首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Growth cones, the motile apparatus at the ends of elongating axons, are sites of extensive and dynamic membrane-cytoskeletal interaction and insertion of new membrane into the growing axon. One of the most abundant proteins in growth cone membranes is a protein designated GAP-43, whose synthesis increases dramatically in most neurons during periods of axon development or regeneration. We have begun to explore the role of GAP-43 in growth cone membrane functions by asking how the protein interacts with those membranes. Membrane-washing experiments indicate that mature GAP-43 is tightly bound to growth cone membranes, and partitioning of Triton X-114-solubilized GAP-43 between detergent-enriched and detergent-depleted phases indicates considerable hydrophobicity. The hydrophobic behavior of the protein is modulated by divalent cations, particularly zinc and calcium. In vivo labeling of GAP-43 in neonatal rat brain with [35S]methionine shows that GAP-43 is initially synthesized as a soluble protein that becomes attached to membranes posttranslationally. In tissue culture, both rat cerebral cortex cells and neuron-like PC12 cells actively incorporate [3H]palmitic acid into GAP-43. Isolated growth cones detached from their cell bodies also incorporate labeled fatty acid into GAP-43, suggesting active turnover of the fatty acid moieties on the mature protein. Hydrolysis of ester-like bonds with neutral hydroxylamine removes the bound fatty acid and exposes new thiol groups on GAP-43, suggesting that fatty acid is attached to the protein's only two cysteine residues, located in a short hydrophobic domain at the amino terminus. Modulation of the protein's hydrophobic behavior by divalent cations suggests that other domains, containing large numbers of negatively charged residues, might also contribute to GAP-43-membrane interactions. Our observations suggest a dynamic and reversible interaction of GAP-43 with growth cone membranes.  相似文献   

2.
We have identified the chicken equivalent of growth-associated protein GAP-43 in a detergent-resistant membrane skeleton from cultures of chick neurones and embryonic chick brain. Antisera to the membrane skeleton protein, the 3D5 antigen, precipitate the translation product of chick GAP-43 cDNA, and the 3D5 antigen is also detected by antisera against synthetic peptides from the known amino acid sequence of rat GAP-43. The chick protein and the rat GAP-43 are biochemically similar proteins that both serve as major targets of phosphorylation by endogenous protein kinase C. The detergent-resistant complex in which GAP-43 is found also contains actin (approximately 5% of the total protein) and a neurone-specific cell surface glycoprotein. We suggest that the membrane skeleton of neurones may be a primary site of action of GAP-43.  相似文献   

3.
4.
Abstract: The neuronal protein GAP-43 is concentrated at the growth cone membrane, where it is thought to amplify the signal transduction process. As a model for its neuronal effects, GAP-43 protein injection into Xenopus laevis oocytes strongly augments the calcium-sensitive chloride current evoked by the G protein-coupled receptor stimulation. We have now examined a series of GAP-43 mutants in this system and determined those regions of GAP-43 required for this increase in current flux. As expected, palmitoylation inhibits signal amplification in oocytes by blocking G protein activation. Unexpectedly, a second domain of GAP-43 (residues 35–50) containing a protein kinase C phosphorylation site at residue 41 is also necessary for augmentation of G protein-coupled signals in oocytes. This region is not required for activation of isolated Go but is necessary for GAP-43 binding to isolated calmodulin and to isolated protein kinase C. Substitution of Asp for Ser41 inactivates GAP-43 as a signal facilitator in oocytes. This mutation blocks GAP-43 binding to both protein kinase C and calmodulin. Thus, GAP-43 regulates an oocyte signaling cascade via coordinated, simultaneous G protein activation and interaction with either calmodulin or protein kinase C.  相似文献   

5.
GAP-43 (neuromodulin) is a protein kinase C substrate that is abundant in developing and regenerating neurons. Thioester-linked palmitoylation at two cysteines near the GAP-43 N terminus has been implicated in directing membrane binding. Here, we use mass spectrometry to examine the stoichiometry of palmitoylation and the molecular identity of the fatty acid(s) attached to GAP-43 in vivo. GAP-43 expressed in either PC12 or COS-1 cells was acetylated at the N-terminal methionine. Approximately 35% of the N-terminal GAP-43 peptides were also modified by palmitate and/or stearate on Cys residues. Interestingly, a variety of acylated species was detected, in which one of the Cys residues was acylated by either palmitate or stearate, or both Cys residues were acylated by palmitates or stearates or a combination of palmitate and stearate. Depalmitoylation of membrane-bound GAP-43 did not release the protein from the membrane, implying that additional forces function to maintain membrane binding. Indeed, mutation of four basic residues within the N-terminal domain of GAP-43 dramatically reduced membrane localization of GAP-43 without affecting palmitoylation. These data reveal the heterogeneous nature of S-acylation in vivo and illustrate the power of mass spectrometry for identification of key regulatory protein modifications.  相似文献   

