed from the experimentally well-characterized voltage-sensor (VS) domains coupled to a hydrophobic gate. The four VS domains are described by a continuum electrostatic model under voltage-clamp conditions, the control of ion flow by the gate domain is described by a vapor-lock mechanism, and the simple coupling principle is informed by known experimental results and trial-and-error. The configurational energy computed for each element is used to produce a total Hamiltonian that is a function of applied voltage, VS positions, and gate radius. We compute statistical-mechanical expectation values of macroscopic laboratory observables. This approach stands in contrast with molecular-dynamic models which are challenged by increasing scale, and kinetic models which assume a probability distribution rather than derive it from the underlying physics. This generic model predicts well the Shaker charge/voltage and conductance/voltage relations; the tight constraints underlying these results allow us to quantitatively assess the underlying physical mechanisms. The total electrical work picked up by the VS domains is an order-of-magnitude larger than the work required to actuate the gate itself, suggesting an energetic basis for the evolutionary flexibility of the voltage-gating mechanism. The cooperative slide-and-interlock behavior of the VS domains described by the VS-gate coupling relation leads to the experimentally observed bistable gating. This engineering approach should prove useful in the investigation of various elements underlying gating characteristics and degraded behavior due to mutation.  相似文献   

7.
To understand gating events with a time-base many orders-of-magnitude slower than that of atomic motion in voltage-gated ion channels such as the Shaker-type KV channels, a multiscale physical model is constructed from the experimentally well-characterized voltage-sensor (VS) domains coupled to a hydrophobic gate. The four VS domains are described by a continuum electrostatic model under voltage-clamp conditions, the control of ion flow by the gate domain is described by a vapor-lock mechanism, and the simple coupling principle is informed by known experimental results and trial-and-error. The configurational energy computed for each element is used to produce a total Hamiltonian that is a function of applied voltage, VS positions, and gate radius. We compute statistical-mechanical expectation values of macroscopic laboratory observables. This approach stands in contrast with molecular-dynamic models which are challenged by increasing scale, and kinetic models which assume a probability distribution rather than derive it from the underlying physics. This generic model predicts well the Shaker charge/voltage and conductance/voltage relations; the tight constraints underlying these results allow us to quantitatively assess the underlying physical mechanisms. The total electrical work picked up by the VS domains is an order-of-magnitude larger than the work required to actuate the gate itself, suggesting an energetic basis for the evolutionary flexibility of the voltage-gating mechanism. The cooperative slide-and-interlock behavior of the VS domains described by the VS-gate coupling relation leads to the experimentally observed bistable gating. This engineering approach should prove useful in the investigation of various elements underlying gating characteristics and degraded behavior due to mutation.  相似文献   

8.
A common pathway for charge transport through voltage-sensing domains   总被引:1,自引:0,他引:1  
Chanda B  Bezanilla F 《Neuron》2008,57(3):345-351
Voltage-gated ion channels derive their voltage sensitivity from the movement of specific charged residues in response to a change in transmembrane potential. Several studies on mechanisms of voltage sensing in ion channels support the idea that these gating charges move through a well-defined permeation pathway. This gating pathway in a voltage-gated ion channel can also be mutated to transport free cations, including protons. The recent discovery of proton channels with sequence homology to the voltage-sensing domains suggests that evolution has perhaps exploited the same gating pathway to generate a bona fide voltage-dependent proton transporter. Here we will discuss implications of these findings on the mechanisms underlying charge (and ion) transport by voltage-sensing domains.  相似文献   

9.
Cai X 《Genomics》2012,99(4):241-245
Electrical signaling in animals ensures the rapid and accurate transmission of information, often carried by voltage-gated Na(+), Ca(2+) and K(+) channels that are activated by membrane depolarization. In heart and neurons, a distinct type of ion channel called the hyperpolarization-activated, cyclic nucleotide-regulated (HCN) channel is activated by membrane hyperpolarization. Recent genomic studies have revealed that animal-type voltage-gated Na(+) channels (Liebeskind BJ, et al. 2011. Proc Natl Acad Sci U S A. 108:9154) had evolved in choanoflagellates, one of the unicellular relatives of animals. To date, HCN channels have been considered to be animal-specific. Here, we demonstrate the presence of an HCN channel homolog (SroHCN) in the choanoflagellate protist Salpingoeca rosetta. SroHCN contains highly conserved functional domains and sequence motifs that are correlated with the unique biophysical activities of HCN channels. These findings provide novel genomic insights into the evolution of complex electrical signaling before the emergence of multicellular animals.  相似文献   

