首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Duckweed Lemna minor L. was grown on Wang culture medium supplemented with lead ions for 24 hours. Metal was tested at 1.5, 3 and 6 mg·dm−3 concentrations. The response of antioxidant enzymes, such as superoxide dismutase, catalase and peroxidase in lead-treated roots of duckweed was investigated. Lead ions had no effect on the spectrum of catalase and peroxidase isoenzymes while a new isoform of superoxide dismutase appeared on the Pb treated roots. A lead-depended increase in activities of superoxide dismutase and peroxidase was observed, whereas catalase activity was maintained at relatively constant values at lower lead concentrations and then decreased markedly below control level.  相似文献   

2.
The present study investigates the ability of two genus of duckweed (Lemna minor and Spirodela polyrhiza) to phytoremediate cadmium from aqueous solution. Duckweed was exposed to six different cadmium concentrations, such as, 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 mg/L and the experiment was continued for 22 days. Water samples were collected periodically for estimation of residual cadmium content in aqueous solution. At the end of treatment period plant samples were collected and accumulated cadmium content was measured. Cadmium toxicity was observed through relative growth factor and changes in chlorophyll content. Experimental results showed that Lemna minor and Spirodela polyrhiza were capable of removing 42–78% and 52–75% cadmium from media depending upon initial cadmium concentrations. Cadmium was removed following pseudo second order kinetic model. Maximum cadmium accumulation in Lemna minor was 4734.56 mg/kg at 2 mg/L initial cadmium concentration and 7711.00 mg/kg in Spirodela polyrhiza at 3 mg/L initial cadmium concentration at the end of treatment period. Conversely in both cases maximum bio-concentration factor obtained at lowest initial cadmium concentrations, i.e., 0.5 mg/L, were 3295.61 and 4752.00 for Lemna minor and Spirodela polyrhiza respectively. The present study revealed that both Lemna minor and Spirodela polyrhiza was potential cadmium accumulator.  相似文献   

3.
D. Werner 《Planta》1967,76(1):25-36
Summary Germanium acid, a specific inhibitor of the silicic acid metabolism in diatoms, inhibits the growth of Sinapis alba, Lemna minor, Wolffia arrhiza, Nicotiana tabacum, Tradescantia spec, Zinnia elegans, and Secale cereale when applied in the same concentrations as those used in the case of diatoms (15–75 g GeO2/ml medium). The growth of Aspergillus niger, Phycomyces blakesleanus, Escherichia coli K 12, Euglena gracilis and Pandorina morum is not influenced by these and higher concentrations of Germanium acid. By application of high concentrations of silicic acid, the growth inhibition produced by germanium acid in Lemna minor is partially reduced. Plants of Lemna minor which have been inhibited by germanium acid are essentially smaller than plants grown in a normal medium; their chlorophyll content is significantly decreased. The growth of the roots in Lemna is particularly inhibited. Isolated growing roots of Lycopersicon pimpinellifolium Mill. are inhibited by small concentrations of Ge(OH)4 (ca. 1,5×10-4 M/l). In contrast to the growth of older plants, the germination of Secale cereale and Sinapis alba is not influenced by Ge(OH)4. The effects of germanium acid are discussed in relation to the physiological role of silicic acid. The results suggest that the element silicon, in the form of silicic acid, is generally essential for the normal development of higher plants.  相似文献   

4.
This study examined the ability of the aquatic plant Lemna minor (duckweed) to remove soluble lead under various laboratory conditions. In a batch process L. minor was exposed to different pH values (4.5–8.0) and temperature (15–35°C) in presence of different lead concentrations (0.1–10.0 mg L?1) for 168 h. The amount of biomass obtained in the study period on a dry weight basis, the concentrations of lead in tissue and in medium and net uptake of lead by Lemna all have been determined in each condition. The percentages of lead uptake ratios (PMU) and bioconcentration factors (BCF) were also calculated for these conditions. Bioaccumulated lead concentrations and the PMU were obtained at lowest pH of 4.5, and at 30°C. The highest accumulated lead concentration was found at pH 4.5 as 3.599 mg Pb g?1 in 10.0 mg L?1. It decreased to pH 6.0, but it did not change at pH 6.0–8.0 range. The maximum lead accumulation was obtained at 30°C as 8.622 mg Pb g?1 in 10 mg L?1 at pH 5.0, and the minimum was at 15°C as 0.291 mg g?1 in 0.1 mg L?1. Lead accumulation gradually increased with increasing lead in medium, but the opposite trend was observed for PMU. Lead accumulation increased up to 50 mg L?1, but did not change significantly in the 50.0–100.0 mg L?1 range. The lead uptake from water was modeled and the equation fit the experimental data very well.  相似文献   

