首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Sinitsyn SV 《Biofizika》2008,53(2):222-228
A biosensor of lactate has been constructed, made, and tested. The lactate biosensor uses the lactate dehydrogenase molecules from muscle. The lactate biosensor works according to the simplest scheme. An immobilized lactate dehydrogenase molecule binds a L-lactate molecule in the absence of the coenzyme NAD+. Then the L-lactate molecule is oxidized by the electric field of a metal electrode of the biosensor to generate an electron. The transfer of this electron between the immobilized lactate dehydrogenase molecule and the metal electrode of the biosensor is carried out without a redox mediator molecule. A new mechanism for the energy supply of the enzyme molecule is proposed to explain this effect. The new mechanism is based on the electric dipole-dipole interactions occurring in the enzyme molecule and surrounding water and on the thermal energy of this water.  相似文献   

2.
A L-lactate-selective microbial biosensor was developed using permeabilized cells of gene-engineered thermotolerant methylotrophic yeast Hansenula polymorpha, over-producing L-lactate:cytochrome c-oxidoreductase (EC 1.1.2.3, flavocytochrome b(2), FC b(2)). The construction of FC b(2)-producers by over-expression of the gene CYB2 H. polymorpha encoding FC b(2) is described. The HpCYB2 gene under the control of the strong H. polymorpha alcohol oxidase promoter in the frame of a plasmid for multicopy integration was transformed to the recipient strain H. polymorpha C-105 (gcr1 catX) impaired in glucose repression and devoid of catalase activity. The permeabilized cells were either immobilized on the graphite working electrode by physical entrapment of the cell suspension by means of a dialysis membrane or by integration of the cells in an electrochemically generated layer using a cathodic electrodeposition polymer. Phenazine methosulphate was used as a free-diffusing redox mediator. It was assumed that the mediator reacts with mitochondrial FC b(2) after entering the cells in the presence of L-lactate. The biosensor based on recombinant yeast cells exhibited a higher K(M)(app) value and hence expanded linear range toward L-lactate as compared to a similar sensor based on the initial cells of H. polymorpha C-105.  相似文献   

3.
We attempted to develop a screen-printed biosensor for the amperometric determination of L-lactate dehydrogenase (LDH) level on the basis of NAD(+)/NADH-dependent dehydrogenase reaction. The printing ink for the working electrode consisted of L-lactate, NAD(+), composite polymer of hydroxyethyl cellulose with ethylene glycol, 3,4-dihydroxybenzaldehyde (3,4-DHB) as an electron transferring mediator, and graphite as the conducting material. The 3,4-DHB was electropolymerized on the carboneous working electrode by potential cycling between -200 and +300 mV vs. Ag/AgCl reference electrode. Through the electrocatalytic reaction with immobilized 3,4-DHB, the NADH generated by the LDH reaction could be efficiently oxidized at lower potential than the unmodified carbon electrode. The analytical performance of the electrode was characterized in terms of linear sensing range and detection limit for LDH. The response from the developed biosensor was linear up to 500 U/l of LDH, and the detection limit of 50 U/l was observed at the signal-to-noise ratio of 3.  相似文献   