10.
Li-Smerin Y  Hackos DH  Swartz KJ 《Neuron》2000,25(2):411-423
Voltage-gated K+ channels contain a central pore domain and four surrounding voltage-sensing domains. How and where changes in the structure of the voltage-sensing domains couple to the pore domain so as to gate ion conduction is not understood. The crystal structure of KcsA, a bacterial K+ channel homologous to the pore domain of voltage-gated K+ channels, provides a starting point for addressing this question. Guided by this structure, we used tryptophan-scanning mutagenesis on the transmembrane shell of the pore domain in the Shaker voltage-gated K+ channel to localize potential protein-protein and protein-lipid interfaces. Some mutants cause only minor changes in gating and when mapped onto the KcsA structure cluster away from the interface between pore domain subunits. In contrast, mutants producing large changes in gating tend to cluster near this interface. These results imply that voltage-sensing domains interact with localized regions near the interface between adjacent pore domain subunits.  相似文献   

11.
Tetrodotoxin (TTX) is a potent blocker of voltage-gated sodium channels, but not all sodium channels are equally sensitive to inhibition by TTX. The molecular basis of differential TTX sensitivity of mammalian sodium channels has been largely elucidated. In contrast, our knowledge about the sensitivity of invertebrate sodium channels to TTX remains poor, in part because of limited success in functional expression of these channels. In this study, we report the functional characterization in Xenopus oocytes of the first non-insect, invertebrate voltage-gated sodium channel from the varroa mite (Varroa destructor), an ecto-parasite of the honeybee. This arachnid sodium channel activates and inactivates rapidly with half-maximal activation at −18 mV and half-maximal fast inactivation at −29 mV. Interestingly, this arachnid channel showed surprising TTX resistance. TTX blocked this channel with an IC50 of 1 μm. Subsequent site-directed mutagenesis revealed two residues, Thr-1674 and Ser-1967, in the pore-forming region of domains III and IV, respectively, which were responsible for the observed resistance to inhibition by TTX. Furthermore, sequence comparison and additional amino acid substitutions suggested that sequence polymorphisms at these two positions could be a widespread mechanism for modulating TTX sensitivity of sodium channels in diverse invertebrates.  相似文献   

12.
KCNH channels are voltage-gated potassium channels with important physiological functions. In these channels, a C-terminal cytoplasmic region, known as the cyclic nucleotide binding homology (CNB-homology) domain displays strong sequence similarity to cyclic nucleotide binding (CNB) domains. However, the isolated domain does not bind cyclic nucleotides. Here, we report the X-ray structure of the CNB-homology domain from the mouse EAG1 channel. Through comparison with the recently determined structure of the CNB-homology domain from the zebrafish ELK (eag-like K(+)) channel and the CNB domains from the MlotiK1 and HCN (hyperpolarization-activated cyclic nucleotide-gated) potassium channels, we establish the structural features of CNB-homology domains that explain the low affinity for cyclic nucleotides. Our structure establishes that the "self-liganded" conformation, where two residues of the C-terminus of the domain are bound in an equivalent position to cyclic nucleotides in CNB domains, is a conserved feature of CNB-homology domains. Importantly, we provide biochemical evidence that suggests that there is also an unliganded conformation where the C-terminus of the domain peels away from its bound position. A functional characterization of this unliganded conformation reveals a role of the CNB-homology domain in channel gating.  相似文献   