6.
GAP-43 is a membrane phosphoprotein that is important for the development and plasticity of neural connections. In undifferentiated PC12 pheochromocytoma cells, GAP-43 mRNA degrades rapidly ( t = 5 h), but becomes stable when cells are treated with nerve growth factor. To identify trans- acting factors that may influence mRNA stability, we combined column chromatography and gel mobility shift assays to isolate GAP-43 mRNA binding proteins from neonatal bovine brain tissue. This resulted in the isolation of two proteins that bind specifically and competitively to a pyrimidine-rich sequence in the 3'-untranslated region of GAP-43 mRNA. Partial amino acid sequencing revealed that one of the RNA binding proteins coincides with FBP (far upstream element binding protein), previously characterized as a protein that resembles hnRNP K and which binds to a single-stranded, pyrimidine-rich DNA sequence upstream of the c -myc gene to activate its expression. The other binding protein shares sequence homology with PTB, a polypyrimidine tract binding protein implicated in RNA splicing and regulation of translation initiation. The two proteins bind to a 26 nt pyrimidine-rich sequence lying 300 nt downstream of the end of the coding region, in an area shown by others to confer instability on a reporter mRNA in transient transfection assays. We therefore propose that FBP and the PTB-like protein may compete for binding at the same site to influence the stability of GAP-43 mRNA.  相似文献   

7.
Differential targeting of neuronal proteins to axons and dendrites is essential for directional information flow within the brain, however, little is known about this protein-sorting process. Here, we investigate polarized targeting of lipid-anchored peripheral membrane proteins, postsynaptic density-95 (PSD-95) and growth-associated protein-43 (GAP-43). Whereas the N-terminal palmitoylated motif of PSD-95 is necessary but not sufficient for sorting to dendrites, the palmitoylation motif of GAP-43 is sufficient for axonal targeting and can redirect a PSD-95 chimera to axons. Systematic mutagenesis of the GAP-43 and PSD-95 palmitoylation motifs indicates that the spacing of the palmitoylated cysteines and the presence of nearby basic amino acids determine polarized targeting by these two motifs. Similarly, the axonal protein paralemmin contains a C-terminal palmitoylated domain, which resembles that of GAP-43 and also mediates axonal targeting. These axonally targeted palmitoylation motifs also mediate targeting to detergent-insoluble glycolipid-enriched complexes in heterologous cells, suggesting a possible role for specialized lipid domains in axonal sorting of peripheral membrane proteins.  相似文献   

8.
《The Journal of cell biology》1990,111(6):3035-3047
We report the identification of CAP-23, a novel particle-bound cytosolic protein associated with developing cells in both mammalian and avian tissues. CAP-23 was a substrate for purified protein kinase C (PKC) in vitro, and the protein was phosphorylated in a PMA-sensitive manner in cultured cells, indicating that it is a PKC substrate in situ. cDNA coding for chick CAP-23 was isolated. The deduced sequence revealed an unusual amino acid composition that strikingly resembled that of rat GAP-43, a growth-associated neuron-specific PKC substrate. Further predicted features of CAP-23 included a PKC phosphorylation site at Ser-6, and the presence of basic NH2- and COOH-terminal domains. CAP-23 was encoded by an mRNA of approximately 1.5 kb, whose distribution during chick development resembled that of the corresponding protein. Southern blot analysis revealed the presence of a single main hybridizing species in the chick genome. The distribution of CAP-23 during development was analyzed with Western blots and by immunofluorescence on tissue sections. In cultured cells the protein appeared to be distributed in a regular spotted pattern below the entire cell surface. In early chick embryos (E2), CAP-23 was present in most if not all cells. The protein then became progressively restricted to only some developing tissues and to only certain cells in these tissues. In most tissues CAP-23 levels fell below detection limits between E15 and E19. Highest levels of the protein were found in the nervous system, where CAP-23 levels peaked around E18, and where elevated levels were still detectable at birth.  相似文献   

