首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Translocation to cellular membranes is one of the hallmarks of PKC activation, occurring as a result of the generation of lipid secondary messengers in target membrane compartments. The activation-induced translocation of PKCs and binding to membranes is largely directed by their regulatory domains. We have previously reported that PKCη, a member of the novel subfamily and an epithelial specific isoform, is localized at the cytoplasm and ER/Golgi and is translocated to the plasma membrane and the nuclear envelope upon short-term activation by PMA. Here we show that PKCη is shuttling between the cytoplasm and the nucleus and that upon etoposide induced DNA damage is tethered at the nuclear envelope. Although PKCη expression and its phosphorylation on the hydrophobic motif (Ser675) are increased by etoposide, this phosphorylation is not required for its accumulation at the nuclear envelope. Moreover, we demonstrate that the C1b domain is sufficient for translocation to the nuclear envelope. We further show that, similar to full-length PKCη, the C1b domain could also confer protection against etoposide-induced cell death. Our studies demonstrate translocation of PKCη to the nuclear envelope, and suggest that its spatial regulation could be important for its cellular functions including effects on cell death.  相似文献   

2.
T. Noguchi  H. Watanabe  R. Suzuki 《Protoplasma》1998,201(3-4):202-212
Summary The effects of brefeldin A (BFA) on the structure of the Golgi apparatus, the nuclear envelope, and the endoplasmic reticulum (ER), and on the thiamine pyrophosphatase (TPPase) activity in these organelles were examined in a green alga,Scenedesmus acutus, to obtain evidence for the existence of a retrograde transport from the Golgi apparatus to the ER via the nuclear envelope. InScenedesmus, Golgi bodies are situated close to the nuclear envelope throughout the cell cycle and receive the transition vesicles not directly from the ER, but from the nuclear envelope. BFA induced the disassembly of Golgi bodies and an increase in the ER cisternae at the trans-side of decomposed Golgi bodies in interphase cells and multinuclear cells before septum formation. The accumulated ER cisternae connected to the nuclear envelope at one part. TPPase activity was detected in all cisternae of Golgi bodies, but not in the nuclear envelope or the ER in nontreated cells. On the contrary, in BFA-treated cells, TPPase activity was detected in the nuclear envelope and the ER in addition to the decomposed Golgi bodies. When septum-forming cells were treated with BFA, the disassembly of Golgi bodies was less than that in interphase cells, and TPPase activity was detected in the Golgi cisternae but not in the nuclear envelope or the ER. These results suggest mat BFA blocks the anterograde transport from the nuclear envelope to the Golgi bodies but does not block the retrograde transport from the Golgi bodies to the nuclear envelope in interphase and multinuclear cells.Abbreviations BFA brefeldin A - ER endoplasmic reticulum - TPPase thiamine pyrophosphatase  相似文献   

3.
Diacylglycerol kinase (DGK) phosphorylates the second messenger diacylglycerol (DAG) to phosphatidic acid. We previously identified DGK as one of nine mammalian DGK isoforms and reported on its regulation by interaction with RhoA and by translocation to the plasma membrane in response to noradrenaline. Here, we have investigated how the localization of DGK, fused to green fluorescent protein, is controlled upon activation of G protein-coupled receptors in A431 cells. Extracellular ATP, bradykinin, or thrombin induced DGK translocation from the cytoplasm to the plasma membrane within 2-6 min. This translocation, independent of DGK activity, was preceded by protein kinase C (PKC) translocation and was blocked by PKC inhibitors. Conversely, activation of PKC by 12-O-tetradecanoylphorbol-13-acetate induced DGK translocation. Membrane-permeable DAG (dioctanoylglycerol) also induced DGK translocation but in a PKC (staurosporin)-independent fashion. Mutations in the cysteine-rich domains of DGK abrogated its hormone- and DAG-induced translocation, suggesting that these domains are essential for DAG binding and DGK recruitment to the membrane. We show that DGK interacts selectively with and is phosphorylated by PKCepsilon and -eta and that peptide agonist-induced selective activation of PKCepsilon directly leads to DGK translocation. Our data are consistent with the concept that hormone-induced PKC activation regulates the intracellular localization of DGK, which may be important in the negative regulation of PKCepsilon and/or PKCeta activity.  相似文献   

