首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Glucogen synthesis in rat liver in vivo was measured by the incorporation of 3H from 3H2O into glycogen. In meal-fed rats incorporation and the incorporation of 3H into glycogen was linear up to 100 min. Before feeding glycogen concentration and the incorporation of 3H were both low; and both rose on feeding to give maximal values after 2-3h. The glycogen concentration was maintained for a further 5h but the incorporation of 3H rapidly declined to pre-feeding values. This shows that glycogen turnover was low in the post-prandial rat. Streptozotocin diabetes decreased the rise in glycogen concentration on feeding and had a similar effect on 3H2O incorporation. Both effects were reversed by insulin administration. The number of 3H atoms incorporated per glycogen glucose moiety formed in biosynthetic experiments (2.84 +/- 0.47) was relatively constant and allowed absolute biosynthetic rates to be calculated. Degradation of glucose from glycogen labelled by 3H2O showed that most of the 3H was located at C-2 and C-5. The incorporation would arise by rapid equilibration of hexose phosphates through phosphoglucose isomerase, transaldolase and triose phosphate isomerase.  相似文献   

2.
When [6-3H,6-14C]glucose was given in glucose loads to fasted rats, the average 3H/14C ratios in the glycogens deposited in their livers, relative to that in the glucoses administered, were 0.85 and 0.88. When [3-3H,3-14C]lactate was given in trace quantity along with unlabeled glucose loads, the average 3H/14C ratio in the glycogens deposited was 0.08. This indicates that a major fraction of the carbons of the glucose loads was converted to liver glycogen without first being converted to lactate. When [3-3H,6-14C]glucose was given in glucose loads, the 3H/14C ratios in the glycogens deposited averaged 0.44. This indicates that a significant amount of H bound to carbon 3, but not carbon 6, of glucose is removed within liver in the conversion of the carbons of the glucose to glycogen. This can occur in the pentose cycle and by cycling of glucose-6-P via triose phosphates: glucose----glucose-6-P----triose phosphates----glucose-6-P----glycogen. The contributions of these pathways were estimated by giving glucose loads labeled with [1-14C]glucose, [2-14C]glucose, [5-14C]glucose, and [6-14C]glucose and degrading the glucoses obtained by hydrolyzing the glycogens that deposited. Only a few per cent of the glucose carbons deposited in glycogen were deposited in liver via glucose-6-P conversion to triose phosphates. Between 4 and 9% of the glucose utilized by the liver was utilized in the pentose cycle. While these are relatively small percentages, since three NADP3H molecules are formed from each molecule of [3-3H]glucose-6-P utilized in the cycle, a major portion of the difference between the ratios obtained with [3-3H]glucose and with [6-3H]glucose is attributable to metabolism in the pentose cycle. Because 3H of [3-3H]glucose is extensively removed during the conversion of the glucose to glycogen within liver the extent of incorporation of the 3H into liver glycogen is not the measure of glucose's metabolism in other tissues before its carbons are deposited in liver glycogen. The distributions of 14C from the 14C-labeled glucoses into the carbons of the liver glycogens mean that at a minimum about 30% of the carbons of the glucose deposited in the glycogen were first converted to lactate or its metabolic equivalent.  相似文献   