9.
The growth-associated protein (GAP-43) is considered a crucial component of an effective regenerative response in the nervous system. Its phosphorylation by protein kinase C correlates with long-term potentiation. Sequence analysis of human cDNAs coding for this protein shows that the human GAP-43 gene is highly homologous to the rat gene; this homology extends into the 3'-untranslated region. However, the human protein contains a 10 amino acid insert. Somatic cell hybrids demonstrate localization of the GAP-43 gene to human chromosome 3 and to mouse chromosome 16.  相似文献   

10.
Palmitoylation of the neuronal plasticity protein GAP-43 has previously been shown to occur at the plasma membrane, but the site of initial palmitoylation has not been identified. To identify this organelle we have incubated GAP-43 with various subcellular fractions and have analyzed palmitoylation by the Triton X-114 partitioning method. In vitro-translated [(35)S]methionine-labeled GAP-43 was incubated with plasma membrane, nuclei, mitochondria, Golgi apparatus and a rough microsome preparation that contained the ER-Golgi intermediate compartment (ERGIC), but not plasma membrane or Golgi apparatus. GAP-43 partitioned into Triton X-114 in the presence of plasma membrane, Golgi, and ERGIC membranes, but not nuclei or mitochondria. Partitioning caused by the ERGIC was blocked by pretreatment of the membranes with the palmitoylation inhibitors dithiothreitol, tunicamycin, and low temperature, and by treatment of GAP-43 with iodoacetamide. The time course of partitioning agreed closely with the time course of incorporation of radioactive palmitate into proteins as reported previously. Because the ERGIC has a broad distribution in the cell, our results provide evidence that the ERGIC is the initial site of GAP-43 palmitoylation.  相似文献   

11.
GAP-43 as a plasticity protein in neuronal form and repair.   总被引:13,自引:0,他引:13  
Neurons exhibit a remarkable plasticity of form, both during neural development and during the subsequent remodelling of synaptic connectivity. Here we review work on GAP-43 and G0, and focus upon the thesis that their interaction may endow neurons with such plasticity. We also present new data on the role of G proteins in neurite growth, and on the interaction of GAP-43 and actin. GAP-43 is a protein induced during periods of axonal extension and highly enriched on the inner surface of the growth cone membrane. Its membrane localization is primarily due to a short amino terminal sequence which is subject to palmitoylation. Binding to actin filaments may also assist in restricting the protein to specific cellular domains. Consistent with its role as a "plasticity protein," there is evidence that GAP-43 can directly alter cell shape and neurite extension, and several theses have been advanced for how it might do so. Two other prominent components of the growth cone membrane are the alpha and beta subunits of G0. GAP-43 regulates their guanine nucleotide exchange, which is an unusual role for an intracellular protein. We speculate that GAP-43 may adjust the "set point" of responsiveness for G0 stimulation by receptors, thereby altering the neuronal propensity to growth, without actually causing growth. To begin to address how G protein activity affects axon growth, we have developed a means to introduce guanine nucleotide analogs into sympathetic neurons. Stimulation of G proteins with GTP-gamma-S retards axon growth, whereas GDP-beta-S enhances it. This is compatible with G protein registration of inhibitory signals.  相似文献   

12.
Neurons exhibit a remarkable plasticity of form, both during neural development and during the subsequent remodelling of synaptic connectivity. Here we review work on GAP-43 and G0, and focus upon the thesis that their interaction may endow neurons with such plasticity. We also present new data on the role of G proteins in neurite growth, and on the interaction of GAP-43 and actin. GAP-43 is a protein induced during periods of axonal extension and highly enriched on the inner surface of the growth cone membrane. Its membrane localization is primarily due to a short amino terminal sequence which is subject to palmitoylation. Binding to actin filaments may also assist in restricting the protein to specific cellular domains. Consistent with its role as a ?plasticity protein,”? there is evidence that GAP-43 can directly alter cell shape and neurite extension, and several theses have been advanced for how it might do so. Two other prominent components of the growth cone membrane are the α and β subunits of G0. GAP-43 regulates their guanine nucleotide exchange, which is an unusual role for an intracellular protein. We speculate that GAP-43 may adjust the ?set point”? of responsiveness for G0 stimulation by receptors, thereby altering the neuronal propensity to growth, without actually causing growth. To begin to address how G protein activity affects axon growth, we have developed a means to introduce guanine nucleotide analogs into sympathetic neurons. Stimulation of G proteins with GTP-γ-S retards axon growth, whereas GDP-β-S enhances it. This is compatible with G protein registration of inhibitory signals. © 1992 John Wiley & Sons, Inc.  相似文献   