4.
Protein kinase C (PKC) isoforms have been reported to be targeted to the Golgi complex via their C1 domains. We have shown recently that the regulatory domain of PKC induces apoptosis in neuroblastoma cells and that this effect is correlated to Golgi localization via the C1b domain. This study was designed to identify specific residues in the C1 domains that mediate Golgi localization. We demonstrate that the isolated C1b domains from PKCalpha, -delta, -epsilon, -eta, and - are targeted to the Golgi complex, whereas the corresponding C1a domains localize throughout the cell. Sequence alignment showed that amino acid residues corresponding to Glu-246 and Met-267 in PKC are conserved among C1b but absent from C1a domains. Mutation of Met-267, but not of Glu-246, to glycine abolished the Golgi localization of the isolated C1b domain and the regulatory domain of PKC. The mutated PKC regulatory domain constructs lacking Golgi localization were unable to induce apoptosis, suggesting a direct correlation between Golgi localization and apoptotic activity of PKC regulatory domain. Mutation of analogous residues in the C1b domain of PKCepsilon abrogated its Golgi localization, demonstrating that this effect is not restricted to one PKC isoform. The abolished Golgi localization did not affect neurite induction by PKCepsilon. However, the PKCepsilon mutant did not relocate to the Golgi network in response to ceramide and ceramide did not suppress the neurite-inducing capacity of the protein. Thus, the specific mutations in the C1b domain influence both the localization and function of full-length PKCepsilon.  相似文献   

5.
The complex pathway which links the agonist-cell membrane receptor binding to the response at the genome level involves, among other elements, protein kinase C (PKC). Agonists acting at the cell membrane can affect an autonomous nuclear polyphosphoinositide signaling system inducing an activation of nuclear phosphoinositidase activity and a subsequent translocation of PKC to the nuclear region. The fine localization of PKC has been investigated by means of electron microscopy quantitative immunogold labeling in 3T3 mouse fibroblasts, mitogenically stimulated by IGF-I. The enzyme, which in untreated cells is present in the cytoplasm, except for the organelles, and in the nucleoplasm, after IGF-I treatment is reduced in the cytoplasm and almost doubled in the nucleus. The PKC isoform translocated to the nucleus is the isozyme, which is found not only associated with the nuclear envelope but mainly with the interchromatin domains. By using in situ matrix preparations, PKC appears to be retained at the nuclear matrix level, both at the nuclear lamina and at the inner nuclear matrix, suggesting a direct involvement in the phosphorylation of nuclear proteins which are responsible for the regulation of DNA replication.  相似文献   

6.
Protein kinase C (PKC) encodes a family of enzymes implicated in cellular differentiation, growth control, and tumor promotion. However, very little is known with respect to the molecular mechanisms that link protein kinase C to cell cycle control. Here we report that PKCeta associates with the cyclin E/Cdk2 complex. This is shown for the ectopically overexpressed PKCeta in NIH-3T3 cells, the inducibly expressed PKCeta in MCF-7 cells (under control of the tetracycline-responsive promoter), and the endogenously expressed PKCeta in mouse mammary epithelial HC11 cells. Subcellular cell fractionation experiments revealed that the complex with cyclin E is formed mostly in the nuclear fractions, although in these cells PKCeta is predominantly expressed in the cytosolic fractions. The complex of PKCeta and cyclin E was studied at various phases of the cell cycle, in serum-starved quiescent cells and in cells stimulated with serum to reenter the cell cycle. Interestingly, the interaction between PKCeta and cyclin E was most prominent in serum-starved cells and was disintegrated when cells entered the cells cycle. Immunofluorescence staining demonstrated that in serum-starved cells PKCeta is concentrated at the perinuclear zone, which is also the site of its colocalization with cyclin E. Colocalization of PKCeta and cyclin E in the perinuclear region was observed in serum-starved cells, and less in proliferating cells. These experiments suggest that the interaction between PKCeta and cyclin E is carefully regulated, and is correlated with the inactivated form of the cyclin E/Cdk2 complex. Thus, our studies support an important link between PKC and cell cycle control.  相似文献   

