首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Thymidylate synthetase, which appears after infection of Escherichia coli with bacteriophage T4, has been partially purified. The phage enzyme is immunologically distinct from the host enzyme and has a molecular weight of 50,000 in comparison to 68,000 for the host enzyme. A system has been developed to characterize T4 td mutants previously known to have impaired expression of phage thymidylate synthetase. For this system, an E. coli host lacking thymidylate synthetase was isolated. Known genetic suppressors were transduced into this host. The resulting isogenic hosts were infected with phage T4 td mutants. The specific activities and amounts of cross-reacting material induced by several different types of phage mutants under conditions of suppression or non-suppression have been examined. The results show that the phage carries the structural gene specifying the thymidylate synthetase which appears after phage infection, and that the combination of plaque morphology, enzyme activity assays, and an assay for immunologically cross-reacting material provides a means for identifying true amber mutants of the phage gene.  相似文献   

2.
Three new methods applying a novel approach for rapid and simple detection of specific bacteria, based on plaque formation as the end point of the phage lytic cycle, are described. Different procedures were designed to ensure that the resulting plaques were derived only from infected target bacteria (“infectious centers”). (i) A pair of amber mutants that cannot form plaques at concentrations lower than their reversion rate underwent complementation in the tested bacteria; the number of plaques formed was proportional to the concentration of the bacteria that were coinfected by these phage mutants. (ii) UV-irradiated phages were recovered by photoreactivation and/or SOS repair mediated by target bacteria and plated on a recA uvrA bacterial lawn in the dark to avoid recovery of noninfecting phages. (iii) Pairs of temperature-sensitive mutants were allowed to coinfect their target bacteria at the permissive temperature, followed by incubation of the plates at the restrictive temperature to avoid phage infection of the host cells. This method allowed the omission of centrifuging and washing the infected cells. Only phages that recovered by recombination or complementation were able to form plaques. The detection limit was 1 to 10 living Salmonella or Escherichia coli O157 cells after 3 to 5 h. The antibiotic susceptibility of the target bacteria could also be determined in each of these procedures by preincubating the target bacteria with antibiotic prior to phage infection. Bacteria sensitive to the antibiotic lost the ability to form infectious centers.  相似文献   

3.
It was found that (?)rugulosin, an antibiotic isolated from Myrothecium verucaria, had a potent anti-phage effect on RNA phages (MS2, GA and Qβ) and DNA phages (δA and T4). The effect was almost independent of the host bacterial strains used. By a detailed investigation using MS2, it was revealed that the antibiotic did not affect the free phage or host bacterium alone but inhibited phage multiplication, and the degree of the inhibition depended on the multiplicity of infection. The inhibition was not mainly due to a drop in the burst size but rather was due to a decrease of the phage-producing cells during the early stages of phage infection and replication.  相似文献   

4.
A series of phage P1 variants was isolated from plaques developing on S. aureus WF 145. One in particular, phage 14, was studied in detail because its host range appeared to be dependent on the previous host of production; i.e., it was subject to a host control. When this phage was produced on host K1 its lysate assayed equally well on both 145 and K1 cells. When produced on host 145, however, it assayed manyfold higher on 145 than on host K1. All its particles adsorbed on K1 cells, but only a small percentage were able to produce plaques. No differences could be found in adsorption rates, latent periods, or burst sizes of the phage on the two hosts. No extracellular inactivating substances could be detected which could account for such changes, nor could the results be explained readily on a mutational basis, since distinct phage strains could not be isolated. The change in virus properties was found to occur in the first burst of singly infected host 145 cells, regardless of the previous host or its prior lytic abilities. Heat inactivation destroyed activity for K1 cells more rapidly than for 145 cells. This was found to be a property of both the stock phage P1 and phage 14. Phage 14 could be heated until there remained particles which could multiply only on strain 145. When the plaques of such survivors were examined they were found to contain phage which could multiply on both hosts in a ratio characteristic of the original unheated preparation. The data suggest that the observed changes were caused by a host control over the formation of a phage material(s) necessary for successful infection of host K1. Such a substance theoretically could be related to the labile material destroyed by heat and required for plaque formation on host K1.  相似文献   

