首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inhibition of the bifunctional enzyme chorismate mutase-prephenate dehydrogenase (4-hydroxyphenylpyruvate synthase) by substrate analogues has been investigated at pH 6.0 with the aim of elucidating the spatial relationship that exists between the sites at which each reaction occurs. Several chorismate and adamantane derivatives, as well as 2-hydroxyphenyl acetate and diethyl malonate, act as linear competitive inhibitors with respect to chorismate in the mutase reaction and with respect to chorismate in the mutase reaction and with respect to prephenate in the dehydrogenase reaction. The similarity of the dissociation constants for the interaction of these compounds with the free enzyme, as determined from the mutase and dehydrogenase reactions, indicates that the reaction of these inhibitors at a single site prevents the binding of both chorismate and prephenate. However, not all the groups on the enzyme, which are responsible for the binding of these two substrates, can be identical. At lower concentrations, citrate or malonate prevents reaction of the enzyme with prephenate, but not with chorismate. Nevertheless, the combining sites for chorismate and prephenate are in such close proximity that the diethyl derivative of malonate prevents the binding of both substrates. The results lead to the proposal that the sites at which chorismate and prephenate react on hydroxyphenylpyruvate synthase share common features and can be considered to overlap.  相似文献   

2.
J Turnbull  J F Morrison 《Biochemistry》1990,29(44):10255-10261
The inhibition of the bifunctional enzyme chorismate mutase-prephenate dehydrogenase by substrate analogues, by the end product, tyrosine, and by the protein modifying agent iodoacetate has been investigated. The purpose of the investigations was to determine if the two reactions catalyzed by the enzyme occur at a single active site or at two separate active sites. Evidence in support of the conclusion that the mutase and dehydrogenase reactions are catalyzed at two similar but distinct active sites comes from the following results: (1) A substrate analogue (endo-oxabicyclic diacid) that inhibits competitively the mutase reaction has no effect on the dehydrogenase reaction. (2) Malonic acid and several of its derivatives act as inhibitory analogues of chorismate in the mutase reaction and of prephenate in the dehydrogenase reaction. However, different dissociation constants for their interaction with the free enzyme are obtained from studies on the mutase and dehydrogenase reactions. (3) The kinetics of the inhibition by tyrosine of the mutase reaction in the presence of NAD differ from those of the dehydrogenase reaction. The results confirm that carboxymethylation with iodoacetate of one cysteine residue per subunit eliminates both mutase and dehydrogenase activities and show that the inactivation of the enzyme activities is due to iodoacetate functioning as an active site directed inhibitor.  相似文献   

3.
E Heyde  J F Morrison 《Biochemistry》1978,17(8):1573-1580
Steady-state kinetic techniques have been used to investigate each of the reactions catalyzed by the bifunctional enzyme, chorismate mutase-prephenate dehydrogenase, from Aerobacter aerogenes. The results of steady-state velocity studies in the absence of products, as well as product and dead-end inhibition studies, suggest that the prephenate dehydrogenase reaction conforms to a rapid equilibrium random mechanism which involes the formation of two dead-end complexes, viz, enzyme-NADH-prephenate and enzyme-NAD+-hydroxyphenylpyruvate. Chorismate functions as an activator of the dehydrogenase while both prephenate and hydroxyphenylpyruvate acted as competitive inhibitors in the mutase reaction. By contrast. bpth NAD+ and NADH function as activators of the mutase. Values of the kinetic parameters associated with the mutase and dehydrogenase reactions have been determined and the results discussed in terms of possible relationships between the catalytic sites for the two reactions. The data appear to be consistent with the enzyme having either a single site at which both reactions occur or two separate sites which possess similar kinetic properties.  相似文献   