4.
兰科植物的种子原地和迁地共生萌发技术是近年发展起来的开展兰科植物种子和共生真菌研究的有效方法。该研究对兰属(Cymbidium)附生植物硬叶兰(C. mannii)开展了种子的迁地共生萌发研究, 试图获得其种子萌发的有效真菌。利用硬叶兰成年植株根部周围的树皮、苔藓、枯枝落叶、腐殖质等作为培养基质, 进行种子的共生培养。在培养133天后, 成功地获得了处于不同阶段的已萌发种子、原球茎和幼苗, 并从原球茎中分离得到一种瘤菌根菌属(Epulorhiza)真菌。用所分离到的FCb4菌株和一种从兜唇石斛(Dendrobium aphyllum)分离到的胶膜菌属(Tulasnella) FDaI7菌株和硬叶兰种子在燕麦琼脂培养基上进行共生萌发, 设置不接菌作为对照处理, 以检验FCb4菌株对硬叶兰种子萌发的有效性。经过58天的培养, 不接菌的对照处理中种子没有萌发, 接种FCb4和FDaI7菌株的处理都有很高的种子萌发率, 两种接菌处理在不同光照条件下的种子萌发率均无显著性差异。但暗培养条件下, 种子萌发形成原球茎后, 表现出生长停滞的趋势, 仅有很少的原球茎继续生长达到幼苗阶段, 说明原球茎发育后期与幼苗发育阶段需要光照。在光照条件下, 接种FCb4菌株处理中达到幼苗阶段种子的比例为(25.67 ± 9.27)%, 显著高于接种FDaI7菌株处理的(3.04 ± 2.27)% (W = 56, p = 0.026, Mann-Whitney U-test), 表明此研究中分离到的瘤菌根菌属真菌能有效地促使硬叶兰种子萌发并生长发育到幼苗阶段。  相似文献   

5.
The biosynthesis of L-lactate oxidase in the Yarrowia lipolytica yeast during submerged cultivation in laboratory bioreactors ANKUM-2M has been studied. It has been shown under optimal conditions of yeast cultivation with L-lactate that 24.5 U/L enzyme accumulated in the medium and the yield was 2.0 U/(L h). An increase in the biosynthesis of L-lactate oxidase to 75 U/L and the yield to 3.2 U/(L h) was achieved in the medium with L-lactate (1%) and glucose (2%). The enzyme was purified 251 times to homogeneity by hydrophobic and ion exchange chromatography state with a yield of 45% and a specific activity of 55.3 U/mg. Techniques of gel filtration and denaturing electrophoresis showed that L-lactate oxidase from Y. lipolytica is a tetramer with a molecular mass of 200–230 kDa. The enzyme showed a strict specificity to L-lactate and did not oxidize fumarate, pyruvate, succinate, ascorbate, dihydroxyacetone, glycolate, D-lactate, D, L-2-hydroxybutyrate and D, L-alanine or D-serine.  相似文献   

6.
Round spermatid energy metabolism is closely dependent on the presence of L-lactate in the external medium. This L-lactate has been proposed to be supplied by Sertoli cells in the seminiferous tubules. L-Lactate, in conjunction with glucose, modulates intracellular Ca2+ concentration in round spermatids and pachytene spermatocytes. In spite of this central role of L-lactate in spermatogenic cell physiology, the mechanism of L-lactate transport, as well as possible differentiation during spermatogenesis, has not been studied in these cells. By measuring radioactive L-lactate transport and intracellular pH (pHi) changes with pHi fluorescent probes, we show that these cells transport L-lactate using monocarboxylate-H+ transport (MCT) systems. RT-PCR, in situ mRNA hybridization, and immunocyto- and immunohistochemistry data show that pachytene spermatocytes express mainly the MCT1 and MCT4 isoforms of the transporter (intermediate- and low-affinity transporters, respectively), while round spermatids, besides MCT1 and MCT4, also show expression of the MCT2 isoform (high-affinity transporter). These molecular data are consistent with the kinetic data of L-lactate transport in these cells demonstrating at least two transport components for L-lactate. These separate transport components reflect the ability of these cells to switch between the generation of glycolytic L-lactate in the presence of external glucose and the use of L-lactate when this substrate is available in the external environment. The supply of these substrates is regulated by the hormonal control of Sertoli cell glycolytic activity. cell differentiation; seminiferous tubules; spermatogenesis; testicle; meiosis  相似文献   

