首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N Matsuo  P M Ross 《Biochemistry》1987,26(7):2001-2009
Bifunctional psoralens react photochemically with DNA to form single-strand adducts and interstrand, chemical cross-links. Cross-link formation is first order with [P], the concentration of added psoralen, when [P] much less than Kd, the psoralen-DNA dissociation constant. DNA molecules containing interstrand cross-links are reversibly bihelical and so are readily detected. It was not heretofore possible to determine cross-link frequency in polydisperse DNA from the mass F of DNA spared cross-linkage. We have derived a statistical relation to calculate cross-link frequency at fixed light exposure and variable [P]. We show here that S, the initial slope of the curve described by -ln F as a function of [P], is proportional to Mw, the weight-average molecular weight of nick-free DNA. The cross-link frequency at any [P] can be determined from k, a constant measured for DNA of known Mw at low cross-linkage. This relation is valid for DNA of any molecular weight distribution. In experiments with uniform length DNA, -ln F (cross-link frequency) increased in simple proportion to [P]. Intact and restriction endonuclease HindIII digested phage lambda DNA molecules have discrete lengths. S for each was proportional to Mw of the twin helix even though the molecular weight distribution of the restriction fragments was skewed. S was proportional to Mw and to the median molecular weight of sheared cellular DNA over a wide range. Also, we found that 1/S was linear with exposure of cellular DNA to gamma radiation. S can therefore be used to calculate L, the average distance between interruptions in the double helix.  相似文献   

2.
R R Sinden  T J Kochel 《Biochemistry》1987,26(5):1343-1350
Z-DNA-forming sequences, (GT)21, (GT)12ATGT, and (CG)6TA(CG)6, were cloned into plasmids. These sequences formed left-handed Z-DNA conformations under torsional tension from negative supercoiling of DNA. 4,5',8-Trimethylpsoralen, on absorption of 360-nm light, forms monoadducts and interstrand cross-links in DNA that exists in the B-helical conformation. Trimethylpsoralen cross-links were introduced into the potential Z-DNA-forming sequences in relaxed DNA when these sequences existed as B-form DNA. In supercoiled DNA when these sequences existed in the Z conformation, the rate of cross-linking was greatly reduced, and trimethylpsoralen did not form monoadducts appreciably to Z-DNA. As an internal control in these experiments, the rates of cross-linking of the Z-DNA-forming sequences were measured relative to that of an adjacent, cloned sequence that could not adopt a Z conformation. The initial relative rates of cross-linking to Z-DNA-forming sequences were dependent on the superhelical density of the DNA, and the rates were ultimately reduced by factors of 10-15 for Z-DNA in highly supercoiled plasmids. This differential rate of cross-linking provides a novel assay for Z-DNA. Initial application of this assay in vivo suggests that a substantial fraction of (CG)6TA(CG)6, which existed as Z-DNA in plasmid molecules purified from cells, existed in the B conformation in vivo.  相似文献   

3.
When recipient Bacillus subtilis carrying chromosomal trimethylpsoralen cross-links were transformed, the donor marker activity decreased with the extent of cross-linking. Additional donor marker activity was lost upon incubation of the reextracted DNA with nuclease S1, particularly at higher levels of cross-linking. Physical analysis of the reextracted DNA showed that the donor DNA was progressively excluded from heteroduplex formation as the frequency of cross-links in the recipient DNA increased. In the donor-recipient complexes still being formed, increasing amounts of donor DNA became susceptible to nuclease S1 digestion under these conditions. These results suggest that resident interstrand cross-links interfere both with initiation of recombination and with the completion of heteroduplex formation.  相似文献   