13.
The precise subcellular localization of ion channels is often necessary to ensure rapid and efficient integration of both intracellular and extracellular signaling events. Recently, we have identified lipid raft association as a novel mechanism for the subcellular sorting of specific voltage-gated K(+) channels to regions of the membrane rich in signaling complexes. Here, we demonstrate isoform-specific targeting of voltage-gated K(+) (Kv) channels to distinct lipid raft populations with the finding that Kv1.5 specifically targets to caveolae. Multiple lines of evidence indicate that Kv1.5 and Kv2.1 exist in distinct raft domains: 1) channel/raft association shows differential sensitivity to increasing concentrations of Triton X-100; 2) unlike Kv2.1, Kv1.5 colocalizes with caveolin on the cell surface and redistributes with caveolin following microtubule disruption; and 3) immunoisolation of caveolae copurifies Kv1.5 channel. Both depletion of cellular cholesterol and inhibition of sphingolipid synthesis alter Kv1.5 channel function by inducing a hyperpolarizing shift in the voltage dependence of activation and inactivation. The differential targeting of Kv channel subtypes to caveolar and noncaveolar rafts within a single membrane represents a unique mechanism of compartmentalization, which may permit isoform-specific modulation of K(+) channel function.  相似文献   

14.
There is growing evidence indicating that the pore structure of voltage-gated ion channels (VGICs) influences gating besides their conductance. Regarding low voltage-activated (LVA) Ca2+ channels, it has been demonstrated that substitutions of the pore aspartate (D) by a glutamate (D-to-E substitution) in domains III and IV alter channel gating properties such as a positive shift in the channel activation voltage dependence. In the present report, we evaluated the effects of E-to-D substitution in domains I and II on the CaV3.1 channel gating properties. Our results indicate that substitutions in these two domains differentially modify the gating properties of CaV3.1 channels. The channel with a single mutation in domain I (DEDD) presented slower activation and faster inactivation kinetics and a slower recovery from inactivation, as compared with the WT channel. In contrast, the single mutant in domain II (EDDD) presented a small but significant negative shift of activation voltage dependence with faster activation and slower inactivation kinetics. Finally, the double mutant channel (DDDD) presented somehow intermediate properties with respect to the two single mutants but with fastest deactivation kinetics. Overall, our results indicate that single amino acid modification of the selectivity filter of LVA Ca2+ channels in distinct domains differentially influence their gating properties, supporting a pore pseudo-symmetry.  相似文献   

15.
Hidalgo P  Neely A 《Cell calcium》2007,42(4-5):389-396
For a long time the auxiliary beta-subunit of voltage-gated calcium channels was thought to be engaged exclusively in the regulation of calcium channel function, including gating, intracellular trafficking, assembly and membrane expression. The beta-subunit belongs to the membrane-associated guanylate kinase class of scaffolding proteins (MAGUK) that comprises a series of protein interaction motifs. Two such domains, a Src homology 3 and a guanylate kinase domain are present in the beta-subunit. Recently, it was shown that this subunit interacts with a variety of proteins and regulates diverse cellular processes ranging from gene expression to hormone secretion and endocytosis. In light of these new findings, the beta-subunit deserves to be promoted to the category of multifunctional regulatory protein. Some of these new functions support a tighter regulation of calcium influx through voltage-gated calcium channels and others apparently serve channel unrelated processes. Here we discuss a variety of protein-protein interactions held by the beta-subunit of voltage-gated calcium channels and their functional consequences. Certainly the identification of additional binding partners and effector pathways will help to understand how the different beta-subunit-mediated processes are interwoven.  相似文献   

16.
Voltage-gated Ca and Na channels share similar structure: four homologous domains (I-IV), each with six transmembrane segments (S1-S6). They may be formed by two rounds of duplication of a single channel domain similar to voltage-activated potassium channels. However, the channels with the intermediate structure, namely, two-domain channels have not yet been identified. We report here the cloning of a novel protein from rat kidney that contains two domains (I-II), each with S1-S6 segments that are found in voltage-gated Ca and Na channels. Because of unusual structure, the protein was named two-pore channel 1 (TPC1). TPC1 encodes 819 amino acids with two conserved positively charged voltage sensor segments (S4) but the pore segments are not conserved. Northern blot analysis showed that TPC1 mRNA (5 kb) was expressed widely. It was expressed at relatively high level in kidney, liver, and lung. Immunohistochemistry of kidney revealed that TPC1 was expressed at inner medullary collecting ducts. In expression studies, no functional currents could be detected in CHO cells and Xenopus oocytes. Based on its primary structure, we propose that TPC1 might be a predecessor of the conventional four repeat voltage-gated Ca and Na channels and will give insights into the evolution of ion channels.  相似文献   