4.
The chemical and kinetic mechanisms of purified aspartate-beta-semialdehyde dehydrogenase from Escherichia coli have been determined. The kinetic mechanism of the enzyme, determined from initial velocity, product and dead end inhibition studies, is a random preferred order sequential mechanism. For the reaction examined in the phosphorylating direction L-aspartate-beta-semialdehyde binds preferentially to the E-NADP-Pi complex, and there is random release of the products L-beta-aspartyl phosphate and NADPH. Substrate inhibition is displayed by both Pi and NADP. Inhibition patterns versus the other substrates suggest that Pi inhibits by binding to the phosphate subsite in the NADP binding site, and the substrate inhibition by NADP results from the formation of a dead end E-beta-aspartyl phosphate-NADP complex. The chemical mechanism of the enzyme has been examined by pH profile and chemical modification studies. The proposed mechanism involves the attack of an active site cysteine sulfhydryl on the carbonyl carbon of aspartate-beta-semialdehyde, with general acid assistance by an enzyme lysine amino group. The resulting thiohemiacetal is oxidized by NADP to a thioester, with subsequent attack by the dianion of enzyme bound phosphate. The collapse of the resulting tetrahedral intermediate leads to the acyl-phosphate product and liberation of the active site cysteine.  相似文献   

5.
The enzyme prephenate dehydrogenase catalyzes the oxidative decarboxylation of prephenate to 4-hydroxyphenylpyruvate for the biosynthesis of tyrosine. Prephenate dehydrogenases exist as either monofunctional or bifunctional enzymes. The bifunctional enzymes are diverse, since the prephenate dehydrogenase domain is associated with other enzymes, such as chorismate mutase and 3-phosphoskimate 1-carboxyvinyltransferase. We report the first crystal structure of a monofunctional prephenate dehydrogenase enzyme from the hyper-thermophile Aquifex aeolicus in complex with NAD+. This protein consists of two structural domains, a modified nucleotide-binding domain and a novel helical prephenate binding domain. The active site of prephenate dehydrogenase is formed at the domain interface and is shared between the subunits of the dimer. We infer from the structure that access to the active site is regulated via a gated mechanism, which is modulated by an ionic network involving a conserved arginine, Arg250. In addition, the crystal structure reveals for the first time the positions of a number of key catalytic residues and the identity of other active site residues that may participate in the reaction mechanism; these residues include Ser126 and Lys246 and the catalytic histidine, His147. Analysis of the structure further reveals that two secondary structure elements, beta3 and beta7, are missing in the prephenate dehydrogenase domain of the bifunctional chorismate mutase-prephenate dehydrogenase enzymes. This observation suggests that the two functional domains of chorismate mutase-prephenate dehydrogenase are interdependent and explains why these domains cannot be separated.  相似文献   

6.
E Heyde 《Biochemistry》1979,18(13):2766-2775
The relationship between the sites for catalysis of two reactions by the bifunctional enzyme chorismate mutase--prephenate dehydrogenase has been investigated. The results are consistent with the occurrence of both reactions at one active site. Comparisons have been made between experimental data for the time course of the overall reaction and computer simulations, according to various models for the relationship between the mutase and dehydrogenase sites. A model based on a single active site is consistent with the time course data if a minor proportion of the chorismate that reacts can be converted through to (hydroxyphenyl)pyruvate without the intermediate release of prephenate. Consistent with this requirement, some channeling of radioactivity from chorismate to (hydroxyphenyl)pyruvate has been detected. A model based on two separate sites has also been considered; the simulations show that if this model applies there is no need to postulate any channeling of the intermediate, prephenate, between the sites and there must be marked inhibition of the dehydrogenase reaction by chorismate. Since channeling has been observed and chorismate increases the dehydrogenase rate under all conditions, the two-site model appears unlikely. Consistent with the one-site model are the observations that a variety of inactivating conditions cause parallel loss of mutase and dehydrogenase activity and that identical protection against inactivation of both mutase and dehydrogenase by iodoacetamide is afforded by prephenate.  相似文献   