4.
5.
The DNA sequence specificity for 4,5',8-trimethylpsoralen cross-linking of DNA has been examined using chemically synthesized DNA fragments containing all possible pyrimidine and purine base pair combinations. We confirm our previous findings that the 5'-TA dinucleotide represents a preferred cross-link site. Other dinucleotides that form cross-links are 5'-AT much greater than 5'-TG greater than 5'-GT. Although 5'-TA represents a preferred cross-link site, the rate of cross-linking can vary 3-4-fold depending on the base composition flanking the cross-linkable 5'-TA dinucleotide. In some cases, changes in DNA sequence 3 base pairs (bp) away from 5'-TA resulted in significant changes in the rate of cross-linking. We also see evidence for a long-range sequence context effect on the rate of cross-linking. A 30-bp fragment cross-linked at a relative rate of 2.9 compared to the rate of cross-linking of a 20-bp fragment when cloned contiguously in plasmid DNA. When cross-linked as separate fragments, the 30-bp fragment cross-linked at a relative rate of 1.9 compared to the 20-bp fragment. The results suggest that the reactivity of DNA to psoralens, and perhaps other intercalating drugs, is dependent on the dinucleotide sequence, the bases flanking the dinucleotide, and the long-range sequence context of the DNA.  相似文献   

6.
4,5',8-Trimethylpsoralen (TMP) monoadducts inactive transforming deoxyribonucleic acid (DNA) in Bacillus subtilis. Contrary to TMP diadducts (TMP cross-links), which severely inhibit entry of donor DNA (G. Venema and U. Canosi, Mol. Gen. Genet. 179:1--11), TMP monoadducts have only a slight effect on entry. Since reextracted TMP-monoadduct-containing transforming DNA is a differentially repaired by Uvr- and Uvr+ recipients and cross-linkable to the recipient strand in the heteroduplex recombinant DNA molecules, the monoadducts can be integrated along with the donor DNA into the recipient chromosome.  相似文献   

7.
8.
4,5' ,8-trimethylpsoralen photosensitizes the inhibition of the induction of nitrate reductase in XD cells of tobacco, by near ultraviolet light. The photosensitization depends on the concentration of 4,5' ,8-trimethylpsoralen and the near ultraviolet light dose. Concomitant with the inhibition of nitrate reductase induction there is a severe inhibition of DNA and RNA synthesis. Oxygen uptake and protein synthesis are not affected. Translation of preexisting mRNA coding for nitrate reductase is insesitive to 4,5' ,8-trimethylpsoralen and near ultraviolet light. It is concluded that the DNA of these cells is the target for the photochemical reaction of 4,5' ,8-trimethylpsoralen. The template activity of the DNA is inhibited, and the expression of the genome thereby prevented. Translation of preexisting nRNA is not affected.  相似文献   

9.
We have studied the effect of in vivo treatment with trioxsalen on DNA replication in mammalian cells. In vitro cultured bovine liver cells were exposed to two or four cycles of treatment with 45 microM trioxsalen followed by irradiation with long-wave ultraviolet light. Thymidine incorporation was reduced by about 95% during the first hour after a double treatment. A large proportion of the label was released in alkaline sucrose gradients as a low molecular weight fraction (average length about 500 nucleotides) which was supposed to consist of replication origins containing DNA fragments. From the relative quantities of this DNA obtained at different times of the S phase we concluded that it contains a considerable but not precisely determinable proportion of non-origin DNA. We also find that the fraction is contaminated by a large excess of non-replicating bulk DNA.  相似文献   

10.
16S rRNA reacted with the furocoumarin 4,5',8-trimethylpsoralen (trioxsalen) and 360-nm light showed a number of chemical and physical differences from untreated RNA. After extensive irradiation, five molecules of trioxsalen were bound per molecule of RNA. The trioxsalen-treated RNA had an altered ultraviolet absorption spectrum and a distinctive fluorescence emission spectrum. The modified RNA was significantly more resistant to T1 ribonuclease digestion than was control RNA. Treated RNA, when mixed with purified ribosomal proteins, was not functional in the in vitro reconstitution of 30S subunits and yielded more slowly sedimenting particles which were inactive in protein synthesis assays. By contrast, 16S rRNA within the 30S subunit structure did not exhibit these changes when reacted with the same dose of trioxsalen and light, suggesting that the ribosomal proteins were effective in protecting the RNA from interaction with the drug.  相似文献   