13.
The binding of iron-loaded human transferrin at the surface of Neisseria meningitidis is mediated by two polypeptides, Tbp1 and Tbp2. Predicted Tbp amino acid sequences from N. meningitidis strains are highly divergent. This variability is particularly pronounced throughout the Tbp2 polypeptide. In this study, a highly structured and extremely stable Tbp2 domain of about 270 to 290 amino acids which is involved in the binding to transferrin and whose position is well conserved has been characterized. The conservation of such a remarkable structure in a very divergent protein domain (there is only 43% amino acid identity within this region) suggests that is plays an essential biological role and raises a number of questions regarding tbp2 evolution.  相似文献   

14.
15.
GAP-43 protein of nerve terminals (B-50, F1, F57, pp46, neuromodulin) is thought to be one of key proteins involved in the control of outgrowth of neurites, release of neuromediators, synapse plasticity, etc. GAP-43 is usually considered as a whole protein. Along with the intact protein, nerve cells also contain two large native fragments of GAP-43 deprived of four or of about forty N-terminal amino acid residues (GAP-43-2 and GAP-43-3, respectively). The full-length GAP-43 is predominant in the mature brain. However, the ratio of the full-length protein and its fragments can vary under different physiological conditions. Changes in the GAP-43 proteins (the full-length protein and its fragments) were studied during embryonal and postnatal development of rat brain. The GAP-43 proteins were found to be expressed not later than on the 12-13th day of embryogenesis. Then their contents increased, and, until the 10th day after birth, GAP-43-3 dominated rather than the full-length protein. It is suggested that during this period the activity of a specific protease, which cleaves the N-terminal peptide of about 40 residues from the full-length GAP-43 molecule, is increased. The cleavage occurs in the region responsible for the interaction of GAP-43 with calmodulin. In the full-length molecule, this region is responsible also for the recognition of Ser41 residue by protein kinase C during phosphorylation. Another functionally important region that determines, in particular, the attachment of GAP-43 to the plasma membrane is cleaved from the main part of the molecule together with the N-terminal peptide. Thus, the specific fragmentation of GAP-43 that depends on developmental stage should be considered as a controlled structural rearrangement fundamentally affecting the functions of this protein.  相似文献   

16.
Y C Liu  E R Chapman  D R Storm 《Neuron》1991,6(3):411-420
Neuromodulin (GAP-43) is a membrane protein that is transported to neuronal growth cones. Zuber and co-workers have proposed that the N-terminal 10 amino acid sequence of neuromodulin is sufficient to target proteins to growth cones. We demonstrate that a neuromodulin-beta-galactosidase fusion protein is transported to growth cones of cultured rat neurons, whereas a fusion protein containing the N-terminal 10 amino acids of neuromodulin and beta-galactosidase is not. A mutant neuromodulin lacking cysteines 3 and 4, the palmitylation sites required for membrane attachment, does not target beta-galactosidase to growth cones. We conclude that membrane attachment is required for growth cone accumulation and that structural elements, in addition to the first 10 amino acids of neuromodulin, may be required for growth cone targeting.  相似文献   

17.
Abstract: Activation of protein kinase C (PKC) and phosphorylation of its presynaptic substrate, the 43-kDa growth-associated protein GAP-43, may contribute to the maintenance of hippocampal long-term potentiation (LTP) by enhancing the probability of neurotransmitter release and/or modifying synaptic morphology. Induction of LTP in rat hippocampal slices by high-frequency stimulation of Schaffer collateral-CA1 synapses significantly increased the PKC-dependent phosphorylation of GAP-43, as assessed by quantitative immunoblotting with a monoclonal antibody that recognizes an epitope that is specifically phosphorylated by PKC. The stimulatory effect of high-frequency stimulation on levels of immunoreactive phosphorylated GAP-43 was not observed when 4-amino-5-phosphonovalerate (50 µM), an N-methyl-d -aspartate (NMDA) receptor antagonist, was bath-applied during the high-frequency stimulus. This observation supports the hypothesis that a retrograde messenger is produced postsynaptically following NMDA receptor activation and diffuses to the presynaptic terminal to activate PKC. Two retrograde messenger candidates—arachidonic acid and nitric oxide (sodium nitroprusside was used to generate nitric oxide)—were examined for their effects in hippocampal slices on PKC redistribution from cytosol to membrane as an indirect measure of enzyme activation and PKC-specific GAP-43 phosphorylation. Bath application of arachidonic acid, but not sodium nitroprusside, at concentrations that produce synaptic potentiation (100 µM and 1 mM, respectively) significantly increased translocation of PKC immunoreactivity from cytosol to membrane as well as levels of immunoreactive, phosphorylated GAP-43. The stimulatory effect of arachidonic acid on GAP-43 phosphorylation was also observed in hippocampal synaptosomes. These results indicate that arachidonic acid may contribute to LTP maintenance by activation of presynaptic PKC and phosphorylation of GAP-43 substrate. The data also suggest that nitric oxide does not activate this signal transduction system and, by inference, activates a distinct biochemical pathway.  相似文献   