7.
L-Serine alone is not gluconeogenic in isolated rabbit hepatocytes, whereas in rat liver this amino acid has been reported to yield as much glucose as does L-lactate itself. The current study has been an investigation into the explanation of the difference between the two species. Hepatocytes were isolated from 48-h-starved, 750- to 1000-g male rabbits, and the viability of each preparation was judged by ATP levels (2.4 +/- 0.2 mumol/g wet wt) at the beginning and end of the incubation as well as gluconeogenesis from 10 mM L-lactate (0.83 +/- 0.08 mumol/min/g wet wt). L-Serine alone produced virtually no glucose or pyruvate accumulation above baseline. Hydroxypyruvate, however, did appear in the incubation mixture. When L-serine and pyruvate were combined to test the functional activity of L-serine:pyruvate aminotransferase (EC 2.6.1.51), however, gluconeogenesis remained at the rate produced by pyruvate alone (0.61 +/- 0.04 mumol/min/g wet wt). On the other hand, the combination of L-serine and L-lactate produced rates of glucose accumulation 35% above that of L-lactate alone. The combination of L-lactate plus hydroxypyruvate produced nearly maximal rates (1.39 +/- 0.08 mumol/min/g wet wt), approaching those achieved by a physiologic ratio (10:1) of L-lactate and pyruvate. Hydroxypyruvate itself was only moderately gluconeogenic (0.44 +/- 0.04 mumol/min/g wet wt). That a reduction of the cytoplasmic free [NAD+]/[NADH] ratio by L-lactate was not its only contribution to L-serine utilization was suggested by the fact that ethanol completely eliminated gluconeogenesis from virtually all precursors (or combinations) tested, with the exception of hydroxypyruvate. It has been concluded from the data that, probably in contrast to the rat, the major pathway for the entrance of L-serine into gluconeogenesis in rabbit hepatocytes is through the pathway initiated by L-serine: pyruvate aminotransferase and that L-lactate is an important participant (i) by generating cytoplasmic reducing equivalents (NADH), (ii) by supplying pyruvate for the transaminating reaction itself, and, perhaps, (iii) by preventing hydroxypyruvate from being reduced by L-lactate dehydrogenase (EC 1.1.1.27) to L-glycerate.  相似文献   

8.
The protomeric chain of Hansenula anomala flavocytochrome b2 was previously shown to be built as the covalent association of two functional domains: an L-lactate dehydrogenase domain and a cytochrome c reductase domain, joined together by a proteolytically sensitive zone. This paper concerns the specific cleavage of this latter zone with a H. anomala proteinase(s) preparation and the purification of the resulting L-lactate dehydrogenase moiety of the molecule with at least 25% recovery, (i.e. one order of magnitude more than for the previously published method). A preliminary characterization of this dehydrogenase domain indicates that it is a tetramer (Mr = 4 x 39000) containing FMN as expected and not heme. It has high L-lactate:ferricyanide oxidoreductase activity (about 70% that of the whole flavocytochrome b2) and the same Km for L(+)-lactate as flavocytochrome b2, but it has no L-lactate:cytochrome c oxidoreductase activity. Its flavin semiquinone is stabilized in the presence of pyruvate as in flavocytochrome b2. The subcellular origin of the H. anomala proteinase in the preparation has not yet been elucidated.  相似文献   

9.
Electrically active polyaniline coated magnetic (EAPM) nanoparticle-based biosensor has been developed for the detection of Bacillus anthracis endospores in contaminated food samples. The 100 nm-diameter EAPM nanoparticles are synthesized from aniline monomer (made electrically active by acid doping) coating the surface of gamma iron oxide cores. The magnetic, electrical, and structural characteristics of the synthesized EAPM nanoparticles have been studied using superconducting quantum interference device (SQUID), four-point probe, and transmission electron microscopy (TEM). Room temperature hysteresis of the synthesized nanoparticles shows a saturation magnetization value of 44.1 emu/g. The EAPM nanoparticles are biologically modified to act as an immunomagnetic concentrator of B. anthracis spores from lettuce, ground beef and whole milk samples and are directly applied to a direct-charge transfer biosensor. The detection mechanism of the biosensor depends on the capillary flow of the captured spores on the biosensor surface along with direct-charge transfer across the EAPM nanoparticles. Experimental results indicate that the biosensor is able to detect B. anthracis spores at concentrations as low as 4.2 x 10(2)spores/ml from the samples. The EAPM-based biosensor detection system is fast and reliable with a total detection time of 16 min.  相似文献   