11.
DNA interstrand cross-link repair in Saccharomyces cerevisiae   总被引:2,自引:0,他引:2  
DNA interstrand cross-links (ICL) present a formidable challenge to the cellular DNA repair apparatus. For Escherichia coli, a pathway which combines nucleotide excision repair (NER) and homologous recombination repair (HRR) to eliminate ICL has been characterized in detail, both genetically and biochemically. Mechanisms of ICL repair in eukaryotes have proved more difficult to define, primarily as a result of the fact that several pathways appear compete for ICL repair intermediates, and also because these competing activities are regulated in the cell cycle. The budding yeast Saccharomyces cerevisiae has proven a powerful tool for dissecting ICL repair. Important roles for NER, HRR and postreplication/translesion synthesis pathways have all been identified. Here we review, with reference to similarities and differences in higher eukaryotes, what has been discovered to date concerning ICL repair in this simple eukaryote.  相似文献   

12.
Interstrand DNA cross-links are the principal cytotoxic lesions produced by chemotherapeutic bifunctional alkylating agents. Using an N(4)C-ethyl-N(4)C interstrand DNA cross-link to mimic this class of clinically important cancer chemotherapeutic agents, we have characterized the repair, structure, and flexibility of DNA that contains this cross-link in two different orientations. Plasmid DNAs in which the cytosines of single CpG or GpC steps are covalently linked were efficiently processed by repair proficient and homologous recombination deficient strains of Escherichia coli. Repair in a nucleotide excision repair (NER) deficient strain was less efficient overall and displayed a 4-fold difference between the two cross-link orientations. Both the structure and flexibility of DNA containing these cross-links were examined using a combination of (1)H NMR, restrained molecular dynamics simulations, and atomic force microscopy (AFM). The NMR structure of a decamer containing a CpG interstrand cross-link shows the cross-link easily accommodated within the duplex with no disruption of hydrogen bonding and only minor perturbations of helical parameters. In contrast, disruptions caused by the GpC cross-link produced considerable conformational flexibility that precluded structure determination by NMR. AFM imaging of cross-link-containing plasmid DNA showed that the increased flexibility observed in the GpC cross-link persists when it is embedded into much larger DNA fragments. These differences may account for the different repair efficiencies seen in NER deficient cells.  相似文献   

13.
4 furocoumarins, namely psoralen (P), 8-methoxypsoralen (8-MOP), 4,5',8-trimethylpsoralen (TMP) and angelicin (A) were tested for dark mutagenesis in E. coli lac-. Three compounds; P, 8-MOP and A were shown to be weak frame-shift mutagens. TMP, surprisingly in view of its very active photosensitizing action, was found to be non-mutagenic. These results are discussed in relation to the photosensitizing action of the furocoumarins.  相似文献   

14.
2 strains of S. typhimurium, TA98 and TA100, and 2 strains of E. coli, WP2(pKM101) and WP2uvrA-(pKM101) were used to study mutagenesis by 8-methoxypsoralen (8-MOP) and 4,5',8-trimethylpsoralen (4,5',8-TMP) in the dark and in the presence of near-ultraviolet (NUV) light both without metabolic activation and with rat-liver S9 at 3 levels (4, 10 and 30% in standard cofactors). The S9-independent base substitution mutagenic activity of 8-MOP plus NUV light was confirmed in WP2(pKM101), and a similar activity was seen for 4,5',8-TMP, although neither substance was active in TA100. The frameshift mutagenic activity of 8-MOP in the dark in TA98 was not confirmed despite histidine levels which would ensure DNA replication, but this may be due to the lower concentrations of 8-MOP achieved in the common solvent system adopted. Both 8-MOP and 4,5',8-TMP were mutagenic in WP2uvrA-(pKM101) after microsomal activation, and the responses were similar whether experiments were conducted in the dark or in NUV light. In view of the oral administration of 8-MOP to psoriasis patients, this finding may be of relevance in risk assessment, and tends to suggest that topical application of 4,5',8-TMP to psoriatic patients may present reduced risk of malignant disease.  相似文献   