7.
Porcine heart mitochondrial malate dehydrogenase (EC 1.1.1.37), a dimeric enzyme of Mr = 70,000, is both allosterically activated and inhibited by citrate. Using an affinity elution procedure based upon citrate binding to malate dehydrogenase, the isolation of pure heterodimer (a dimeric species with one active subunit and one iodoacetamide-inactivated subunit) has been achieved. Investigations utilizing this heterodimer in conjunction with resin-bound monomers of malate dehydrogenase have allowed the formulation of a definite conclusion concerning the role of subunit interactions in catalysis and regulation of this enzyme. The citrate kinetic effects, oxaloacetate inhibition, malate activation, and the effects of 2-thenoyl-trifluoroacetone (TTFA) are shown to be independent of interaction between catalytically active subunits. Previous kinetic data thought to support a reciprocating catalytic mechanism for this enzyme may be reinterpreted upon closer analysis in relation to an allosteric, conformationally specific binding model for malate dehydrogenase.  相似文献   

8.
Binding of the feedback inhibitor acetyl-coenzyme A to the pyruvate dehydrogenase complex from Escherichia coli was studied by electron spin resonance spectroscopy with the spin-labelled acetyl-CoA analogue 3-carboxy-2,2,5,5-tetramethylpyrrolidine-1-oxyl-CoA-thioester. The spin-labelled compound binds to the pyruvate dehydrogenase component of the enzyme complex and this binding can be reversed by acetyl-CoA, while CoA has no effect. AMP and fructose 1,6-bisphosphate, which are both activators of the pyruvate dehydrogenase complex, exhibit a partial competition with the spin-labelled acetyl-CoA analogue and it could be shown that both activators act essentially by reversion of the feedback inhibition of acetyl-CoA. The binding site for these activators seems to overlap with the acetyl-CoA binding site, possibly by a common phosphate attachment point. No competition for binding to the feedback inhibition site exists with pyruvate, thiamine diphosphate, magnesium ions and with the fluorescent chromophore 8-anilino-1-naphthalene sulfonic acid. Thus, the feedback inhibition site proves to be a true allosteric regulatory site, which appears to be completely separate from the catalytic site on the pyruvate dehydrogenase component. The spin-labelled acetyl-CoA analogue binds also to the product binding site of acetyl-CoA on the dihydrolipoamide acetyltransferase component of the pyruvate dehydrogenase complex. Two binding sites per polypeptide chain with identical affinities on this enzyme component were found and the binding of the analogue can be inhibited by acetyl-CoA as well as by CoA.  相似文献   

9.
J Turnbull  W W Cleland  J F Morrison 《Biochemistry》1990,29(44):10245-10254
The bifunctional enzyme involved in tyrosine biosynthesis, chorismate mutase-prephenate dehydrogenase, has been isolated from extracts of a plasmid-containing strain of Escherichia coli K12 and purified to homogeneity by a modified procedure that involves chromatography on both Matrex Blue A and Sepharose-AMP. Detailed studies of the dehydrogenase reaction have been undertaken with analogues of prephenate that act as substrates. The analogues, which included two of the four possible diastereoisomers of 1-carboxy-4-hydroxy-2-cyclohexene-1-propanoate (deoxodihydroprephenate) as well as D- and L-arogenate, were synthesized chemically. As judged by their V/K values, all analogues were poorer substrates than prephenate. The order of their effectiveness as substrates is prephenate greater than one isomer of 1-carboxy-4-hydroxy-2-cyclohexene-1-propanoate greater than L-arogenate greater than other isomer of 1-carboxy-4-hydroxy-2-cyclohexene-1-propanoate greater than D-arogenate. Thus the dehydrogenase activity is dependent on the degree and position of unsaturation in the ring structure of prephenate as well as on the type of substitution on the pyruvyl side chain. With prephenate as a substrate, the reaction is irreversible because it involves oxidative decarboxylation. By contrast, 1-carboxy-4-hydroxy-2-cyclohexene-1-propanoate undergoes only a simple oxidation, and thus, with this substrate, the reaction is reversible. Steady-state velocity data, obtained by varying substrates over a range of higher concentrations, suggest that the dehydrogenase reaction conforms to a rapid equilibrium, random mechanism with 1-carboxy-4-hydroxy-2-cyclohexene-1-propanoate as a substrate in the forward reaction or with the corresponding ketone derivative as a substrate in the reverse direction. The initial velocity patterns obtained by varying prephenate or 1-carboxy-4-hydroxy-2-cyclohexene-1-propanoate over a range of lower concentrations, at different fixed concentrations of NAD, were nonlinear and consistent with a unique model that is described by a velocity equation which is the ratio of quadratic polynomials. An equilibrium constant of 1.4 x 10(-7) M for the reaction in the presence of 1-carboxy-4-hydroxy-2-cyclohexene-1-propanoate indicates that the equilibrium lies very much in favor of ketone production.  相似文献   