10.
乳酸(C3H6O3),又名2-羟基丙酸、丙醇酸,属于羟基酸的一种。乳酸在食品工业、临床医学、生物技术等行业具有极其重要的意义,因此如何高通量检测不同样品中的乳酸成为目前业界研究的重点。传统乳酸检测方法操作繁琐、费时费力或需要昂贵的检测设备,乳酸生物传感器可以克服这些限制,不需要样品制备,能够快速、简便、可靠地定量测定食品或血浆中的乳酸,具有广阔的应用前景。乳酸酶电极生物传感器主要有两种类型——基于L-乳酸氧化酶(L-LOD)和L-乳酸脱氢酶(L-LDH)的乳酸生物传感器。本文综述了L-LOD和L-LDH结构特征、来源及催化机理,讨论了改善基于酶电极的乳酸传感器性能的3种策略(电极材料改造策略、酶固定化策略、酶分子工程改造策略),还根据用于制造乳酸生物传感器的不同载体包括膜、透明凝胶基质、水凝胶载体、纳米颗粒等对乳酸生物传感器进行了归类分析,最后本文将目前商品化应用的酶电极乳酸生物传感器特点进行了对比总结讨论,阐述了乳酸生物传感器的未来应用方向,并对未来发展前景进行了展望。  相似文献   

11.
A newly developed multisite array microelectrode for in vivo measurements of L-lactate is presented. The resulting microelectrode is composed of three functional layers. First, Nafion is used to repel interfering electroactive anions, such as ascorbate. Second, L-lactate oxidase immobilized onto the recording sites is used to convert L-lactate to hydrogen peroxide. The H2O2 produced is proportional to L-lactate concentrations and is quantified at the platinum recording sites. Third, a layer of polyurethane is coated over the L-lactate oxidase to adjust the linear range of the microelectrode to one that is compatible with in vivo measurements. This layer reduces the amount of L-lactate that diffuses to the enzyme while not significantly limiting oxygen diffusion. The resulting L-lactate microelectrodes were linear to 20 mM (R2 = 0.997 +/- 0.001) and beyond in some cases with detection limits of 0.078 +/- 0.013 mM (n = 12). The selectivity and response time of these electrodes make them suitable for in vivo measurements in brain tissue. Self-referencing recordings may be utilized to further improve the selectivity of the recordings. However this is not necessary for most applications in the brain, because the resting and stimulated levels of dopamine (DA), norepinephrine (NE), and other potentially interfering cations are two to three orders of magnitude lower than that of in vivo L-lactate, which is in the millimolar range. Preliminary in vivo measures of L-lactate in the brain of anesthetized rats support that the microelectrodes are capable of measuring rapid endogenous changes in vivo.  相似文献   

12.
A direct method has been developed for the quantitation of the amount of immobilised enzymes on biosensor surfaces. This quantity is of key importance in establishing the activity, kinetics and optimal immobilisation conditions in the construction of both amperometric and optical biosensors. Recombinant L-lactate dehydrogenase incorporating both a biosynthetically introduced radiolabel, 3H-leucine, and a hexahistidine peptide tag was immobilised on a poly(aniline) composite film and then quantitated by liquid scintillation counting. It was found that enzyme mass loading was proportional to the concentration of LDH in solution, and also depended on the morphology of the composite film. The LDH mass loading on the composite film doubled when a surface cysteine containing variant was used, possibly due to the covalent attachment of the cysteine to the diiminoquinoid rings of the poly(aniline).  相似文献   

