首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C M Chang  H K Shu  L Ravi  R J Pelley  H Shu    H J Kung 《Journal of virology》1995,69(2):1172-1180
Avian c-erbB encodes a protein that is homologous to the human epidermal growth factor receptor. Truncation of the amino-terminal, ligand-binding domain of this receptor results in an oncogene product which is a potent inducing agent for erythroleukemias but not fibrosarcomas in chickens. Here we show that mutation of a single tyrosine residue, p5, in the carboxyl terminus of the erbB oncogene product allows it to become sarcomagenic in vivo and to transform fibroblasts in vitro. Mutations of other autophosphorylation sites do not generate comparable effects. The increased transforming activity of the p5 mutant is accompanied by an elevated level of mitogen-activated protein kinase phosphorylation. By analogy to the human epidermal growth factor receptor, p5 is a minor autophosphorylation site and is located in a domain known to be involved in regulating calcium influx and receptor internalization (CAIN domain). This area of the erbB product has been found to be repeatedly deleted in various sarcomagenic avian erythroblastosis virus isolates. We precisely deleted the CAIN domain and also made point mutations of the acidic residues within the CAIN domain. In both cases, fibroblast-transforming potential is activated. We interpret these data to mean that p5 and its surrounding region negatively regulate fibroblast-transforming and sarcomagenic potential. To our knowledge, this represents the first point mutation of an autophosphorylation site that activates erbB oncogenicity.  相似文献   

2.
Avian erythroblastosis virus (AEV) induces erythroblastosis and fibrosarcomas. The viral erbB protein is required for AEV-mediated oncogenesis. To explore the structural aspects of the v-erbB polypeptide necessary for its oncogenic function, we created a series of small in-frame insertions in different domains of the v-erbB oncogene. AEV genomes bearing lesions within the v-erbB kinase domain demonstrated a drastically decreased ability to transform avian fibroblasts, establishing a functional role for this structurally conserved oncogene domain. In contrast, mutations in the extracellular domain, between the transmembrane region and the kinase domain, or at the extreme C terminus of the v-erbB protein had no effect on AEV-mediated fibroblast transformation. One lesion within the v-erbB kinase domain, a 10-amino acid insertion, produced a temperature-sensitive mutant capable of fibroblast transformation at 36 degrees C but not at 41 degrees C, suggesting that small in-frame insertions have general utility for the in vitro creation of conditional mutants.  相似文献   

3.
Three new erbB transducing viruses generated during avian leukosis virus-induced erythroblastosis have been cloned and sequenced, and their transforming abilities have been analyzed. Provirus 9134 E1 expresses an amino-terminally truncated erbB product that is analogous to the proviral insertionally activated c-erbB gag-erbB fusion product. This virus efficiently induces erythroblastosis, but does not transform fibroblasts in vitro or induce sarcomas in vivo. In contrast, virus 9134 S3 expresses an erbB product identical to the erbB product of 9134 E1, with the exception of a large internal deletion located between the kinase domain and the putative autophosphorylation site, P1. Interestingly, this virus is no longer capable of inducing erythroblastosis, but can induce both fibrosarcomas and hemangiomas in vivo. Provirus 9134 F3 has sustained an approximately 23-amino-acid carboxy-terminal truncation and is capable of inducing both erythroblastosis and sarcomagenesis. This virus expresses an erbB product with the shortest carboxy-terminal truncation sufficient to reveal the sarcomagenic potential of this protein. The distinct transforming properties of these viruses indicate that different structural domains of the erbB product confer distinct disease specificities.  相似文献   

4.
Avian erythroblastosis virus (AEV) induces both erythroblastosis and fibrosarcomas in susceptible birds. A locus, v-erbB, within the viral genome has been implicated in AEV-mediated oncogenesis. We report here the detection and partial characterization of the protein product of the v-erbB oncogene in AEV-transformed cells. We obtained the antisera necessary for our analysis by expressing a portion of the molecularly cloned v-erbB locus in Escherichia coli and immunizing rabbits with the resulting bacterial erbB polypeptide. Antisera directed against the bacterial polypeptide reacted with v-erbB proteins obtained from virus-infected avian cells. By three criteria—tunicamycin inhibition, lectin binding and metabolic labeling with radioactive sugar precursors—the product of the v-erbB gene appears to be a glycoprotein.  相似文献   