10.
The pattern of allosteric control in the biosynthetic pathway for aromatic amino acids provides a basis to explain vulnerability to growth inhibition by l-phenylalanine (0.2 mM or greater) in the unicellular cyanobacterium Synechocystis sp. 29108. We attribute growth inhibition to the hypersensitivity of 3-deoxy-d-arabinoheptulosonate 7-phosphate synthase to feedback inhibition by l-phenylalanine. Hyperregulation of this initial enzyme of aromatic biosynthesis depletes the supply of precursors needed for biosynthesis of l-tyrosine and l-tryptophan. Consistent with this mechanism is the total reversal of phenylalanine inhibition by a combination of tyrosine and tryptophan. Inhibited cultures also contained decreased levels of phycocyanin pigments, a characteristic previously correlated with amino acid starvation in cyanobacteria. l-Phenylalanine is a potent noncompetitive inhibitor (with both substrates) of 3-deoxy-d-arabinoheptulosonate 7-phosphate synthase, whereas l-tyrosine is a very weak inhibitor. Prephenate dehydratase also displays allosteric sensitivity to phenylalanine (inhibition) and to tyrosine (activation). Both 2-fluoro and 4-fluoro derivatives of phenylalanine were potent analog antimetabolites, and these were used in addition to l-phenylalanine as selective agents for resistant mutants. Mutants were isolated which excreted both phenylalanine and tyrosine, the consequence of an altered 3-deoxy-d-arabinoheptulosonate 7-phosphate synthase no longer sensitive to feedback inhibition. Simultaneous insensitivity to l-tyrosine suggests that l-tyrosine acts as a weak analog mimic of l-phenylalanine at a common binding site. Prephenate dehydratase in the regulatory mutants was unaltered. Surprisingly, in view of the lack of regulation in the tyrosine branchlet of the pathway, such mutants excrete more phenylalanine than tyrosine, indicating that l-tyrosine activation dominates l-phenylalanine inhibition of prephenate dehydratase in vivo. In mutant Phe r19 the loss in allosteric sensitivity of 3-deoxy-d-arabinoheptulosonate 7-phosphate synthase was accompanied by a threefold increase in specific activity. This could suggest that existence of a modest degree of repression control (autogenous) over 3-deoxy-d-arabinoheptulosonate synthase, although other explanations are possible. Specific activities of chorismate mutase, prephenate dehydratase, shikimate/nicotinamide adenine dinucleotide phosphate dehydrogenase, and arogenate/nicotinamide adenine dinucleotide phosphate dehydrogenase in mutant Phe r19 were identical with those of the wild type.  相似文献   

11.
We have engineered a variant of the lactate dehydrogenase enzyme from Bacillus stearothermophilus in which arginine-173 at the proposed regulatory site has been replaced by glutamine. Like the wild-type enzyme, this mutant undergoes a reversible, protein-concentration-dependent subunit assembly, from dimer to tetramer. However, the mutant tetramer is much more stable (by a factor of 400) than the wild type and is destabilized rather than stabilized by binding the allosteric regulator, fructose 1,6-biphosphate (Fru-1,6-P2). The mutation has not significantly changed the catalytic properties of the dimer (Kd NADH, Km pyruvate, Ki oxamate and kcat), but has weakened the binding of Fru-1,6-P2 to both the dimeric and tetrameric forms of the enzyme and has almost abolished any stimulatory effect. We conclude that the Arg-173 residue in the wild-type enzyme is directly involved in the binding of Fru-1,6-P2, is important for allosteric communication with the active site, and, in part, regulates the state of quaternary structure through a charge-repulsion mechanism.  相似文献   