13.
14.
The mechanism of metabolic energy production by malolactic fermentation in Lactococcus lactis has been investigated. In the presence of L-malate, a proton motive force composed of a membrane potential and pH gradient is generated which has about the same magnitude as the proton motive force generated by the metabolism of a glycolytic substrate. Malolactic fermentation results in the synthesis of ATP which is inhibited by the ionophore nigericin and the F0F1-ATPase inhibitor N,N-dicyclohexylcarbodiimide. Since substrate-level phosphorylation does not occur during malolactic fermentation, the generation of metabolic energy must originate from the uptake of L-malate and/or excretion of L-lactate. The initiation of malolactic fermentation is stimulated by the presence of L-lactate intracellularly, suggesting that L-malate is exchanged for L-lactate. Direct evidence for heterologous L-malate/L-lactate (and homologous L-malate/L-malate) antiport has been obtained with membrane vesicles of an L. lactis mutant deficient in malolactic enzyme. In membrane vesicles fused with liposomes, L-malate efflux and L-malate/L-lactate antiport are stimulated by a membrane potential (inside negative), indicating that net negative charge is moved to the outside in the efflux and antiport reaction. In membrane vesicles fused with liposomes in which cytochrome c oxidase was incorporated as a proton motive force-generating mechanism, transport of L-malate can be driven by a pH gradient alone, i.e., in the absence of L-lactate as countersubstrate. A membrane potential (inside negative) inhibits uptake of L-malate, indicating that L-malate is transported an an electronegative monoanionic species (or dianionic species together with a proton). The experiments described suggest that the generation of metabolic energy during malolactic fermentation arises from electrogenic malate/lactate antiport and electrogenic malate uptake (in combination with outward diffusion of lactic acid), together with proton consumption as result of decarboxylation of L-malate. The net energy gain would be equivalent to one proton translocated form the inside to the outside per L-malate metabolized.  相似文献   

15.
《Biosensors》1989,4(6):381-391
A biosensor for the specific determination of l-glutamate has been developed using l-glutamate oxidase in combination with a hydrogen peroxide indicating electrode. The biosensor response depends linearly on l-glutamate concentration between 0.001 and 1.0 mM. The measuring time is 2 min. The sensor is stable for more than 10 days during which more than 500 assays can be performed. The sensor has been applied to l-glutamate determination in liquid seasonings. Furthermore, transaminase activities have been determined by their catalytic l-glutamate production from alpha-ketoglutarate and l-alanine or l-aspartate. Also, the coimmobilization of glutaminase yielded a bienzyme electrode sensitive to l-glutamine.  相似文献   

16.
A new oxidase-coupled colorimetric method for analysis of L-lactate in biological fluids has been developed without use of peroxidase. The method is based on lactate oxidase-catalysed transformation of lactate to pyruvate which is determined photometrically in the next dye-producing reaction of 3-methyl-2-benzothiazolinone hydrazone (MBTH) in the presence of ferric ions. Sensitivity of the method is estimated as 0.1 micromole of analyte in 4-ml of reaction mixture. Linearity is observed in the range 0.1-1.0 micromole of L-lactate in sample (r = 0.99943; p < 0.0001). The developed method has been adapted for assay of L-lactic acid in kefirs and yogurts.  相似文献   

17.
An amperometric glucose biosensor based on an n-alkylamine-stabilized palladium nanoparticles (PdNPs)-glucose oxidase (GOx) modified glassy carbon (GC) electrode has been successfully fabricated. PdNPs were initially synthesized by a biphase mixture of water and toluene method using n-alkylamines (dodecylamine, C??-NH? and octadecylamine, C??-NH?) as stabilizing ligands. The performance of the PdNPs-GOx/GC biosensor was studied by cyclic voltammetry. The optimum working potential for amperometric measurement of glucose in pH 7.0 phosphate buffer solution is -0.02 V (vs. Ag/AgCl). The analytical performance of the biosensor prepared from C??-PdNPs-GOx is better than that of C??-PdNPs-GOx. The C??-PdNPs-GOx/GC biosensor exhibits a fast response time of ca. 3s, a detection limit of 3.0 μM (S/N=3) and a linear range of 3.0 μM-8.0 mM. The linear dependence of current density with glucose concentration is 70.8 μA cm?2 mM?1. The biosensor shows good stability, repeatability and reproducibility. It has been successfully applied to determine the glucose content in human blood serum samples.  相似文献   