17.
Zhou W  Chung I  Liu Z  Goldin AL  Dong K 《Neuron》2004,42(1):101-112
BSC1, which was originally identified by its sequence similarity to voltage-gated Na(+) channels, encodes a functional voltage-gated cation channel whose properties differ significantly from Na(+) channels. BSC1 has slower kinetics of activation and inactivation than Na(+) channels, it is more selective for Ba(2+) than for Na(+), it is blocked by Cd(2+), and Na(+) currents through BSC1 are blocked by low concentrations of Ca(2+). All of these properties are more similar to voltage-gated Ca(2+) channels than to voltage-gated Na(+) channels. The selectivity for Ba(2+) is partially due to the presence of a glutamate in the pore-forming region of domain III, since replacing that residue with lysine (normally present in voltage-gated Na(+) channels) makes the channel more selective for Na(+). BSC1 appears to be the prototype of a novel family of invertebrate voltage-dependent cation channels with a close structural and evolutionary relationship to voltage-gated Na(+) and Ca(2+) channels.  相似文献   

18.
BACKGROUND: The voltage-gated potassium channel Shaker from Drosophila consists of a tetramer of identical subunits, each containing six transmembrane segments. The atomic structure of a bacterial homolog, the potassium channel KcsA, is much smaller than Shaker. It does not have a voltage sensor and other important domains like the N-terminal tetramerization (T1) domain. The structure of these additional elements has to be studied in the more complex voltage-gated channels. RESULTS: We determined the three-dimensional structure of the entire Shaker channel at 2.5 nm resolution using electron microscopy. The four-fold symmetric structure shows a large and a small domain linked by thin 2 nm long connectors. To interpret the structure, we used the crystal structures of the isolated T1 domain and the KcsA channel. A unique density assignment was made based on the symmetry and dimensions of the crystal structures and domains, identifying the smaller domain as the cytoplasmic mass of Shaker containing T1 and the larger domain as embedded in the membrane. CONCLUSIONS: The two-domain architecture of the Shaker channel is consistent with the recently proposed "hanging gondola" model for the T1 domain, putting the T1 domain at a distance from the membrane domain but attached to it by thin connectors. The space between the two domains is sufficient to permit cytoplasmic access of ions and the N-terminal inactivation domain to the pore region. A hanging gondola architecture has also been observed in the nicotinic acetylcholine receptor and the KcsA structure, suggesting that it is a common element of ion channels.  相似文献   

19.
The gating modifier toxins are a large family of protein toxins that modify either activation or inactivation of voltage-gated ion channels. omega-Aga-IVA is a gating modifier toxin from spider venom that inhibits voltage-gated Ca(2+) channels by shifting activation to more depolarized voltages. We identified two Glu residues near the COOH-terminal edge of S3 in the alpha(1A) Ca(2+) channel (one in repeat I and the other in repeat IV) that align with Glu residues previously implicated in forming the binding sites for gating modifier toxins on K(+) and Na(+) channels. We found that mutation of the Glu residue in repeat I of the Ca(2+) channel had no significant effect on inhibition by omega-Aga-IVA, whereas the equivalent mutation of the Glu in repeat IV disrupted inhibition by the toxin. These results suggest that the COOH-terminal end of S3 within repeat IV contributes to forming a receptor for omega-Aga-IVA. The strong predictive value of previous mapping studies for K(+) and Na(+) channel toxins argues for a conserved binding motif for gating modifier toxins within the voltage-sensing domains of voltage-gated ion channels.  相似文献   

20.
Tombola F  Ulbrich MH  Isacoff EY 《Neuron》2008,58(4):546-556
In voltage-gated channels, ions flow through a single pore located at the interface between membrane-spanning pore domains from each of four subunits, and the gates of the pore are controlled by four peripheral voltage-sensing domains. In a striking exception, the newly discovered voltage-gated Hv1 proton channels lack a homologous pore domain, leaving the location of the pore unknown. Also unknown are the number of subunits and the mechanism of gating. We find that Hv1 is a dimer and that each subunit contains its own pore and gate, which is controlled by its own voltage sensor. Our experiments show that the cytosolic domain of the channel is necessary and sufficient for dimerization and that the transmembrane part of the channel is functional also when monomerized. The results suggest a mechanism of gating whereby the voltage sensor and gate are one and the same.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号