3.
Carbohydrate metabolism in liver from foetal and neonatal sheep   总被引:5,自引:4,他引:1       下载免费PDF全文
1. During development of the sheep, the activities of UDP-glucose–α-glucan glucosyltransferase and UDP-glucose pyrophosphorylase and the glycogen content are highest in the liver of lambs 2 weeks old and considerably lower in liver from adult sheep. 2. The activity of hexokinase and the rate of incorporation of [14C]-glucose into glycogen are much lower in liver from postnatal sheep than in rat liver. 3. The activities of hexose diphosphatase and glucose 6-phosphatase and the rates of incorporation of [14C]pyruvate and [14C]propionate into glycogen increase from low levels in the liver of foetal sheep to maxima a few weeks after birth. The activities in the liver of adult sheep are slightly lower. 4. The incorporation rate of [14C]pyruvate into glucose has been measured in liver slices from rats, sheep and chick embryos at several ages of these animals. This pathway is active in liver from foetal sheep, embryonic chicks and postnatal rats or sheep, but is absent from the liver from foetal rats. 5. Fructose metabolism, as measured by the rates of incorporation of [14C]fructose into glycogen and glucose in liver slices and by assays of liver ketohexokinase, is barely detectable in the liver of foetal sheep and appears soon after birth. 6. During development of the sheep, the incorporation rate of [14C]galactose into glycogen in liver slices is highest in foetal sheep and decreases with increasing age of the animal. 7. These findings are discussed with reference to the changing pattern of carbohydrate metabolism during neonatal development of liver in the sheep.  相似文献   

4.
B R Landau  J Wahren 《FASEB journal》1988,2(8):2368-2375
Quantitative contributions of the direct and indirect pathways to liver glycogen formation from a glucose load have been estimated from 1) the distribution of label in glycogen formed from specifically carbon-labeled loads of glucose, 2) the specific activity of the glycogen compared with that of the circulating glucose, 3) the 3H:14C ratios in glycogen formed from loads specifically labeled with 3H and 14C, 4) the incorporation of 3H from 3H2O into the glycogen, and 5) the balance of glucogenic substrates across the splanchnic bed. A number of assumptions are made in the use of each of these methods. Estimates have been made for animals and humans fasted overnight or longer. Results obtained with the different methods are compared. Under these conditions, the contribution of the pathways appears to be determined by the size of the load, with larger contributions of the indirect pathway occurring with smaller loads.  相似文献   

5.
1. In 48 h-starved 6-week-old rats the 14C incorporation in vivo into blood glucose from a constant-specific-radioactivity pool of circulating [14c]actateconfirmed that lactate is the preferred gluconeogenic substrate. 2. Increasing the blood [alanine] to that occurrring in the fed state increased 14C incorporation into blood glucose 2.3-fold from [14c]alanine and 1.7-fold from [14c]lactate. 3. When the blood [alanine] was increased to that in the fed state, the 14C incorporation into liver glycogen from circulating [14c]alanine or [14c]lactate increased 13.5- and 1.7-fold respectively. 4. The incorporation of 14C into blood acetoacetate and 3-hydroxybutyrate from a constant-specific-radioactivity pool of circulating [14c]oleate was virtually abolished by increasing the blood [alanine] to that existing in the fed state. However, the [acetoacetate] remained unchanged, whereas [3-hydroxybutyrate] decreased, although less rapidly than did its radiochemical concentration. 5. It is concluded that during starvation in 6-week-old rats, the blood [alanine] appears to influence ketogenesis for circulating unesterfied fatty acids and inversely affects gluconeogenesis from either lactate or alanine. A different pattern of gluconeogenesis may exist for alanine and lactate as evidenced by comparative 14C incorporation into liver glycogen and blood glucose.  相似文献   