18.
GAP-43 mRNA in growth cones is associated with HuD and ribosomes   总被引:3,自引:0,他引:3  
The neuron-specific ELAV/Hu family member, HuD, interacts with and stabilizes GAP-43 mRNA in developing neurons, and leads to increased levels of GAP-43 protein. As GAP-43 protein is enriched in growth cones, it is of interest to determine if HuD and GAP-43 mRNA are associated in developing growth cones. HuD granules in growth cones are found in the central domain that is rich in microtubules and ribosomes, in the peripheral domain with its actin network, and in filopodia. This distribution of HuD granules in growth cones is dependent on actin filaments but not on microtubules. GAP-43 mRNA is localized in granules found in both the central and peripheral domains, but not in filopodia. Ribosomes were extensively colocalized with HuD and GAP-43 mRNA granules in the central domain, consistent with a role in the control of GAP-43 mRNA stability in the growth cone. Together, these results demonstrate that many of the components necessary for GAP-43 mRNA translation/stabilization are present within growth cones.  相似文献   

19.
Transmembrane topography and evolutionary conservation of synaptophysin   总被引:21,自引:0,他引:21  
Synaptophysin is the major integral membrane protein of small synaptic vesicles. Its primary structure deduced from rat and human complementary DNA sequences predicts that synaptophysin contains four transmembrane regions and a carboxyl-terminal domain having a novel repetitive structure. To elucidate the transmembrane organization of this protein in the synaptic vesicle, five antipeptide antibodies were raised. The site-specific antibodies were used to map the cognate sequences to the cytoplasmic or intravesicular side of the synaptic vesicle membrane by determining the susceptibility of the epitopes to proteolysis. The results confirm a topographic model for synaptophysin in which the protein spans the vesicle membrane four times, with both the amino and carboxyl terminus being cytoplasmic. In addition, the evolutionary conservation of the synaptophysin domains was addressed as a function of their membrane localization. To this end the primary structure of bovine synaptophysin was determined. Sequence comparisons between bovine, rat, and human synaptophysin revealed that only the intravesicular loops showed a significant number of amino acid substitutions (22%), while the transmembrane regions and cytoplasmic sequences were highly conserved (3% substitutions). These results depict synaptophysin as a protein with multiple membrane spanning regions whose functional site is likely to reside in highly conserved intramembranous and cytoplasmic sequences.  相似文献   

20.
To investigate the molecular basis for GAP-43 function in axon outgrowth, we produced a mutant, GAP-43 (Ala41), whose interaction with calmodulin in vitro was unaffected by increasing Ca2+ concentrations, and stably transfected it into GAP-43-deficient PC12B cells. Several lines that expressed wild-type or mutant protein at levels that resembled endogenous GAP-43 expression in PC12 controls were subcloned and characterized. GAP-43 (Ala41) was significantly more extractable with Nonidet P-40 and less tightly associated with the membrane skeleton than the wild-type protein. Furthermore, GAP-43 (Ala41) expression by PC12B cells profoundly affected their phenotype: First, observation of living cells using video-enhanced microscopy revealed irregular plasma membranes with numerous blebs and protrusions and neurites that appeared thin and varicose. Second, both the cells' ability to remain attached to laminin substrates and the amount of α1β1 integrin expressed on the cell surface was significantly decreased. Finally, peripherin transport, which is abnormal in PC12B cells, could be rescued by transfection of wild-type GAP-43 but not the GAP-43 (Ala41) mutant. The phenotypic abnormalities resemble other cell types in which membrane skeleton/plasma membrane interactions have been functionally decoupled, and our results are consistent with the notion that these interactions may be abnormal in GAP-43 (Ala41)-expressing PC12B cells, either as a direct consequence of the mutation or arising secondarily to the altered availability of calmodulin in the growing neurite. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号