12.
J K Wright  M Takahashi 《Biochemistry》1977,16(8):1541-1548
The aspartokinase activity of the aspartokinase-homoserine dehydrogenase complex of Escherichia coli was affinity labeled with substrates ATP, aspartate, and feedback inhibitor threonine. Exchange-inert ternary adducts of Co(III)-aspartokinase and either ATP, aspartate or threonine were formed by oxidation of corresponding Co(II) ternary complexes with H2O2. The ternary enzyme-Co(III)-threonine adduct (I) had 3.8 threonine binding sites per tetramer, one-half that of the native enzyme. The binding of threonine to I was still cooperative as determined by equilibrium dialysis (nH = 2.2) or by studying inhibition of residual dehydrogenase activity (nH = 2.7). Threonine still protected the SH groups of I against 5,5'-dithiobis(2-nitrobenzoate) (DTNB) reaction but the number of SH groups reacting with thiol reagents (DTNB) was reduced by 1-2 per subunit in the absence of threonine. This suggests either that Co(III) is bound to the enzyme via sulfhydryl groups or that 1-2SH groups are buried or rendered inaccessible in I. The binding of threonine to sites not blocked by the affinity labeling produced changes in the circular dichroism of the complex comparable to changes produced by threonine binding to native enzyme and also protected against proteolytic digestion. The major conformational changes produced by threonine are thus ascribable to binding at this one class of regulatory sites. The interactions of kinase substrates with various aspartokinase-Co(III) complexes containing ATP, aspartate, or threonine and a threonine-insensitive homoserine dehydrogenase produced by mild proteolysis were studied. The inhibition of homoserine dehydrogenase by kinase substrates is not due to binding of these inhibitors at the kinase active site but was shown to be due to binding to sites within the dehydrogenase domain of the enzyme. L-alpha-Aminobutyrate, a presumed threonine analogue, also inhibits the dehydrogenase by binding at the same or similar sites in the dehydrogenase domain and not at threonine regulatory site.  相似文献   

13.
The kinetic analysis of the glycogen chain growth reaction catalyzed by glycogen phosphorylase b from rabbit skeletal muscle has been carried out over a wide range of concentrations of AMP under the saturation of the enzyme by glycogen. The applicability of 23 different variants of the kinetic model involving the interaction of AMP and glucose 1-phosphate binding sites in the dimeric enzyme molecule is considered. A kinetic model has been proposed which assumes: (i) the independent binding of one molecule of glucose 1-phosphate in the catalytic site on the one hand, and AMP in both allosteric effector sites and both nucleoside inhibitor sites of the dimeric enzyme molecule bound by glycogen on the other hand; (ii) the binding of AMP in one of the allosteric effector sites results in an increase in the affinity of other allosteric effector site to AMP; (iii) the independent binding of AMP to the nucleoside inhibitor sites of the dimeric enzyme molecule; (iv) the exclusive binding of the second molecule of glucose 1-phosphate in the catalytic site of glycogen phosphorylase b containing two molecules of AMP occupying both allosteric effector sites; and (v) the catalytic act occurs exclusively in the complex of the enzyme with glycogen, two molecules of AMP occupying both allosteric effector sites, and two molecules of glucose 1-phosphate occupying both catalytic sites.  相似文献   