5.
The DNA-Delay Mutants of Bacteriophage T4   总被引:16,自引:6,他引:10  
Mutants of phage T4 defective in genes 39, 52, 58-61, and 60 (the DNA delay or DD genes) are characterized by a delay in phage DNA synthesis during infection of a nonpermissive Escherichia coli host. Amber (am) mutants defective in these genes yield burst sizes varying from 30 to 110 at 37 C in E. coli lacking an am suppressor. It was found that when DD am mutants are grown on a non-permissive host at 25 C, rather than at 37 C, phage yield is reduced on the average 61-fold. At 25 C incorporation of labeled thymidine into phage DNA is also reduced to 3 to 10% of wild-type levels. Mutants defective in the DD genes were found to promote increased recombination as well as increased base substitution and addition-deletion mutation. These observations indicate that the products of the DD genes are necessary for normal DNA synthesis. The multiplication of the DD am mutants on an Su host at 37 C is about 50-fold inhibited if prior to infection the host cells were grown at 25 C. This suggests that a compensating host function allows multiplication of DD am mutants at 37 C in the Su host, and that this function is active in cells grown at 37 C prior to infection, but is inactive when the prior growth is at 25 C. Further results are described which suggest that the products of genes 52, 60, and 39 as well as a host product interact with each other.  相似文献   

6.
Bacteriophages attacking lactic acid bacteria (LAB) still represent a crucial problem in industrial dairy fermentations. The consequences of a phage infection against LAB can lead to fermentation delay, alteration of the product quality and, in most severe cases, the product loss. Phage particles enumeration and phage-host interactions are normally evaluated by conventional plaque count assays, but, in many cases, these methods can be unsuccessful. Bacteriophages of Lactobacillus helveticus, a LAB species widely used as dairy starter or probiotic cultures, are often unable to form lysis plaques, thus impairing their enumeration by plate assay. In this study, we used epifluorescence microscopy to enumerate L. helveticus phage particles from phage-infected cultures and Atomic Force Microscopy (AFM) to visualize both phages and bacteria during the different stages of the lytic cycle. Preliminary, we tested the sensitivity of phage counting by epifluorescence microscopy. To this end, phage particles of ΦAQ113, a lytic phage of L. helveticus isolated from a whey starter culture, were stained by SYBR Green I and enumerated by epifluorescence microscopy. Values obtained by the microscopic method were 10 times higher than plate counts, with a lowest sensitivity limit of ≥ 6 log phage/ml. The interaction of phage ΦAQ113 with its host cell L. helveticus Lh1405 was imaged by AFM after 0, 2 and 5 h from phage-host adsorption. The lytic cycle was followed by epifluorescence microscopy counting and the concomitant cell wall changes were visualized by AFM imaging. Our results showed that these two methods can be combined for a reliable phage enumeration and for studying phage and host morphology during infection processes, thus giving a complete overview of phage-host interactions in L. helveticus strains involved in dairy productions.  相似文献   

7.
In this study we isolated novel bacteriophages, infecting the zoonotic bacterium Campylobacter jejuni. These phages may be used in phage therapy of C. jejuni colonized poultry to prevent spreading of the bacteria to meat products causing disease in humans. Many C. jejuni phages have been isolated using NCTC12662 as the indicator strain, which may have biased the selection of phages. A large group of C. jejuni phages rely on the highly diverse capsular polysaccharide (CPS) for infection and recent work identified the O-methyl phosphoramidate modification (MeOPN) of CPS as a phage receptor. We therefore chose seven C. jejuni strains each expressing different CPS structures as indicator strains in a large screening for phages in samples collected from free-range poultry farms. Forty-three phages were isolated using C. jejuni NCTC12658, NCTC12662 and RM1221 as host strains and 20 distinct phages were identified based on host range analysis and genome restriction profiles. Most phages were isolated using C. jejuni strains NCTC12662 and RM1221 and interestingly phage genome size (140 kb vs. 190 kb), host range and morphological appearance correlated with the isolation strain. Thus, according to C. jejuni phage grouping, NCTC12662 and NCTC12658 selected for CP81-type phages, while RM1221 selected for CP220-type phages. Furthermore, using acapsular ∆kpsM mutants we demonstrated that phages isolated on NCTC12658 and NCTC12662 were dependent on the capsule for infection. In contrast, CP220-type phages isolated on RM1221 were unable to infect non-motile ∆motA mutants, hence requiring motility for successful infection. Hence, the primary phage isolation strain determines both phage type (CP81 or CP220) as well as receptors (CPS or flagella) recognised by the isolated phages.  相似文献   