6.
The pathways of glycogen synthesis from glucose were studied using double-isotope procedures in 18-day cultured foetal-rat hepatocytes in which glycogenesis is strongly stimulated by insulin. When the medium containing 4 mM-glucose was supplemented with [2-3H,U-14C]glucose or [3-3H,U-14C]glucose, the ratios of 3H/14C in glycogen relative to that in glucose were 0.23 +/- 0.04 (n = 6) and 0.63 +/- 0.09 (n = 8) respectively after 2 h. This indicates that more than 75% of glucose was first metabolized to fructose 6-phosphate, whereas 40% reached the step of the triose phosphates prior to incorporation into glycogen. The stimulatory effect of 10 nM-insulin on glycogenesis (4-fold) was accompanied by a significant increase in the (3H/14C in glycogen)/(3H/14C in glucose) ratio with 3H in the C-2 position (0.29 +/- 0.05, n = 6, P less than 0.001) or in the C-3 position (0.68 +/- 0.09, n = 8, P less than 0.01) of glucose, whereas the effect of a 12 mM-glucose load (3.5-fold) did not alter these ratios. Fructose (4 mM) displaced [U-14C]glucose during labelling of glycogen in the presence and absence of insulin by 50 and 20% respectively, and produced under both conditions a similar increase (45%) in the (3H/14C in glycogen)/(3H/14C in glucose) ratio when 3H was in the C-2 position. 3-Mercaptopicolinate (1 mM), an inhibitor of gluconeogenesis from lactate/pyruvate, further decreased the already poor labelling of glycogen from [U-14C]alanine, whereas it increased both glycogen content and incorporation of label from [U-14C]serine and [U-14C]glucose with no effect on the relative 3H/14C ratios in glycogen and glucose with 3H in the C-3 position of glucose. These results indicate that an alternative pathway in addition to direct glucose incorporation is involved in glycogen synthesis in cultured foetal hepatocytes, but that insulin preferentially favours the classical direct route. The alternative foetal pathway does not require gluconeogenesis from pyruvate-derived metabolites, contrary to the situation in the adult liver.  相似文献   

7.
In chronically catheterized rats hepatic glycogen was increased by fructose (approximately 10 g/kg) gavage (FF rats) or lowered by overnight food restriction (FR rats). [3-3H]- and [U-14C]glucose were infused before, during, and after treadmill running. During exercise the increase in glucose production (Ra) was always directly related to work intensity and faster than the increase in glucose disappearance, resulting in increased plasma glucose levels. At identical work-loads the increase in Ra and plasma glucose as well as liver glycogen breakdown were higher in FF and control (C) rats than in FR rats. Breakdown of muscle glycogen was less in FF than in C rats. Incorporation of [14C]glucose in glycogen at rest and mobilization of label during exercise partly explained that 14C estimates of carbohydrate metabolism disagreed with chemical measurements. In some muscles glycogen depletion was not accompanied by loss of 14C and 3H, indicating futile cycling of glucose. In FR rats a postexercise increase in liver glycogen was seen with 14C/3H similar to that of plasma glucose, indicating direct synthesis from glucose. In conclusion, in exercising rats the increase in glucose production is subjected to feedforward regulation and depends on the liver glycogen concentration. Endogenous glucose may be incorporated in glycogen in working muscle and may be used directly for liver glycogen synthesis rather than after conversion to trioses. Fructose ingestion may diminish muscular glycogen breakdown. The [14C]glucose infusion technique for determination of muscular glycogenolysis is of doubtful value in rats.  相似文献   

8.
Glycogen synthesis was examined in primary cultures of adult rat hepatocytes that had been isolated from rats following a 24-h fast. Glycogen synthesis was dependent on the concentration of glucose in the culture medium and also required the presence of insulin. The addition of dexamethasone to the culture medium also increased the amount of glycogen synthesis. When the culture medium was supplemented with [U-14C,3-3H]glucose, it was found that approximately 60% of the glucose incorporated into glycogen was not derived from the pool of labeled glucose. In addition, the relative ratio of 3H/14C in the newly synthesized glycogen was approximately 50% of the ratio of the two isotopes in glucose in the culture medium, indicating that the glucose had undergone metabolism prior to its incorporation into glycogen. However, when hepatocytes were isolated from rats that had been fed ad libitum and the synthesis of glycogen from [U-14C,3-3H]glucose was followed, the relative ratio of the two isotopes in glycogen was similar to that measured for glucose in the culture medium, indicating that the glucose was directly incorporated into glycogen without any apparent metabolism. These results indicate that the synthesis of glycogen from glucose may, at least in part, follow an indirect pathway whereby glucose is metabolized prior to incorporation of the carbon into glycogen, but that the pathway followed for the synthesis of glycogen is dependent on the prior metabolic state of the animal.  相似文献   