7.
Protein kinase D (PKD) binds to a pool of diacylglycerol (DAG) in the TGN and undergoes a process of activation that involves heterotrimeric GTP-binding protein subunits betagamma to regulate membrane fission. This fission reaction is used to generate transport carriers at the TGN that are en route to the cell surface. We now report that PKD is activated specifically by G protein subunit beta1gamma2 and beta3gamma2 via the Golgi apparatus-associated PKCeta. Compromising the kinase activity of PKCeta-inhibited protein transport from TGN to the cell surface. Expression of constitutively activated PKCeta caused Golgi fragmentation, which was inhibited by a kinase inactive form of PKD. Our findings reveal that betagamma, PKCeta, and PKD act in series to generate transport carriers from the TGN and their overactivation results in complete vesiculation of the Golgi apparatus.  相似文献   

8.
Patel S  Brkljacic J  Gindullis F  Rose A  Meier I 《Planta》2005,222(6):1028-1040
Tomato MAF1 (LeMAF1) is a plant-specific, nuclear envelope (NE)-associated protein. It is the founding member of a group of WPP domain-containing, NE-associated proteins. This group includes the Arabidopsis WPP family, which is involved in cell division, as well as plant RanGAPs. In addition to its NE localization, LeMAF1 accumulates in speckles in the cytoplasm. Here, we show that the LeMAF1-containing speckles are components of the Golgi apparatus. A novel tomato coiled-coil protein was identified that specifically binds to LeMAF1. Tomato WPP domain-associated protein (LeWAP) interacts in yeast and in vitro through its coiled-coil domain with several WPP-domain containing proteins, including AtRanGAP1 and the WPP family (LeMAF, WPP1 and WPP2). Like LeMAF1, LeWAP is localized at the Golgi. Moreover, we present data showing that Arabidopsis WAP is necessary for the existence of a multi-protein complex containing WPP2. Electronic Supplementary Material Supplementary material is available for this article at .  相似文献   

9.
Emerging evidence indicates that cell surface receptors, such as the entire epidermal growth factor receptor (EGFR) family, have been shown to localize in the nucleus. A retrograde route from the Golgi to the endoplasmic reticulum (ER) is postulated to be involved in the EGFR trafficking to the nucleus; however, the molecular mechanism in this proposed model remains unexplored. Here, we demonstrate that membrane-embedded vesicular trafficking is involved in the nuclear transport of EGFR. Confocal immunofluorescence reveals that in response to EGF, a portion of EGFR redistributes to the Golgi and the ER, where its NH2-terminus resides within the lumen of Golgi/ER and COOH-terminus is exposed to the cytoplasm. Blockage of the Golgi-to-ER retrograde trafficking by brefeldin A or dominant mutants of the small GTPase ADP-ribosylation factor, which both resulted in the disassembly of the coat protein complex I (COPI) coat to the Golgi, inhibit EGFR transport to the ER and the nucleus. We further find that EGF-dependent nuclear transport of EGFR is regulated by retrograde trafficking from the Golgi to the ER involving an association of EGFR with γ-COP, one of the subunits of the COPI coatomer. Our findings experimentally provide a comprehensive pathway that nuclear transport of EGFR is regulated by COPI-mediated vesicular trafficking from the Golgi to the ER, and may serve as a general mechanism in regulating the nuclear transport of other cell surface receptors.  相似文献   