8.
Five actinophages highly specific for Streptomyces mediterranei were isolated from lysed broth cultures. Studies were performed on the effect of plating conditions on plaque formation. The development of phage-resistant strains of S. mediterranei not only eliminated the phage but also significantly increased rifamycin yields. The phage-resistant cultures proved to be more unstable than the original sensitive strain. Maintenance of the cultures as frozen vegetative mycelium assured culture stability and reproducibility of the results. Strict aseptic precautions throughout the laboratories and fermentation areas did not eliminate the danger of phage infection; effective control was obtained only with the introduction of resistant strains. S. mediterranei phages proved to be highly specific for calcium as an adsorption cofactor; addition of calcium-sequestering agents to sensitive mycelium completely prevented its lysis by the phage. The resistant strains developed were capable of adsorbing the phage and of releasing it without multiplication upon aging of the mycelium. No marked morphological, cultural, or biochemical differences were found among the various phage-resistant strains.  相似文献   

9.
Five actinophages highly specific for Streptomyces mediterranei were isolated from lysed broth cultures. Studies were performed on the effect of plating conditions on plaque formation. The development of phage-resistant strains of S. mediterranei not only eliminated the phage but also significantly increased rifamycin yields. The phage-resistant cultures proved to be more unstable than the original sensitive strain. Maintenance of the cultures as frozen vegetative mycelium assured culture stability and reproducibility of the results. Strict aseptic precautions throughout the laboratories and fermentation areas did not eliminate the danger of phage infection; effective control was obtained only with the introduction of resistant strains. S. mediterranei phages proved to be highly specific for calcium as an adsorption cofactor; addition of calcium-sequestering agents to sensitive mycelium completely prevented its lysis by the phage. The resistant strains developed were capable of adsorbing the phage and of releasing it without multiplication upon aging of the mycelium. No marked morphological, cultural, or biochemical differences were found among the various phage-resistant strains.  相似文献   

10.
Three new methods applying a novel approach for rapid and simple detection of specific bacteria, based on plaque formation as the end point of the phage lytic cycle, are described. Different procedures were designed to ensure that the resulting plaques were derived only from infected target bacteria ("infectious centers"). (i) A pair of amber mutants that cannot form plaques at concentrations lower than their reversion rate underwent complementation in the tested bacteria; the number of plaques formed was proportional to the concentration of the bacteria that were coinfected by these phage mutants. (ii) UV-irradiated phages were recovered by photoreactivation and/or SOS repair mediated by target bacteria and plated on a recA uvrA bacterial lawn in the dark to avoid recovery of noninfecting phages. (iii) Pairs of temperature-sensitive mutants were allowed to coinfect their target bacteria at the permissive temperature, followed by incubation of the plates at the restrictive temperature to avoid phage infection of the host cells. This method allowed the omission of centrifuging and washing the infected cells. Only phages that recovered by recombination or complementation were able to form plaques. The detection limit was 1 to 10 living Salmonella or Escherichia coli O157 cells after 3 to 5 h. The antibiotic susceptibility of the target bacteria could also be determined in each of these procedures by preincubating the target bacteria with antibiotic prior to phage infection. Bacteria sensitive to the antibiotic lost the ability to form infectious centers.  相似文献   

11.
A novel flagellatropic phage of Salmonella enterica serovar Typhimurium, called iEPS5, was isolated and characterized. iEPS5 has an icosahedral head and a long noncontractile tail with a tail fiber. Genome sequencing revealed a double-stranded DNA of 59,254 bp having 73 open reading frames (ORFs). To identify the receptor for iEPS5, Tn5 transposon insertion mutants of S. Typhimurium SL1344 that were resistant to the phage were isolated. All of the phage-resistant mutants were found to have mutations in genes involved in flagellar formation, suggesting that the flagellum is the adsorption target of this phage. Analysis of phage infection using the ΔmotA mutant, which is flagellated but nonmotile, demonstrated the requirement of flagellar rotation for iEPS5 infection. Further analysis of phage infection using the ΔcheY mutant revealed that iEPS5 could infect host bacteria only when the flagellum is rotating counterclockwise (CCW). These results suggested that the CCW-rotating flagellar filament is essential for phage adsorption and required for successful infection by iEPS5. In contrast to the well-studied flagellatropic phage Chi, iEPS5 cannot infect the ΔfliK mutant that makes a polyhook without a flagellar filament, suggesting that these two flagellatropic phages utilize different infection mechanisms. Here, we present evidence that iEPS5 injects its DNA into the flagellar filament for infection by assessing DNA transfer from SYBR gold-labeled iEPS5 to the host bacteria.  相似文献   