9.
Gluconeogenesis from lactate in the developing rat. Studies in vivo   总被引:5,自引:5,他引:0       下载免费PDF全文
1. The specific radioactivity of plasma l-lactate and the incorporation of (14)C into plasma d-glucose, liver glycogen and skeletal-muscle glycogen were measured as a function of time after the intraperitoneal injection of l-[U-(14)C]lactate into 2-, 10- and 30-day-old rats. 2. Between 15 and 60min after the injection of the l-[U-(14)C]lactate, the specific radioactivity of plasma lactate decreased with a half-life of 20-33min in animals at all three ages. 3. At all times after injection examined, the specific radioactivity of plasma glucose of the 2- and 10-day-old rats was at least fourfold greater than that of the 30-day-old rats. 4. Although (14)C was incorporated into liver glycogen the amount incorporated was always less than 5% of that present in plasma glucose. 5. The results are discussed with reference to the factors that may influence the rate of incorporation of (14)C into plasma glucose, and it is concluded that the rate of gluconeogenesis in the 2- and 10-day-old suckling rat is at least twice that of the weaned 30-day-old animal.  相似文献   

10.
Lactate metabolism in the perfused rat hindlimb.   总被引:2,自引:0,他引:2       下载免费PDF全文
M Shiota  S Golden    J Katz 《The Biochemical journal》1984,222(2):281-292
A preparation of isolated rat hindleg was perfused with a medium consisting of bicarbonate buffer containing Ficoll and fluorocarbon, containing glucose and/or lactate. The leg was electrically prestimulated to deplete partially muscle glycogen. The glucose was labelled uniformly with 14C and with 3H in positions 2, 5 or 6, and lactate uniformly with 14C and with 3H in positions 2 or 3. Glucose carbon was predominantly recovered in glycogen, and to a lesser extent in lactate. The 3H/14C ration in glycogen from [5-3H,U-14C]- and [6-3H,U-14C]-glucose was the same as in glucose. Nearly all the utilized 3H from [2-3H]glucose was recovered as water. Insulin increased glucose uptake and glycogen synthesis 3-fold. When the muscle was perfused with a medium containing 10 mM-glucose and 2 mM-lactate, there was little change in lactate concentration. 14C from lactate was incorporated into glycogen. There was a marked exponential decrease in lactate specific radioactivity, much greater with [3H]- than with [14C]-lactate. The 'apparent turnover' of [U-14C]lactate was 0.28 mumol/min per g of muscle, and those of [2-3H]- and [3-3H]-lactate were both about 0.7 mumol/min per g. With 10 mM-lactate as sole substrate, there was a net uptake of lactate, at a rate of about 0.15 mumol/min per g, and the apparent turnover of [U-14C]lactate was 0.3 mumol/min per g. The apparent turnover of [3H]lactate was 3-5 times greater. When glycogen synthesis was low (no prestimulation, no insulin), the incorporation of lactate carbon into glycogen exceeded that from glucose, but at high rates of glycogen deposition the incorporation of lactate carbon was much less than that of glucose. Lactate incorporation into glycogen was similar in fast-twitch white and fast-twitch red muscle, but was very low in slow-twitch red fibres. We find that (a) pyruvate in muscle is incorporated into glycogen without randomization of carbon, and synthesis is not inhibited by mercaptopicolinate or cycloserine; (b) there is extensive lactate turnover in the absence of net lactate uptake, and there is a large dilution of 14C-labelled lactate from endogenous supply; (c) there is extensive detritiation of [2-3H]- and [3-3H]-lactate in excess of 14C utilization.  相似文献   