5.
We have previously shown that avian leukosis virus (ALV) induces erythroblastosis by insertional activation of the c-erbB gene. In 25% of the ALV-induced leukemic samples we have analyzed, acute retroviruses that have captured the activated erbB oncogene were released. The unusually high frequency at which erbB transduction occurs makes this an ideal system for studying the mechanism of oncogene transduction. In addition, these leukemic samples provide a rich source for the isolation of novel erbB-transducing viruses. We report here our characterization of several new erbB-transducing proviruses. The 5' recombination points of all these viruses mapped to the same intron in which proviral insertions cluster, supporting the hypothesis that transduction begins with proviral insertion near the oncogene. The 3' recombination points usually occurred within the 3' untranslated region downstream from the termination codon of the c-erbB gene. Three of the erbB-containing proviruses were molecularly cloned and analyzed in detail. Two of them were capable of releasing acute viruses, and interestingly, both retained poly(A) tracts of erbB messages in their genomes. A stretch of six adenosine residues in the ALV env gene appeared to mediate the 3' recombination events required for the generation of these viruses. These data provide further insight into the mechanism by which oncogenes are transduced into retroviral genomes.  相似文献   

6.
H Beug  M J Hayman 《Cell》1984,36(4):963-972
The v-erbB gene of avian erythroblastosis virus (AEV) codes for an integral plasma membrane glycoprotein, gp74erbB. Expression of gp74erbB and its intracellular precursors, gp66erbB and gp68erbB, has been studied in cells transformed by two temperature-sensitive mutants of AEV. After shift to 42 degrees C, the processing of gp68erbB is blocked in tsAEV-transformed, but not in wtAEV-transformed, erythroblasts and fibroblasts. In addition, gp74erbB disappears from the surface of tsAEV cells within 12 hr after shift. Thus tsAEV mutants probably bear a lesion in v-erbB that affects the maturation and subcellular localization of gp74erbB. The tsAEV erythroblasts, when "committed" to differentiation by a pulse-shift to 42 degrees C, reexpress gp74erbB during terminal differentiation at 36 degrees C. This suggests that tsAEV erythroblasts become insensitive to the transforming functions of gp74erbB at a certain stage of differentiation.  相似文献   

7.
The transforming protein erbB of avian erythroblastosis virus (AEV) has considerable sequence homology with the epidermal growth factor (EGF) and appears to represent a truncated form of this receptor. The sequence of the erbB gene is furthermore related to that of other viral transforming genes such as src, fps, yes or abl. The transforming proteins of these src-related oncogenes as well as receptors for EGF, platelet-derived growth factor (PDGF), and insulin are associated with tyrosine-specific protein kinases. It has been difficult to demonstrate this activity for the erbB protein. To analyze the erbB gene product, we prepared polyclonal antibodies against a bacterially expressed erbB DNA restriction fragment (BamHI/BamHI). The antiserum is shown to immunoprecipitate the erbB protein from AEV-transformed chicken fibroblasts and also recognizes the EGF receptor protein. Both proteins become phosphorylated in vitro on tyrosine residues upon the addition of [gamma-32P]ATP. The protein kinase activity is low compared to other oncogene-specific kinases. This is not due to kinase blocking by the serum, because erbB carboxyterminal synthetic peptide antibodies give rise to low levels of protein kinase activity as well indicating that this may be a characteristic property of erbB in vitro.  相似文献   