12.
13.
From bacteriophage P1, 10 mutants (P1cl) were isolated which are impaired in their ability to lysogenize Shigella dysenteriae Sh and which fail to make plaques when plated on Sh(P1). When Sh(P1) is infected with P1cl, a considerable proportion of the infected cells is converted into infectious centers, which eventually release P1cl but not P1. This phage release occurs over a period of several hours, during which a manyfold multiplication of infectious centers takes place. In the course of this multiplication, surviving bacteria, lysogenic for P1 only, are produced by segregation. At high multiplicity of infection, Sh(P1) are killed without producing any phage.  相似文献   

14.
Evolution of bacteriophage T7 in a growing plaque.   总被引:2,自引:0,他引:2       下载免费PDF全文
J Yin 《Journal of bacteriology》1993,175(5):1272-1277
The emergence of mutants during the 10(9)-fold amplification of a bacteriophage was spatially resolved in a growing plaque. When wild-type phage T7 was grown on an Escherichia coli host which expressed an essential early enzyme of the phage infection cycle, the T7 RNA polymerase, mutant phage relying on this enzyme appeared in 10(8) phage replications and outgrew the wild type. Spatial resolution of the selection process was achieved by analyzing stab samples taken along a plaque radius. Different mutants were selected at different rates along different radii of the plaque, based on host range and restriction patterns of the isolates. The mutants deleted up to 11% of their genomes, including the gene for their own RNA polymerase. They gained an advantage over the wild type by replicating more efficiently, as determined by one-step growth cultures.  相似文献   

15.
An extensive screening of coliphage T4 mutants has revealed two distinct classes defective, respectively, in the two sequential phage-induced phosphorylations of the host RNA polymerase, alteration and modification. The existence of these mutants proves that T4-specified functions are involved in both processes. The viabilities of these mutants demonstrate that neither alteration nor modification is essential for growth in Escherichia coli B/r. Physiological studies after infection of E. coli B/r have failed to reveal any abnormalities of phage deficient in alteration or modification. Both mutants normally inhibit host protein and stable RNA synthesis and normally express all classes of T4 genes. Thus, these specific phage-induced structural changes in the host RNA polymerase are not fundamental to the control of gene expression during T4 development. Alteration and modification may be required for growth in some strains of E. coli and hence be selectively advantageous because they extend the normal host range of the phage.Alteration appears to be catalyzed by a T4 function injected with the DNA. A polypeptide of molecular weight 61,000, which is probably cleaved during morphogenesis from a precursor of molecular weight 79,000, is missing in phage particles of alteration-deficient strains and may be the phage activity so injected. The T4 gene involved in alteration is named alt.Modification is controlled by a T4-replicative gene that has been mapped into a region of about 500 base-pairs between genes 39 and 56. These mapping data show that the defect in α modification defines a new T4 gene, named mod.  相似文献   

16.
【目的】鉴定一株新分离的铜绿假单胞菌噬菌体PaP6的生物学特性。【方法】利用铜绿假单胞菌临床分离株PA038为宿主,从西南医院污水中分离得到一株裂解性噬菌体PaP6,观察其噬斑特点;氯化铯密度梯度离心纯化噬菌体颗粒后,用透射电子显微镜观察噬菌体形态;提取PaP6基因组,通过DNA酶和RNA酶酶切,做基因组酶切图谱分析;按照感染复数(MOI)分别为10、1、0.1、0.01、0.001和0.000 1加入噬菌体和宿主菌,裂解细菌后,测定噬菌体滴度;以MOI=10的比例加入噬菌体和宿主菌,绘制一步生长曲线;用112株铜绿假单胞菌临床分离株检测PaP6宿主谱。【结果】PaP6的噬斑直径约2 mm-4 mm,圆形透明,边缘清晰;PaP6噬菌体呈多面体立体对称的头部,直径约45 nm;酶切图谱表明PaP6基因组对DNase不敏感,对RNase敏感,未酶切基因组具有3节段双链RNA(dsRNA),长度分别约为9.0、4.5、3.5 kb,共约17 kb;当MOI为0.1时PaP6感染其宿主菌产生的子代噬菌体滴度最高,达到3.4×109 PFU/m L;用一步生长曲线描绘了其生长特性;PaP6可以感染40.1%的临床分离株,是一株比较广谱的噬菌体。【结论】首次报道了一株铜绿假单胞菌的ds RNA分节段噬菌体,分类学上属于囊病毒科,该噬菌体具有较广的宿主谱,在噬菌体治疗领域具有应用前景。  相似文献   