18.
A bacterial biosensor based on flow injection analysis (FIA) has been developed for the determination of benzene in workplace air samples. Benzene can be used by the bacteria Pseudomonas putida ML2 as a sole carbon source, and its aerobic degradation can be measured using a dissolved oxygen electrode. The bacterial cells were immobilised between two cellulose acetate membranes and fixed onto a Clark dissolved oxygen probe, which was inserted into a custom-made flow cell. The applicability of the biosensor for the analysis of air samples containing benzene was investigated. Air samples were collected from a controlled exposure room using charcoal adsorption tubes, and benzene extracted with solvent desorption using dimethylformamide (DMF). The biosensor displayed a linear detection range between 0.025 and 0.15 mM benzene based on standard solutions containing a maximum of 2% DMF, with a response time of 6 min. This linear detection range allows the analysis of air containing between 3 and 16 ppm benzene based on a 60-min sampling period. DMF proved to be compatible for use with the biosensor, causing minimal interference with the sensor response and causing no toxic effects on the bacterial cells. The FIA system was easily transported to an in situ location, and a correlation was obtained between the biosensor and gas chromatography (GC) results for the preliminary air samples investigated. Moreover, the biosensor displayed no interference to other benzene related compounds in the BTEX range. The results from this work have shown that the biosensor has potential applications for the analysis of benzene in workplace air samples, with the added advantages over the conventional GC methods of low operation costs, ease of use, and portability for in situ measurements.  相似文献   

19.
A novel fluorescence-based array biosensor targeted for field applications, such as environmental monitoring, has been developed, and successfully applied to DNA hybridization assays. The purpose was to meet the demand for automated, portable but easy-to-maintain systems allowing continuous flow monitoring of surface reactions. The biosensor presented here can be distinguished from the existing systems by the optical method used, which provides an enhanced simplicity and robustness, and enables a simple maintenance by potentially unskilled personnel. The system is based on a conventional microscope slide which acts both as transducer and biological array sensor. The excited fluorescence is guided by total internal reflection into the slide to the detector which is directly interfaced to the slide. Each region of the sensor array is successively optically interrogated, and the detection of the corresponding fluorescent emission synchronized. A real-time three-analyte analysis is thus feasible without any mechanical scanning movement or optical imaging systems as generally used in the existing instruments. The ability of the biosensor to operate in continuous flow for several tens of hours has been demonstrated. The biosensor has been assessed in terms of stability, and slide-to-slide reproducibility, which is found to be less than 3.7%, thus far below the standard biological reproducibility. DNA hybridization assays were performed to estimate a limit of detection, which was found to be 16 mol/microm(2), and to determine the reaction kinetics associated to the DNA model used. The developed biosensor is thus shown to be able to predict reaction kinetics, and to monitor in real time surface reactions between targets and probes.  相似文献   

20.
Sol-gel encapsulation of lactate dehydrogenase and its cofactor can be employed as a disposable sensor for L-lactate. The sensor utilized the changes in absorbance or fluorescence from the reduced cofactor nicotinamide adenine dinucleotide (NADH) upon exposure to L-lactate. Although, problems such as diminished enzymatic activity and/or leaching of enzyme from the sol-gel matrix occurred, the sol-gel process is sufficiently mild to permit retention of enzymatic activity. The apparent activity of LDH in the sensor is at least 10% of that of the dissolved enzyme. The sensor has a linear dynamic range over the normal physiological L-lactate level and has a long-term storage stability of at least 3 weeks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号