11.
Glucose metabolism in the developing rat. Studies in vivo   总被引:10,自引:10,他引:0  
1. The specific radioactivity of plasma d-glucose and the incorporation of (14)C into plasma l-lactate, liver glycogen and skeletal-muscle glycogen was measured as a function of time after the intraperitoneal injection of d-[6-(14)C]glucose and d-[6-(3)H]glucose into newborn, 2-, 10- and 30-day-old rats. 2. The log of the specific radioactivity of both plasma d-[6-(14)C]- and d-[6-(3)H]-glucose of the 2-, 10- and 30-day-old rats decreased linearly with time for at least 60min after injection of labelled glucose. The specific radioactivity of both plasma d-[6-(14)C]- and d-[6-(3)H]-glucose of the newborn rat remained constant for at least 75min after injection. 3. The glucose turnover rate of the 30-day-old rat was significantly greater than (approximately twice) that of the 2- and 10-day-old rats. The relative size of both the glucose pool and the glucose space decreased with age. Less than 10% of the glucose utilized in the 2-, 10- and 30-day-old rats was recycled via the Cori cycle. 4. The results are discussed in relationship to the availability of dietary glucose and other factors that may influence glucose metabolism in the developing rat.  相似文献   

12.
Proline and hepatic lipogenesis   总被引:1,自引:0,他引:1  
The effects of proline on lipogenesis in isolated rat hepatocytes were determined and compared with those of lactate, an established lipogenic precursor. Proline or lactate plus pyruvate increased lipogenesis (measured with 3H2O) in hepatocytes from fed rats depleted of glycogen in vitro and in hepatocytes from starved rats. Lactate plus pyruvate but not proline increased lipogenesis in hepatocytes from starved rats. ( - )-Hydroxycitrate, an inhibitor of ATP-citrate lyase, partially inhibited incorporation into saponifiable fatty acid of 3H from 3H2O and 14C from [U-14C]lactate with hepatocytes from fed rats. Incorporation of 14C from [U-14C]proline was completely inhibited. Similar complete inhibition of incorporation of 14C from [U-14C]proline by ( - )-hydroxycitrate was observed with glycogen-depleted hepatocytes or hepatocytes from starved rats. Inhibition of phosphoenolpyruvate carboxykinase by 3-mercaptopicolinate did not inhibit the incorporation into saponifiable fatty acid of 3H from 3H2O or 14C from [U-14C]proline or [U-14C]lactate. Both 3-mercaptopicolinate and ( - )-hydroxycitrate increased lipogenesis (measured with 3H2O) in the absence or presence of lactate or proline with hepatocytes from starved rats. The results are discussed with reference to the roles of phosphoenolpyruvate carboxykinase, mitochondrial citrate efflux, ATP-citrate lyase and acetyl-CoA carboxylase in proline- or lactate-stimulated lipogenesis.  相似文献   

13.
Glucose metabolism in the newborn rat. Temporal studies in vivo   总被引:14,自引:12,他引:2       下载免费PDF全文
1. The concentrations of plasma d-glucose, l-lactate, free fatty acids and ketone bodies and of liver glycogen were measured in caesarian-delivered newborn rats at time-intervals up to 4h after delivery. Glucose and lactate concentrations decreased markedly during the first hours after delivery, but there was a delay of 60-90min before significant glycogen mobilization occurred. 2. The specific radioactivity of plasma d-glucose was measured as a function of time for up to 75min after the intraperitoneal injection of d-[6-(14)C]glucose and d-[6-(3)H]glucose into caesarian-delivered rats at 0, 1 and 2h after delivery. Calculations revealed that there was an appreciable rate of glucose formation at all ages studied, but immediately after delivery this was exceeded by the rate of glucose utilization. Around 2h post partum the rate of glucose utilization decreased dramatically and this coincided with a reversal of the immediately postnatal hypoglycaemia. 3. The specific radioactivity of plasma l-lactate and the incorporation of (14)C into plasma d-glucose and liver glycogen was measured as a function of time after the intraperitoneal injection of l-[U-(14)C]lactate into rats immediately after delivery. The logarithm of the specific radioactivity of plasma l-[U-(14)C]lactate decreased linearly with time for at least 60min after injection and the calculated rate of lactate utilization exceeded the rate of lactate formation. 4. (14)C incorporation into plasma d-glucose was maximal from 30-60min after injection of l-[U-(14)C]lactate and the amount incorporated at 60min was 23% of that present in plasma lactate. Although (14)C was also incorporated into liver glycogen the amount was always less than 3% of that present in plasma glucose. 5. The results are discussed in relationship to the adaptation of the newly born rat to the extra-uterine environment and the possible involvement of gluconeogenesis at this time before feeding is established.  相似文献   