15.
The photoaddition of 4'-(hydroxymethyl)-4,5',8-trimethylpsoralen (HMT) to different conformational states of RNA was studied. Poly(U), poly(A,U) (random copolymer), poly(A-U) (alternating copolymer), poly(A) . poly(U) (double stranded), and poly(U) . poly(A) . poly(U) (triple stranded) were reacted with HMT at different temperatures and salt concentrations. The conformation of the polymers was monitored by UV absorption and circular dichroism. It was found that the rate of HMT photoaddition changed dramatically at structural transitions in the RNA. The alternating copolymer poly(A-U) was found to have the highest rate of addition. Low salt and temperature produced maximal incorporation.  相似文献   

16.
Short DNA duplexes that contain a N4C-ethyl-N4C interstrand cross-link were prepared on controlled pore glass supports using a DNA synthesizer. The C-C cross-link was introduced via a convertible nucleoside on the support or by using a protected C-C cross-link phosphoramidite. An orthogonal protection scheme allowed selective chain growth in either a 3'-->5' or 5'-->3' direction. The cross-linked duplexes were purified by HPLC and characterized by MALDI-TOF mass spectrometry and/or by enzymatic digestion.  相似文献   

17.
Fanconi anemia (FA) is an autosomal or X-linked recessive disorder characterized by chromosomal instability, bone marrow failure, cancer susceptibility, and a profound sensitivity to agents that produce DNA interstrand cross-link (ICL). To date, 15 genes have been identified that, when mutated, result in FA or an FA-like syndrome. It is believed that cellular resistance to DNA interstrand cross-linking agents requires all 15 FA or FA-like proteins. Here, we review our current understanding of how these FA proteins participate in ICL repair and discuss the molecular mechanisms that regulate the FA pathway to maintain genome stability.  相似文献   

18.
A critical step in DNA interstrand cross-link repair is the programmed collapse of replication forks that have stalled at an ICL. This event is regulated by the Fanconi anemia pathway, which suppresses bone marrow failure and cancer. In this perspective, we focus on the structure of forks that have stalled at ICLs, how these structures might be incised by endonucleases, and how incision is regulated by the Fanconi anemia pathway.  相似文献   

19.
The extinction coefficients, quantum yields and reactivities of the triplet states of 8-methoxypsoralen and 4,5',8-trimethylpsoralen in methanolic solution have been determined using laser flash photolysis techniques. The second-order rate constants for the quenching of these triplet states by pyrimidine and purine bases were found to be several orders of magnitude lower than those found for other furocoumarin derivatives. This may suggest, therefore, that the skin photosensitising ability of such compounds does not necessarily correlate with in vitro triplet state reactivity. Preliminary experiments on the reactivity of the psoralen triplet state with DNA itself indicate that no transient absorptions due to psoralen excited states can be observed when a photon is absorbed by the psoralen-DNA complex.  相似文献   

20.
We have developed an exonuclease III/photoreversal procedure to map, with base-pair resolution, the bases that have photoreacted with 4,5',8-trimethylpsoralen (Me3-psoralen) forming either monoadducts or interstrand crosslinks in DNA. This assay allows quantification of relative rates of Me3-psoralen photobinding to bases in DNA at levels less than one crosslink per 8000 base-pairs. We demonstrate the applicability of the Me3-psoralen mapping procedure on the Z-forming sequence GAATT(CG)6-TA(CG)6AATTC. The results confirm our previous findings that Me3-psoralen forms crosslinks in the 5'TA within the (CG)6TA(CG)6 sequence when it exists in the B conformation but not when it exists in the Z conformation. In addition, with increasing superhelical density we observe at least a hundred-fold increased Me3-psoralen presumably represent B-Z junctions. The two presumed junctions respond differently with increasing negative superhelical tension, however, suggesting that the structures of these negative superhelical tension, however, suggesting that the structures of these junctions differ. This increased Me3-psoralen photoreactivity provides a positive signal for the presence of Z-DNA. The sequence and assay described here provide a "torsionally tuned probe" for determining the effective superhelical density of DNA in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号