8.
9.
The erbB oncogene encodes an altered form of the epidermal growth factor (EGF) receptor that lacks the extracellular ligand binding domain. This oncogene is exclusively leukemogenic. However, an increase in oncogenic potential and a broadening of the tissue specificity of tumor formation occurs after retroviral transduction of erbB. The increased oncogenic potential correlates with structural alterations within the erbB gene. One common event is the deletion of a serine phosphorylation site located within the COOH-terminal domain. This site of phosphorylation has been demonstrated to be required for EGF-induced desensitization of signaling by the EGF receptor (Countaway, J. L., Nairn, A. C., and Davis, R.J. (1992) J. Biol. Chem. 267, 1129-1140). Here we show that the mutation of erbB at this negative regulatory serine phosphorylation site causes fibroblast transformation in vitro and is associated with an increased oncogenic potential in vivo.  相似文献   

10.
11.
S J Decker  B Dorai    S Russell 《Journal of virology》1988,62(10):3649-3654
Tumor promoter-stimulated phosphorylation of threonine 98 of the erbB protein of avian erythroblastosis virus (AEV) correlates with inhibition of erbB-dependent mitogenesis. To more clearly define the role of phosphorylation of this residue in regulation of the activity of the erbB protein, we have constructed erbB mutations which encode alanine (Ala-98), tyrosine (Tyr-98), or serine (Ser-98) at position 98. The biosynthesis and stability of the three mutant proteins were similar to those of the wild-type erbB protein, and all three retained the ability to transform chicken embryo fibroblasts. Treatment of transformed CEF with 12-tetradecanoylphorbol-13-acetate (TPA) stimulated incorporation of 32Pi into wild-type and mutant erbB proteins and resulted in a slight decrease in the electrophoretic mobilities of all the erbB proteins. Tryptic maps of erbB phosphopeptides showed no endogenous or TPA-stimulated phosphorylation of alanine 98 or tyrosine 98 in cells transformed by the Ala-98 and Tyr-98 mutants. Analysis of tryptic phosphopeptides by high-pressure liquid chromatography revealed that TPA treatment of cells stimulated phosphorylation of other sites of the erbB protein in addition to threonine 98. A high endogenous level of phosphorylation of serine 98 of the Ser-98 mutant protein was found, and TPA treatment of cells did not result in further phosphorylation of this residue. Cells transformed by wild-type and mutant AEV were equally sensitive to TPA-dependent inhibition of growth in soft agar and TPA-dependent inhibition of [3H]thymidine incorporation. TPA treatment inhibited tyrosine phosphorylation to a similar extent in cells transformed by wild-type or Ala-98 AEV. These data indicate that phosphorylation of threonine 98 of the erbB protein is not responsible for TPA-dependent inhibition of growth of AEV-transformed cells or TPA-induced inhibition of erbB-dependent tyrosine phosphorylation. TPA-stimulated phosphorylation of the erbB protein at other sites may mediate these effects. The data also show that subtle changes in a phosphorylation site (i.e., changing threonine to serine) can drastically alter recognition by protein kinases.  相似文献   

12.
Chicken embryo fibroblasts (CEF) have been used extensively to study the transformation parameters of a number of avian sarcoma-leukemia viruses. Previously, oncogene transformation of CEF has been conducted almost exclusively with replicating viruses, because of perceived difficulties with direct DNA transfection. Here, we show that CEF can be efficiently and stably transfected by selection for the neomycin resistance gene (neo). Cotransfection of neo with various oncogenes resulted in CEF transformation in vitro and, in several instances, sarcoma formation in vivo. Transfection of src, myc, erbB, and ras, either singly or in combination, resulted in soft-agar colonies with unique morphologies. Transfection of a family of v-src, c-src, and v/c-src chimeric constructs demonstrated the ability of the assay to discriminate between transforming and nontransforming genes. Transfection of a number of erbB variants showed that internal mutations, primarily in the kinase domain, contribute significantly to the ability to transform fibroblasts. The tumorigenic potential detected by transfection of oncogenes faithfully reproduced those previously reported by using viral infections. Our studies establish the utility of CEF transformation by direct DNA transfection. This method should prove useful in analyzing oncogenes, (e.g., myc) that do not readily transform rodent cell lines and in studying host-range mutants of oncogenes, such as those recently identified for src and erbB.  相似文献   