14.
Brain hexokinase (HKI) is inhibited potently by its product glucose 6-phosphate (G6P); however, the mechanism of inhibition is unsettled. Two hypotheses have been proposed to account for product inhibition of HKI. In one, G6P binds to the active site (the C-terminal half of HKI) and competes directly with ATP, whereas in the alternative suggestion the inhibitor binds to an allosteric site (the N-terminal half of HKI), which indirectly displaces ATP from the active site. Single mutations within G6P binding pockets, as defined by crystal structures, at either the N- or C-terminal half of HKI have no significant effect on G6P inhibition. On the other hand, the corresponding mutations eliminate product inhibition in a truncated form of HKI, consisting only of the C-terminal half of the enzyme. Only through combined mutations at the active and allosteric sites, using residues for which single mutations had little effect, was product inhibition eliminated in HKI. Evidently, potent inhibition of HKI by G6P can occur from both active and allosteric binding sites. Furthermore, kinetic data reported here, in conjunction with published equilibrium binding data, are consistent with inhibitory sites of comparable affinity linked by a mechanism of negative cooperativity.  相似文献   

15.
The binding of phenylalanine to the allosteric site of chorismate mutase/prephenate dehydratase has been studied by steady-state dialysis. Under most of the experimental conditions examined positive co-operativity was observed for the binding of ligand up to 50% saturation and negative co-operativity above 50% saturation. In the presence of 0.4 M NaCl at pH 8.2 the co-operativity was positive at all phenylalanine concentrations and the maximal stoichiometry of 1 mol of phenylalanine/mol of enzyme subunit was observed. It was concluded that there is a single phenylalanine-binding site per subunit which is associated with the regulation of each of the mutase and dehydratase activities. The effects of enzyme concentration, NaCl, temperature and pH on the binding of phenylalanine have been investigated. Neither tyrosine nor tryptophan bound to the allosteric site of the enzyme. Enzyme that was desensitized to inhibition by phenylalanine following modification of three sulphydryl groups with 5,5'-dithio-bis (2-nitrobenzoic acid) did not bind phenylalanine. The mechanism of co-operativity, the binding of the enzyme to Sepharosyl-phenylalanine and the physiological significance of the inhibition of the enzyme by phenylalanine are discussed in terms of the results obtained.  相似文献   

16.
Escherichia coli d-3-phosphoglycerate dehydrogenase (PGDH) is a homotetrameric enzyme whose activity is allosterically regulated by l-serine, the end-product of its metabolic pathway. Previous studies have shown that PGDH displays two modes of cooperative interaction. One is between the l-serine binding sites and the other is between the l-serine binding sites and the active sites. Tryptophan 139 participates in an intersubunit contact near the active site catalytic residues. Site-specific mutagenesis of tryptophan 139 to glycine results in the dissociation of the tetramer to a pair of dimers and in the loss of cooperativity in serine binding and between serine binding and inhibition. The results suggest that the magnitude of inhibition of activity at a particular active site is primarily dependent on serine binding to that subunit but that activity can be modulated in a cooperative manner by interaction with adjacent subunits. The disruption of the nucleotide domain interface in PGDH by mutating Trp-139 suggests the potential for a critical role of this interface in the cooperative allosteric processes in the native tetrameric enzyme.  相似文献   

17.
The Escherichia coli bifunctional T-protein transforms chorismic acid to p-hydroxyphenylpyruvic acid in the l-tyrosine biosynthetic pathway. The 373 amino acid T-protein is a homodimer that exhibits chorismate mutase (CM) and prephenate dehydrogenase (PDH) activities, both of which are feedback-inhibited by tyrosine. Fifteen genes coding for the T-protein and various fragments thereof were constructed and successfully expressed in order to characterize the CM, PDH and regulatory domains. Residues 1-88 constituted a functional CM domain, which was also dimeric. Both the PDH and the feedback-inhibition activities were localized in residues 94-373, but could not be separated into discrete domains. The activities of cloned CM and PDH domains were comparatively low, suggesting some cooperative interactions in the native state. Activity data further indicate that the PDH domain, in which NAD, prephenate and tyrosine binding sites were present, was more unstable than the CM domain.  相似文献   