5.
Arsenic is hazardous and causes several ill effects on human beings. Phytoremediation is the use of aquatic plants for the removal of toxic pollutants from external media. In the present research work, the removal efficiency as well as the arsenic uptake capacity of duckweed Lemna minor has been studied. Arsenic concentration in water samples and plant biomass were determined by AAS. The relative growth factor of Lemna minor was determined. The duckweed had potential to remove as well as uptake arsenic from the aqueous medium. Maximum removal of more than 70% arsenic was achieved at initial concentration of 0.5 mg/l arsenic on 15th day of experimental period of 22 days. Removal percentage was found to decrease with the increase in initial concentration. From BCF value, Lemna minor was found to be a hyperaccumulator of arsenic at initial concentration of 0.5 mg/L, such that accumulation decreased with increase in initial arsenic concentration.  相似文献   

6.
The control of glutamine synthetase level in Lemna minor L.   总被引:1,自引:1,他引:0  
Summary The specific activity of glutamine synthetase (E.C. 6.3.1.2) of Lemna minor L. is markedly reduced when either ammonium ions or glutamine are present in the growth medium. Combinations of 5 mM ammonia and 5 mM glutamic acid or 5 mM ammonia and 5 mM glutamine as nitrogen source, lead to a 4–5 fold reduction of the maximum activity measurable on 5 mM -aminobutyric acid. Analyses of the soluble pool of nitrogen indicate that the reduction in enzyme level is associated with an increase in the pool of glutamine. There is an inverse correlation between the apparent rate of synthesis of glutamine synthetase and the intracellular concentration of glutamine, and this relationship suggests that the glutamine synthetase of Lemna minor is subject to end product repression by the endogenous pool of glutamine.  相似文献   

7.
《Aquatic Botany》2006,84(4):289-295
Treatment of Lemna minor L. roots with 15 μM Pb2+ supplied as Pb(NO3)2 in 50-fold diluted Wang medium caused a progressive reduction in mitotic activity in the root tip. The percentage of dividing nuclei after 1, 6, 12 and 12 h of lead treatment was 6.25, 4.4, 3.4 and 0.3, respectively as compared to 7.1–7.7% in the control. After 6 h of lead treatment the number of cells in metaphase and anaphase was reduced by four- and nine-fold, respectively and after 12 h these phases were not detected. There were 3- and 10-fold fewer cells in telophase after 6 and 24 h, while those in prophase were reduced only in the 24 h treatment (a 30-fold reduction). These effects were associated with an increase in the number of cells exhibiting disturbances including lagging chromosomes, chromosome bridges, micronuclei, and nuclei with more condensed chromatin. The formation of micronuclei in root cells of L. minor cells at a very low dose of lead indicates that roots of this aquatic plant may be more sensitive to lead than those of terrestrial plants.  相似文献   

8.
In the present study, the effect of copper (Cu2+) and lead (Pb2+) ions on the growth and lipid composition of various parts of the fern, Matteuccia sthruthiopteris, was examined. Plants were incubated in the presence or absence of 1, 10, 100 μM of Cu(NO3)2 or Pb(NO3)2. Cu2+ and Pb2+ ions at concentrations of 1 and 10 μM caused an increased growth of the roots and leaves. A higher concentration of Pb2+ did not show any effect on growth, whereas that of Cu2+ slowed down the growth of the whole plants. The roots accumulated more than 700 μg of Cu2+ and 400 μg of Pb2+ per 1 g dry weight when the plants were incubated with the higher concentrations of metals, whereas in the leaves the concentration of Cu2+ was much lower and did not exceed 12 μg/g dry weight. No accumulation of Pb2+ ions by leaves was detected. The lipid composition of photosynthetic leave tissues was shown to be affected by the presence of metal ions in the root medium at either concentration studied. Various changes in lipid classes were noted as responsive reactions of M. sthruthiopteris to the heavy metal ions in nutrient medium. Cu2+ ions decreased the content of total lipids, total phospholipids, and individual phosphatidylcholines and phosphatidylethanolamines, whereas Pb2+ ions caused a decrease in the content of total lipids and glycolipids. Changes in the lipid composition were more pronounced in the mature leaves than in the scrolls of the studied fern.  相似文献   