14.
Vasopressin and angiotensin II inhibited lipogenesis (measured with 3H2O) in hepatocytes from fed rats. Inhibition was also observed with hepatocytes from fed rats which had been depleted of glycogen in vitro and incubated with lactate + pyruvate (5 mM + 0.5 mM) as substrates. The inhibitory actions of the hormones are therefore independent of hormone-mediated changes in glycogenolytic or glycolytic flux from glycogen, and thus the site(s) of hormone action must be subsequent to the formation of lactate. (-)Hydroxycitrate, a specific inhibitor of ATP-citrate lyase, decreased lipogenesis in hepatocytes from fed rats incubated with lactate + pyruvate by approx. 51% but had little effect on lipogenesis in glycogen-depleted hepatocytes similarly incubated. There was parallel inhibition of incorporation of 14C from [U-14C]lactate into fatty acid and lipogenesis as measured with 3H2O in each case. Thus depletion of glycogen, or conceivably the process of glycogen-depletion (incubation with dibutyryl cyclic AMP) causes a change in the rate-determining step(s) for lipogenesis from lactate. Vasopressin and angiotensin II also decreased lipogenesis and incorporation of 14C into fatty acids in glycogen-depleted hepatocytes provided with [U-14C]proline as opposed to [U-14C]-lactate. However, proline-stimulated lipogenesis was inhibited by (-)hydroxycitrate, and proline-stimulated lipogenesis and incorporation of 14C from [U-14C]-proline were not decreased in parallel by this inhibitor (inhibition of 52% and 85% respectively). It is inferred that lactate and proline stimulate lipogenesis by different mechanisms and incorporation of 14C from [U-14C]proline and [U-14C]lactate into fatty acid occurs via different routes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Synthesis of fatty acids in the perfused mouse liver   总被引:6,自引:3,他引:3       下载免费PDF全文
1. Fatty acid synthesis de novo was measured in the perfused liver of fed mice. 2. The total rate, measured by the incorporation into fatty acid of (3)H from (3)H(2)O (1-7mumol of fatty acid/h per g of fresh liver), resembled the rate found in the liver of intact mice. 3. Perfusions with l-[U-(14)C]lactic acid and [U-(14)C]glucose showed that circulating glucose at concentrations less than about 17mm was not a major carbon source for newly synthesized fatty acid, whereas lactate (10mm) markedly stimulated fatty acid synthesis, and contributed extensive carbon to lipogenesis. 4. The identification of 50% of the carbon converted into newly synthesized fatty acid lends further credibility to the use of (3)H(2)O to measure hepatic fatty acid synthesis. 5. The total rate of fatty acid synthesis, and the contribution of glucose carbon to lipogenesis, were directly proportional to the initial hepatic glycogen concentration. 6. The proportion of total newly synthesized lipid that was released into the perfusion medium was 12-16%. 7. The major products of lipogenesis were saturated fatty acids in triglyceride and phospholipid. 8. The rate of cholesterol synthesis, also measured with (3)H(2)O, expressed as acetyl residues consumed, was about one-fourth of the basal rate of fatty acid synthesis. 9. These results are discussed in terms of the carbon sources of hepatic newly synthesized fatty acids, and the effect of glucose, glycogen and lactate in stimulating lipogenesis, independently of their role as precursors.  相似文献   