10.
Leukotriene formation is initiated in myeloid cells by an increase in intracellular calcium and translocation of 5-lipoxygenase from the cytoplasm to the nuclear envelope where it can utilize arachidonic acid. Monocyte- macrophages and eosinophils also express 15-lipoxygenase, which converts arachidonic acid to 15(S)-hydroxyeicosatetraenoic acid. Enhanced green fluorescent 5-lipoxygenase (5-LO) and 15-lipoxygenase (15-LO) fusion proteins were expressed in the cytoplasm of RAW 264.7 macrophages. Only 5-lipoxygenase translocated to the nuclear envelope after cell stimulation, suggesting that differential subcellular compartmentalization can regulate the generation of leukotrienes versus 15(S)-hydroxyeicosatetraenoic acid in cells that possess both lipoxygenases. A series of truncation mutants of 5-LO were created to identify putative targeting domains; none of these mutants localized to the nuclear envelope. The lack of targeting of 15-LO was then exploited to search for specific targeting motifs in 5-LO, by creating 5-LO/15-LO chimeric molecules. The only chimera that could sustain nuclear envelope translocation was one which involved replacement of the N-terminal 237 amino acids with the corresponding segment of 15-LO. Significantly, no discrete targeting domain could be identified in 5-LO, suggesting that sequences throughout the molecule are required for nuclear envelope localization.  相似文献   

11.
We analyzed plant‐derived α1,4‐fucosyltransferase (FucTc) homologs by reporter fusions and focused on representatives of the Brassicaceae and Solanaceae. Arabidopsis thaliana AtFucTc‐green fluorescent protein (GFP) or tomato LeFucTc‐GFP restored Lewis‐a formation in a fuctc mutant, confirming functionality in the trans‐Golgi. AtFucTc‐GFP partly accumulated at the nuclear envelope (NE) not observed for other homologs or truncated AtFucTc lacking the N‐terminus or catalytic domain. Analysis of At/LeFucTc‐GFP swap constructs with exchanged cytosolic, transmembrane and stalk (CTS), or only the CT regions, revealed that sorting information resides in the membrane anchor. Other domains of AtFuctc also contribute, since amino‐acid changes in the CT region strongly reduced but did not abolish NE localization. By contrast, two N‐terminal GFP copies did, indicating localization at the inner nuclear membrane (INM). Tunicamycin treatment of AtFucTc‐GFP abolished NE localization and enhanced overlap with an endosomal marker, suggesting involvement of N‐glycosylation. Yet neither expression in protoplasts of Arabidopsis N‐glycosylation mutants nor elimination of the N‐glycosylation site in AtFucTc prevented perinuclear accumulation. Disruption of endoplasmic reticulum (ER)‐to‐Golgi transport by co‐expression of Sar1(H74L) trapped tunicamycin‐released AtFucTc‐GFP in the ER, however, without NE localization. Since recovery after tunicamycin‐washout required de novo‐protein synthesis, our analyses suggest that AtFucTc localizes to the NE/INM due to interaction with an unknown (glyco)protein.   相似文献   

12.
Protein kinase C encodes a family of enzymes implicated in cellular differentiation, growth control and tumor promotion. The generation and characterization of NIH-3T3 cells which stably overexpress the PKCeta isoform has been previously described by us. In these cells, overexpression of PKCeta altered the expression of specific cell cycle regulators and promoted differentiation [20]. Since PKC has been implicated in the regulation of gene expression, including that of various cytokines, we examined the production of several cytokines in these cells. We report here that out of the major pro-inflammatory cytokines examined, IL-1alpha, IL-1beta, TNF-alpha and IL-6, only IL-6 was generated and secreted in PKCeta -expressing cells without any additional inducer in serum-supplemented cultures (10% FCS). IL-6 was not detected in the control cell line, transfected with the same vector, but lacking the cDNA coding for PKCeta. Moreover, the production of IL-6 on serum stimulation correlated with the levels of PKCeta expressed in these cells. This implies that factors in the serum activate PKCeta and induce IL-6 production. We have examined several growth factors and cytokines for their ability to induce IL-6 production in our PKCeta-expressing cells. Among the growth factors tested (EGF, PDGF, FGF, insulin, IGF-1 and IL-1), PDGF and FGF were the most potent IL-6 inducers. The effects of FGF and PDGF on IL-6 production were blocked in the presence of PKC inhibitors. We also examined the signaling pathways that mediate production of IL-6 in PKCeta-expressing cells. Using specific inhibitors of the MAPK pathway, we have shown a role for ERK and p38 MAPK in FGF- and serum-stimulated IL-6 production, but only for p38 MAPK in PDGF-stimulated IL-6 production. Our studies provide evidence that PDGF and FGF can serve as upstream regulators of PKCeta and that PKCeta is involved in the expression of IL-6. This suggests that inhibition of PKC may provide a basis for the development of drugs for the treatment of disorders in which IL-6 is pathologically involved.  相似文献   