9.
The distribution of lead in duckweed (Lemna minor L.) root tip   总被引:1,自引:0,他引:1  
Samardakiewicz  S.  Woźny  A. 《Plant and Soil》2000,226(1):107-111
While considerable information on lead distribution in the cells of terrestrial plants has been collected, little is known about lead localization in the cells of the aquatic plant. Lemna minor L. (duckweed) roots were examined using X-ray microanalysis. After 1-h treatment with lead, its concentration was the highest in small vacuoles. After 6 and 12 h, the lead content of cell walls gradually increased. The changes of lead level between vacuoles and cell walls may result from redistribution of this metal from symplast to cell walls or it may reflect increased apoplastic transport. Lead was not found in the ground cytoplasm of any variants of the experiments. This fact and presence of lead in small vesicles suggests that endocytosis may play the role in lead uptake in Lemna.  相似文献   

10.
The treatment ofLemna minor L. plants with Pb(NO3)2 for 90 min, 8 and 24 h resulted in intensified deposition of (l,3)-P-glucan (callose) in plants roots. It was localized in the protodermis of the root tip, and in the center of the stele in the region at the proximal part of the root cap and slightly above  相似文献   

11.
The aquatic plant Lemna minor (duckweed) was examined for its ability to sorb soluble lead from water under laboratory conditions. The use of biomass as a sorption medium provides a simple alternative separation technology. Laboratory-scale (700-mL) batch reactors containing soil-based sediments were used to expose L. minor to concentrations of 0.0, 5.0, and 10.0 mg/L of lead for 7 d. Overall removal amounts of 95% were observed, with 85% removal occurring within the first day. A sorption process model was developed based on a mass balance and a power law rate of sorption equation.  相似文献   

12.
Lemna minor L. roots were treated with different concentrations of NaCl. Lipid peroxidation was investigated histochemically and biochemically. At higher NaCl concentrations an increase in staining was observed in the root apices as compared to control for lipid peroxidation and loss of membrane integrity as well as an increase in contents of thiobarbituric acid reactive substance and peroxide. Both the non-enzymic antioxidants, ascorbate and glutathione increased with the NaCl concentration in the roots. Whereas an increase in superoxide dismutase, guaiacol peroxidase, and glutathione reductase activities were marked, catalase activity decreased in the roots under NaCl stress. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
The moderate halophile Vibrio costicola, growing on a chemically-defined medium, transformed choline into glycine betaine (betaine) by the membrane-bound enzyme choline dehydrogenase and the cytoplasmic enzyme betainal (betaine aldehyde) dehydrogenase. Choline dehydrogenase was strongly induced and betainal dehydrogenase less strongly induced by choline. The formation of these enzymes was also regulated by the NaCl concentration of the growth medium, increasing with increasing NaCl concentrations. Intracellular betaine concentrations also increased with increasing choline and NaCl concentrations in the medium. This increase was almost completely blocked by chloramphenicol, which does not block the increase in salt-tolerant active transport on transfer from a low to a high salt concentration.Choline dehydrogenase was inhibited by chloride salts of Na+, K+, and NH inf4 su+ , the inhibition being due to the Cl- ions. Betainal dehydrogenase was stimulated by 0.5 M salts and could function in up to 2.0 M salts.Cells grew as well in the presence as in the absence of choline in 0.5 M and 1.0 M NaCl, but formed no intracellular betaine. Choline stimulated growth in 2.0 M NaCl and was essential for growth in 3.0 M NaCl. Thus, while betaine is important for some of the adaptations to high salt concentration by V. costicola, it by no means accounts for all of them.Abbreviations CDMM chemically-defined minimal medium - PPT proteose-peptone tryptone medium - SDS sodium dodecyl sulfate Deceased, 1987  相似文献   