16.
After a pulse of [3-14C]pyruvate, 24 hr starved rats were infused through the portal vein with two different doses of glucose (7.8 or 20.8 mg/min) or the medium, and blood was collected from the inferior cava vein at the level of the suprahepatic veins. The highest dose of glucose enhanced the appearance of [14C]glucose in blood from the 2nd to the 20th min after tracer delivery. It also enhanced production of [14C]glycogen and concentration of glycogen in the liver after 5 and 20 min. At 20 min of glucose infusion the appearance of [14C]glyceride glycerol in liver as well as liver lactate concentration and lactate/pyruvate ratio were increased. The low dose of glucose used enhanced liver values of [14C]glycogen, [14C]glycogen specific activity and glycogen concentration. Our results support the hypothesis that in the starved rat glucose is converted into C3 units prior to being deposited as liver glycogen and based on the liver zonation model (Jungermann et al., 1983) it is proposed that glucose stimulated gluconeogenesis by shifting the liver to the cytosolic redox state as a secondary consequence of increased glycolytic activity.  相似文献   

17.
Glycogen synthesis in hepatocyte cultures is dependent on: (1) the nutritional state of the donor rat, (2) the acinar origin of the hepatocytes, (3) the concentrations of glucose and gluconeogenic precursors, and (4) insulin. High concentrations of glucose (15-25 mM) and gluconeogenic precursors (10 mM-lactate and 1 mM-pyruvate) had a synergistic effect on glycogen deposition in both periportal and perivenous hepatocytes. When hepatocytes were challenged with glucose, lactate and pyruvate in the absence of insulin, glycogen was deposited at a linear rate for 2 h and then reached a plateau. However, in the presence of insulin, the initial rate of glycogen deposition was increased (20-40%) and glycogen deposition continued for more than 4 h. Consequently, insulin had a more marked effect on the glycogen accumulated in the cell after 4 h (100-200% increase) than on the initial rate of glycogen deposition. Glycogen accumulation in hepatocyte cultures prepared from rats that were fasted for 24 h and then re-fed for 3 h before liver perfusion was 2-fold higher than in hepatocytes from rats fed ad libitum and 4-fold higher than in hepatocytes from fasted rats. The incorporation of [14C]lactate into glycogen was 2-4-fold higher in periportal than in perivenous hepatocytes in both the absence and the presence of insulin, whereas the incorporation of [14C]glucose into glycogen was similar in periportal and perivenous hepatocytes in the absence of insulin, but higher in perivenous hepatocytes in the presence of insulin. Rates of glycogen deposition in the combined presence of glucose and gluconeogenic precursors were similar in periportal and perivenous hepatocytes, whereas in the presence of glucose alone, rates of glycogen deposition paralleled the incorporation of [14C]glucose into glycogen and were higher in perivenous hepatocytes in the presence of insulin. It is concluded that periportal and perivenous hepatocytes utilize different substrates for glycogen synthesis, but differences between the two cell populations in the relative utilization of glucose and gluconeogenic precursors are dependent on the presence of insulin and on the nutritional state of the rat.  相似文献   

18.
The influence of feeding rats a high-energy diet for 7 days on fatty acid synthesis in brown adipose tissue, white adipose tissue and liver of the rat was investigated. The incorporation of 3H2O and [U-14C]glucose into fatty acid was measured in vivo. The rats fed the high-energy diets had higher rates of fatty acid synthesis in white adipose tissue than the controls fed on chow, while fatty acid synthesis in brown adipose tissue and liver was either decreased or unchanged relative to that of controls fed on chow. After an oral load of [U-14C]glucose the incorporation of radioactivity into tissue fatty acid was several-fold higher in brown adipose tissue than in white adipose tissue in rats fed on chow. In rats fed the high-energy diets, incorporation of radioactivity into fatty acid in brown adipose tissue was decreased while that into white adipose tissue was either increased (Wistar rats) or unchanged (Lister rats).  相似文献   