17.
The role of the host polymerase in Bacillus subtilis infected with phage SPP1 was studied in vivo with regard to production of phage-specific and host-specific ribonucleic acid (RNA) and to phage yield. Evidence is presented that the subunit(s) of B. subtilis RNA polymerase which is sensitive to rifampin and streptolydigin is necessary at all times during infection for phage production. The synthesis of phage RNA and the phage yield in strains resistant to either antibiotic were unaffected by the drug. Host RNA synthesis continued throughout infection; phage-specific RNA never accounted for more than 20% of pulse-labeled RNA at any time during infection.  相似文献   

18.
A Rid (Rho interaction deficient) phenotype of bacteriophage T4 mutants was defined by cold-sensitive restriction (lack of plaque formation) on rho+ hosts carrying additional polar mutations in unrelated genes, coupled to suppression (plaque formation) in otherwise isogenic strains carrying either a polarity-suppressing rho or a multicopy plasmid expressing the rho+ allele. This suggests that the restriction may be due to lower levels of Rho than what is available to T4 in the suppressing strains.--Rid394 X 4 was isolated upon hydroxylamine mutagenesis and mapped in the t gene; other t mutants (and mot, as well as dda dexA double mutants) also showed a Rid phenotype. In liquid culture in strains that restricted plaque formation Rid394 X 4 showed strong lysis inhibition (a known t- phenotype) but no prolonged phage production (another well-known t- phenotype). This implies that when Rho is limiting the t mutant shuts off phage production at the normal time. Lysis inhibition was partially relieved, and phage production prolonged to varying extents depending on growth conditions in strains that allowed plaque formation. No significant effect on early gene expression were found. Apparently, both mutant (polarity-suppressing) and wild-type Rho can function in prolonging phage production and partially relieving lysis inhibition of Rid394 X 4 when present at a sufficiently high level, and Rho may play other role(s) in T4 development than in early gene regulation.  相似文献   

19.
20.
Summary E. coli strains lysogenic for various types of P1-R hybrids were isolated. These carry all the essential genes for vegetative phage production and lysogenization including P1 immunity and P1 incompatibility, together with drug resistance genes derived from the R plasmid NR1. In particular, P1Cm and P1CmSmSu derivatives were studied. When strains lysogenic for these phages were induced in the absence of helper phage, yields of phage particles as high as with wild type P1 were obtained. All P1Cm phages isolated were of plaque forming type and usually every plaque contained Cmr lysogens. Lysates of P1CmSmSu lysogens transduced CmrSmrSur at high frequency and they formed plaques with an efficiency of 10-4 to 10-2 per phage particle. Only a minority of these plaques contained drug resistant bacteria. CmrSmrSur transductants isolated from bacteria infected at a high multiplicity with phage P1CmSmSu were lysogens for the original P1CmSmSu. In contrast, CmrSmrSur transductants isolated after infection at low multiplicity appeared to carry the CmrSmrSur markers integrated into the host chromosome. The results described suggest that P1CmSmSu prophages carry the resistance genes transposed into the P1 genome without in principle causing a loss of essential gene functions. However, since these prophages are longer than the wild type P1 genome, the DNA packaged into phage particles has a reduced redundancy which seriously affects the reproduction and lysogenization abilities.Plaque forming P1Cm can be obtained from P1CmSmSu. Thus, P1CmSmSu is a precursor of P1Cm. P1Cm is also obtainable from P1 and NR1 under the recA - condition. The mechanism of formation of plaque forming P1Cm is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号