13.
14.
15.
M S Moore  G Blobel 《Cell》1992,69(6):939-950
We have isolated two cytosolic fractions from Xenopus oocytes that contain all of the activity necessary to support both steps of nuclear import in digitonin-permeabilized mammalian cells: binding at the nuclear envelope and translocation through the nuclear pore. The first cytosolic fraction (fraction A) interacts with an import-competent, but not a mutant, nuclear localization sequence-bearing conjugate and stimulates its accumulation at the nuclear envelope in an ATP-independent fashion. The second cytosolic fraction (fraction B) gives no discernible effect when added alone; but when added either together with fraction A, or after fraction A, stimulates the passage of the conjugate from the outer nuclear envelope to the interior of the nucleus in an ATP-dependent fashion.  相似文献   

16.
Ward BM  Moss B 《Journal of virology》2000,74(8):3771-3780
The vaccinia virus B5R type I integral membrane protein accumulates in the Golgi network, from where it becomes incorporated into the envelope of extracellular virions. Our objective was to determine the domains of B5R responsible for Golgi membrane targeting in the absence of other viral components. Fusion of an enhanced green fluorescent protein to the C terminus of B5R allowed imaging of the chimeric protein without altering intracellular trafficking and Golgi network localization in transfected cells. Deletion or swapping of B5R domains with corresponding regions of the vesicular stomatitis virus G protein, which is targeted to the plasma membrane, indicated that (i) the N-terminal extracellular domain of B5R had no specific role in Golgi apparatus localization, (ii) the transmembrane domain of B5R was sufficient for exiting the endoplasmic reticulum, and (iii) removal of the cytoplasmic tail impaired Golgi network localization and increased the accumulation of B5R in the plasma membrane. Further experiments demonstrated that the cytoplasmic tail mediated internalization of B5R from the plasma membrane, suggesting a retrieval mechanism. Mutagenesis revealed residues required for Golgi membrane localization and efficient plasma membrane retrieval of the B5R protein: a tyrosine at residue 310 and two adjacent leucines at residues 315 and 316.  相似文献   

17.
Annexin 11 is a widely expressed calcium- and phospholipid-binding protein that resides in the nucleoplasm in many cultured cell lines. This is in contrast to its most extensively characterized in vitro ligand, the small calcium-binding protein S100A6 (calcyclin), which is concentrated in the nuclear envelope. Here we have examined the significance of the association of annexin 11 and S100A6 by asking whether circumstances exist in which the two proteins occupy the same subcellular localization. First, we show that in both A431 and vascular smooth muscle cells, elevation of intracellular Ca2+ leads to translocation of annexin 11 from the nucleus to the nuclear envelope where it co-localizes with S100A6. We also demonstrate, using fusions of annexin 11 with green fluorescent protein, that whereas the C-terminal core domain of annexin 11 is essential for Ca2+ sensitivity, the N-terminal domain is required for targeting to the nuclear envelope. Second, we show that annexin 11 relocalizes to the nuclear envelope as A431 cells transit from early to mid-prophase. In late prophase, at the time of nuclear envelope breakdown, annexin 11 and S100A6 become intensely localized with lamina-associated polypeptide 2 to folds in the nuclear envelope. From metaphase to telophase S100A6 is degraded, but in late telophase annexin 11 associates with the reforming nuclear envelope before resuming a nucleoplasmic location in interphase. These results show that co-localization of annexin 11 and S100A6 at the nuclear envelope may be regulated either by elevation of intracellular Ca2+ or by cell cycle progression and provide the first evidence that these proteins may associate in vivo.  相似文献   