14.
Coronopus didymus was examined in terms of its ability to remediate Pb-contaminated soils. Pot experiments were conducted for 4 and 6 weeks to compare the growth, biomass, photosynthetic efficiency, lead (Pb) uptake, and accumulation by C. didymus plants. The plants grew well having no visible toxic symptoms and 100% survivability, exposed to different Pb-spiked soils 100, 350, 1500, and 2500 mg kg?1, supplied as lead nitrate. After 4 weeks, root and shoot concentrations reached 1652 and 502 mg Pb kg?1 DW, while after 6 weeks they increased up to 3091 and 527 mg Pb kg?1 DW, respectively, at highest Pb concentration. As compared to the 4 week experiments, the plant growth and biomass yield were higher after 6 weeks of Pb exposure. However, the chlorophyll content of leaves decreased but only a slight decline in photosynthetic efficiency was observed on exposure to Pb at both 4 and 6 weeks. The Pb accumulation was higher in roots than in the shoots. The bioconcentration factor of Pb was > 1 in all the plant samples, but the translocation factor was < 1. This suggested C. didymus as a good candidate for phytoremediation of Pb-contaminated soils and can be used for future remediation purposes.  相似文献   

15.
通过室内水培试验,研究了不同浓度Pb2+(0、0.25、0.50、1.00和2.00mmol·L-1)胁迫对东方香蒲根和叶中Pb含量、叶绿素含量、丙二醛(MDA)含量、抗氧化酶(SOD、CAT和POD)活性以及亚细胞结构的影响。结果显示:(1)随着外源Pb2+浓度的增加,Pb在香蒲根和叶中的积累量均显著高于对照,且Pb在根中的含量明显高于叶中,并与外源Pb2+浓度呈显著正相关关系。(2)香蒲叶片中的叶绿素a和叶绿素b含量随着外源Pb2+浓度的增加呈先升后降趋势,均在处理浓度为0.50mmol·L-1时达到峰值。(3)胁迫处理叶片的MDA含量与对照相比变化不显著,但根中MDA含量呈显著下降趋势。(4)叶片中SOD活性在1.00mmol·L-1 Pb2+处理时达到峰值,然后下降,但始终高于对照,CAT和POD活性则均低于对照组;根中SOD活性除1.00mmol·L-1 Pb2+处理组外均显著低于对照组,CAT和POD活性分别在0.25和0.50mmol·L-1 Pb2+处理时达到峰值,然后随处理Pb2+浓度升高而下降。(5)电镜观察发现,Pb2+胁迫使香蒲叶细胞中叶绿体被膜破裂,类囊体膨胀、破损;根和叶细胞中的线粒体被膜均破裂、内腔空泡化,细胞核核膜破损、核仁消失、染色质凝集。研究表明,Pb2+胁迫致使东方香蒲根、叶生理代谢失衡,亚细胞结构出现不可逆的损伤,这为从分子水平研究Pb2+作用的具体机理以及香蒲在重金属污染修复中的应用提供了依据。  相似文献   

16.
《Aquatic Botany》2005,83(4):289-295
Treatment of Lemna minor L. roots with 15 μM Pb2+ supplied as Pb(NO3)2 in 50-fold diluted Wang medium caused a progressive reduction in mitotic activity in the root tip. The percentage of dividing nuclei after 1, 6, 12 and 12 h of lead treatment was 6.25, 4.4, 3.4 and 0.3, respectively as compared to 7.1–7.7% in the control. After 6 h of lead treatment the number of cells in metaphase and anaphase was reduced by four- and nine-fold, respectively and after 12 h these phases were not detected. There were 3- and 10-fold fewer cells in telophase after 6 and 24 h, while those in prophase were reduced only in the 24 h treatment (a 30-fold reduction). These effects were associated with an increase in the number of cells exhibiting disturbances including lagging chromosomes, chromosome bridges, micronuclei, and nuclei with more condensed chromatin. The formation of micronuclei in root cells of L. minor cells at a very low dose of lead indicates that roots of this aquatic plant may be more sensitive to lead than those of terrestrial plants.  相似文献   