13.
14.
15.
表皮生长因子对neu基因表达的诱导作用(简报)   总被引:1,自引:0,他引:1  
The erb B2/neu oncogene encodes a protein which sequence is closely similar to the epidermal growth factor receptor (EGFR). We have previously found that EGF can induce the expression of erb B1/EGFR gene in normal and 3H-TdR transformed C3H/10T1/2CL8 mouse embryo fibroblast cells i.e. NC3H10 and TC 3H10 respectively, but we do not know whether the neu oncogene expression can be induced by EGF. In this study, the effect of EGF on NC3H10 and TC3H10 has been observed by Northern blot analysis. The result indicated that EGF had a obvious induction effect on neu oncogene expression in these cells. Thus, the expression of both erbB 1/EGFR gene and erbB 2/neu oncogene can be induced by EGF. This result may provide a novel clue to the molecular mechanism of EGF action in cell nucleus.  相似文献   

16.
Shih等首次通过NIH/3T3细胞转染试验在乙基亚硝脲(ENU)诱导的大鼠神经胶质纤维瘤中分离鉴定出一种转化基因,称之为neu基因,其表达可导致培养的NIH/3T3细  相似文献   

17.
erbB2/neu, an overexpressed oncogene product, has been proposed as a human cancer vaccine target. In the present study, transgenic (rat neuNT oncogene) FVB/neu mice, developing metastasizable mammary carcinoma, were immunized with a plasmid DNA encoding are not tolerant to the self antigen and sequences. We report that transgenic tumour-bearing mice, like some breast cancer patients erbB2+X, develop anti-neu autoimmune responses, which can be boosted and skewed to a Th1 phenotype by DNA immunization. Intramuscular injections of neuNT plasmid drastically reduced (or even prevented in a small number of treated mice) the outgrowth of mammary neoplasms as well as their metastatic penetrance. Furthermore, DNA immunization caused haemorrhagic necrosis of established cancer nests, leaving a greatly reduced portion of the tumour burden for the host to cope with. The antitumour activities we obtained, in this very challenging model for cancer immunotherapy, lay the foundation for DNA-based immunization to control erbB2/neu-overexpressing neoplasms. Received: 19 April 1998 / Accepted: 20 August 1998  相似文献   

18.
A human DOPA decarboxylase (DDC) cDNA probe of 747 base pairs has been used to map the DDC gene by in situ hybridization on mouse metaphase chromosomes. This result indicates that the gene is located on band 11A, near the erythroblastosis oncogene B (erb b) locus. This provides evidence for a synteny group on mouse chromosome 11 and human chromosome 7.  相似文献   

19.
Henn  W.  Blin  N.  Zang  K. D. 《Human genetics》1986,74(1):104-106
Summary Chromosome analysis in a series of human glioblastoma cell lines (HeRo, HeRo-SV1, A172, T406, T508, T705) has indicated characteristic changes in the karyotype, the most striking and consistent of which is a significant increase in the copy number of chromosome 7, with up to 8 copies per metaphase. As determined by Spurr et al., chromosome 7 represents the genomic locus for the oncogene erbB (7pter-q22). Therefore, we have compared the number of chromosomes 7 to the levels of expression of the erbB oncogene. Interestingly, in all of them erbB-specific mRNA was found to be increased at levels even higher than expected from the number of chromosomes 7 found. In contrast, in an astrocytoma of slightly lower grade of malignancy (cell line T567), neither polysomy 7 nor significant expression of the erbB oncogene was noted.  相似文献   

20.
Avian erythroblastosis virus (AEV) is an oncogenic retrovirus of birds. The AEV-encoded erbB polypeptide, a transmembrane glycoprotein bearing an N-terminal domain exposed on the surface of virally transformed cells, plays a crucial role in AEV-mediated oncogenesis. We report here a characterization of a mutated form of the AEV erbB protein which lacks over two-thirds of the extracellular region of this oncogenic protein. This mutant v-erbB protein, although lacking the three possible extracellular sites of N-linked protein glycosylation, appears unimpaired in the ability to transform cells to an oncogenic phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号