18.
We have examined the immunocytochemical localization of protein kinase C (PKC) in NIH 3T3 cells using mAbs that recognize Type 3 PKC. In control cells, the immunofluorescent staining was similar with mAbs directed to either the catalytic or the regulatory domain of PKC. Type 3 PKC localized in a diffuse cytoplasmic pattern, while the nuclei were apparently unstained. Cytoskeletal components also were Treatment of the cells with phorbol 12-myristate 13-acetate (PMA) resulted in a redistribution of PKC with a specific increase in nuclear PKC. Compared to control cells, the staining with the anticatalytic domain mAbs changed markedly, covering the entire cell surface. In contrast, the staining by the antiregulatory domain mAb did not cover the cell surface and the nuclei remained unstained; these results suggest that PKC activation leads to a conformational change of the regulatory domain such that the epitope recognized by the antiregulatory domain mAb is not readily accessible. We have demonstrated by three criteria that PMA treatment specifically increased PKC in the nucleus: (a) immunofluorescent staining in isolated nuclei increased; (b) Western blots showed that our mAbs detected only one protein, the 82-kD PKC, whose level increased in nuclear lysates from PMA-treated cells; and (c) PKC activity increased in nuclear lysates. In fractionation studies we demonstrated that PKC specifically localized to the nuclear envelope fraction. These results demonstrate that PMA activation leads to a rapid redistribution of Type 3 PKC to the nuclear envelope, and suggests that this isozyme may play a role in mediating PKC-induced changes in gene expression.  相似文献   

19.
Little is known about what dictates the round shape of the yeast Saccharomyces cerevisiae nucleus. In spo7Delta mutants, the nucleus is misshapen, exhibiting a single protrusion. The Spo7 protein is part of a phosphatase complex that represses phospholipid biosynthesis. Here, we report that the nuclear protrusion of spo7Delta mutants colocalizes with the nucleolus, whereas the nuclear compartment containing the bulk of the DNA is unaffected. Using strains in which the nucleolus is not intimately associated with the nuclear envelope, we show that the single nuclear protrusion of spo7Delta mutants is not a result of nucleolar expansion, but rather a property of the nuclear membrane. We found that in spo7Delta mutants the peripheral endoplasmic reticulum (ER) membrane was also expanded. Because the nuclear membrane and the ER are contiguous, this finding indicates that in spo7Delta mutants all ER membranes, with the exception of the membrane surrounding the bulk of the DNA, undergo expansion. Our results suggest that the nuclear envelope has distinct domains that differ in their ability to resist membrane expansion in response to increased phospholipid biosynthesis. We further propose that in budding yeast there is a mechanism, or structure, that restricts nuclear membrane expansion around the bulk of the DNA.  相似文献   

20.
Normal herpesvirus assembly and egress depend on the correct intracellular localization of viral glycoproteins. While several post-Golgi transport motifs have been characterized within the cytoplasmic domains of various viral glycoproteins, few specific endoplasmic reticulum (ER)-to-Golgi transport signals have been described. We report the identification of two regions within the 125-amino-acid cytoplasmic domain of Varicella-Zoster virus gB that are required for its ER-to-Golgi transport. Native gB or gB containing deletions and specific point mutations in its cytoplasmic domain was expressed in mammalian cells. ER-to-Golgi transport of gB was assessed by indirect immunofluorescence and by the acquisition of Golgi-dependent posttranslational modifications. These studies revealed that the ER-to-Golgi transport of gB requires a nine-amino-acid region (YMTLVSAAE) within its cytoplasmic domain. Mutations of individual amino acids within this region markedly impaired the transport of gB from the ER to the Golgi, indicating that this domain functions by a sequence-dependent mechanism. Deletion of the C-terminal 17 amino acids of the gB cytoplasmic domain was also shown to impair the transport of gB from the ER to the Golgi. However, internal mutations within this region did not disrupt the transport of gB, indicating that its function during gB transport is not sequence dependent. Native gB is also transported to the nuclear membrane of transfected cells. gB lacking as many as 67 amino acids from the C terminus of its cytoplasmic domain continued to be transported to the nuclear membrane at apparently normal levels, indicating that the cytoplasmic domain of gB is not required for nuclear membrane localization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号