17.
Physiological effects of sublethal doses of atrazine on Lemna minor. VII. 1,2-[14C] acetate incorporation into the groups of lipids and their fatty acids. The lipids and the fatty acids of ten-day old duckweed (Lemna minor L.), cultivated aseptically in mineral solution containing sublethal concentrations of 0,10 and 0,50 ppm (0.46 and 2.3 μM, respectively) of atrazine, were analyzed by thin-layer chromatography and gas-liquid radiochromatography after 1,2-[14C] acetate feeding. Sublethal concentrations of atrazine increased the incorporation of radioactivity in total lipids, diacylgalactosylglycerol (DGG), diacyldigalactosylglycerol (DDG), sul-folipids (SL), phosphatidylglycerol (PG), diacylglycerol (DAG) and triacylglycerol + steroll esters (TAG+SE). The incorporation of acetate-1,2-[14C] decreased in phos-phatidylcholine (PC) and in phosphatidylethanolamine (PE) in the presence of atrazine. The radioactivity increased in total Transic-hexadecenoic, linoleic and α -linolenic acids while it decreased in the other fatty acids. This indicates that the sublethal concentrations of atrazine stimulate the desaturation of fatty acids of L. minor. The radioactivity was strongly incorporated in the α -linolenic acid of DGG in the presence of atrazine. The specific radioactivity of α-linolenic acid was greater in DAG than in PG > TAG + SE > PC > PE > DGG > SL > DDG and it increased in all groupd of lipids analyzed under the influence of sublethal doses of atrazine. The labelling of Translchexadecenoic acid of PG and its specific radioactivity increased in the presence of atrazine. These changes suggest that the sublethal concentrations of atrazine stimulate especially the lipid metabolism of the chloroplasts of L. minor and they could explain the increase in the number of grana per chloroplast in treated L. minor. The results are discussed in relation to the biosynthesis of galactolipids.  相似文献   

18.
The effect of two different iron chelates and iron concentration on multiplication, shoot growth, chlorophyll content and rooting of Carlina onopordifolia were studied in in vitro culture. FeEDTA presented in MS basal medium was replaced by FeEDDHA, which was applied in three concentrations: 93.5, 187.0 and 280.5?mg?dm?3 (5.6?mg?dm?3, 11.2 and 16.8?mg?dm?3 Fe ions, respectively). Changing chelate or iron concentration in the medium had no effect on axillary shoot number proliferation, but growth of shoots was significantly inhibited by a two- and three-fold increase in concentration of FeEDDHA in the medium. Supplementation of the medium with FeEDDHA as Fe source significantly increased the level of chlorophyll in the leaves. After treatment of shoots with IBA for 5?s and growing them on the MS medium supplemented with FeEDTA, the number of roots per shoot was significantly higher than on medium containing FeEDDHA. Increasing the concentration of Fe ions in the medium after a short pulse (5?s) of IBA had no effect on shoot rooting. After 30?s of 1-g?dm?3 IBA treatment, growth of roots on medium with FeEDDHA was stimulated. The survival rate was relatively low and did not depend on the type and concentration of iron chelate in the rooting medium.  相似文献   

19.
为探讨小黄花菜的耐盐机理,选育良好的耐盐植物以缓解土壤盐渍化问题,该文选取小黄花菜(Hemerocallis minor)为试材,采用砂培法,研究不同浓度NaCl(50、100、150、200、250 mmol·L-1)胁迫对小黄花菜的生长性状、细胞质膜透性和有机渗透调节物质含量等的影响.结果表明:(1)小黄花菜在10...  相似文献   

20.
Allozymic and morphometric variation was studied in 28 clones ofLemna minor. This variation was compared with the corresponding variation in four clones ofLemna gibba and four clones ofSpirodela polyrrhiza. A high level of allozymic variation was observed among the clones, despite having been grown under uniform laboratory conditions for several years and despite its quasi-exclusive clonal means of propagation. Based on degree of allozymic similarity,Spirodela polyrrhiza was distinguished from the twoLemna species but the latter species were genetically indistinguishable. Allozymic similarity among clones ofLemna minor was not related to morphometric similarity, nor was it related to the degree of geographic separation or climatic similarity of their sites of origin. The results suggest that allozymic variation among these clones ofLemna minor may be largely neutral and not a consequence of differential selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号