18.
The uni-domain cyclohexadienyl dehydrogenases are able to use the alternative intermediates of tyrosine biosynthesis, prephenate or l-arogenate, as substrates. Members of this TyrA protein family have been generally considered to fall into two classes: sensitive or insensitive to feedback inhibition by l-tyrosine. A gene (tyrAc) encoding a cyclohexadienyl dehydrogenase from Pseudomonas stutzeri JM300 was cloned, sequenced, and expressed at a high level in Escherichia coli. This is the first molecular-genetic and biochemical characterization of a purified protein representing the feedback-sensitive type of cyclohexadienyl dehydrogenase. The catalytic-efficiency constant kcat/Km for prephenate (7.0×107 M/s) was much better than that of l-arogenate (5.7×106 M/s). TyrAc was sensitive to feedback inhibition by either l-tyrosine or 4-hydroxyphenylpyruvate, competitively with respect to either prephenate or l-arogenate and non-competitively with respect to NAD+. A variety of related compounds were tested as inhibitors, and the minimal inhibitor structure was found to require only the aromatic ring and a hydroxyl substituent. Analysis by multiple alignment was used to compare 17 protein sequences representing TyrA family members having catalytic domains that are independent or fused to other catalytic domains, that exhibit broad substrate specificity or narrow substrate specificity, and that possess or lack sensitivity to endproduct inhibitors. We propose that the entire TyrA protein family lacks a discrete allosteric domain and that inhibitors act competitively at the catalytic site of different family members which exhibit individuality in the range and extent of molecules recognized as substrate or inhibitor.  相似文献   

19.
3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAHPS) catalyzes the first step in the biosynthesis of a number of aromatic metabolites. Likely because this reaction is situated at a pivotal biosynthetic gateway, several DAHPS classes distinguished by distinct mechanisms of allosteric regulation have independently evolved. One class of DAHPSs contains a regulatory domain with sequence homology to chorismate mutase-an enzyme further downstream of DAHPS that catalyzes the first committed step in tyrosine/phenylalanine biosynthesis-and is inhibited by chorismate mutase substrate (chorismate) and product (prephenate). Described in this work, structures of the Listeria monocytogenes chorismate/prephenate regulated DAHPS in complex with Mn(2+) and Mn(2+) + phosphoenolpyruvate reveal an unusual quaternary architecture: DAHPS domains assemble as a tetramer, from either side of which chorismate mutase-like (CML) regulatory domains asymmetrically emerge to form a pair of dimers. This domain organization suggests that chorismate/prephenate binding promotes a stable interaction between the discrete regulatory and catalytic domains and supports a mechanism of allosteric inhibition similar to tyrosine/phenylalanine control of a related DAHPS class. We argue that the structural similarity of chorismate mutase enzyme and CML regulatory domain provides a unique opportunity for the design of a multitarget antibacterial.  相似文献   

20.
C T Zimmerle  P P Tung  G M Alter 《Biochemistry》1987,26(26):8535-8541
The iodoacetate-dependent and iodoacetamide-dependent inhibition of cytoplasmic malate dehydrogenase (s-MDH) has been examined. We have confirmed previous reports that iodoacetate inhibits this dimeric enzyme by modifying a single active site methionine per s-MDH subunit. Time courses for the inactivation of the solution-state enzyme with both reagents indicate each s-MDH subunit is modified with equal rapidity in the absence of substrate or cofactor. However, the subunits react with distinctly different rates in the presence of cofactor or cofactor/substrate combinations, indicating some conformational asymmetry between subunits occurs when these ligands are bound. This is consistent with solution-state s-MDH behaving as a cooperative enzyme. Apo and holo crystalline s-MDH are also inhibited by iodoacetic acid. However, subunits of the crystalline enzyme are inhibited with different rates in the presence or absence of active site ligands. This suggests subunit conformations of the dimeric enzyme are not identical in crystalline s-MDH preparations regardless of ligand binding. Furthermore, by the criterion of inhibition rate constants, subunit conformations of the crystalline enzyme are not rigid but are perturbed by ligand binding. Comparisons of inactivation time courses for solution- and crystalline-state s-MDH suggest crystalline s-MDH exhibits at least some of the subunit asymmetry associated with the solution-state enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号