19.
The role of gluconeogenesis on the increase in plasma glucose and liver glycogen of rats exposed to hyper-G (radial acceleration) stress was determined. Overnight-fasted, male Sprague-Dawley rats (250-300 g) were injected i.p. with uniformly labeled 1 4C lactate, alanine, or glycerol (5 microCi/rat) and immediately exposed to 3.1G for 0.25, 0.50, and 1.0 hr. 1 4C incorporation of the labeled substrates into plasma glucose and liver glycogen was measured and compared to uncentrifuged control rats injected in a similar manner. Significant increases in 1 4C incorporation of all three labeled substrates into plasma glucose were observed in centrifuged rats at all exposure periods; 1 4C incorporation into liver glycogen was significantly increased only at 0.50 and 1.0 hr. The i.p. administration (5 mg/100-g body wt) of 5-methoxyindole-2-carboxylic acid, a potent gluconeogenesis inhibitor, prior to centrifugation blocked the increase in plasma glucose and liver glycogen during the first hour of centrifugation. The increase in plasma glucose and liver glycogen was also abolished in adreno-demedullated rats exposed to centrifugation for 1.0 hr. Propranolol, a beta-adrenergic blocker, suppressed the increase in plasma glucose of rats exposed to centrifugation for 0.25 hr. From the results of this study, it is concluded that the initial, rapid rise in plasma glucose as well as the increase in liver glycogen of rats exposed to hyper-G stress can be attributed to an increased rate of gluconeogenesis, and that epinephrine plays a dominant role during the early stages of exposure to centrifugation.  相似文献   

20.
Glycogen synthesis by rat hepatocytes.   总被引:8,自引:0,他引:8       下载免费PDF全文
J Katz  S Golden    P A Wals 《The Biochemical journal》1979,180(2):389-402
1. Hepatocytes from starved rats or fed rats whose glycogen content was previously depleted by phlorrhizin or by glucagon injections, form glycogen at rapid rates when incubated with 10mM-glucose, gluconeogenic precursors (lactate, glycerol, fructose etc.) and glutamine. There is a net synthesis of glucose and glycogen. 14C from all three types of substrate is incorporated into glycogen, but the incorporation from glucose represents exchange of carbon atoms, rather than net incorporation. 14C incorporation does not serve to measure net glycogen synthesis from any one substrate. 2. With glucose as sole substrate net glucose uptake and glycogen deposition commences at concentrations of about 12--15mM. Glycogen synthesis increases with glucose concentrations attaining maximal values at 50--60mM, when it is similar to that obtained in the presence of 10mM glucose and lactate plus glutamine. 3. The activities of the active (a) and total (a+b) forms of glycogen synthase and phosphorylase were monitored concomitant with glycogen synthesis. Total synthase was not constant during a 1 h incubation period. Total and active synthase activity increased in parallel with glycogen synthesis. 4. Glycogen phosphorylase was assayed in two directions, by conversion of glycose 1-phosphate into glycogen and by the phosphorylation of glycogen. Total phosphorylase was assyed in the presence of AMP or after conversion into the phosphorylated form by phosphorylase kinase. Results obtained by the various methods were compared. Although the rates measured by the procedures differ, the pattern of change during incubation was much the same. Total phosphorylase was not constant. 5. The amounts of active and total phosphorylase were highest in the washed cell pellet. Incubation in an oxygenated medium, with or without substrates, caused a prompt and pronounced decline in the assayed amounts of active and total enzyme. There was no correlation between phosphorylase activity and glycogen synthesis from gluconeogenic substrates. With fructose, active and total phosphorylase activities increased during glycogen syntheses. 6. In glycogen synthesis from glucose as sole substrate there was a decline in phosphorylase activities with increased glucose concentration and increased rates of glycogen deposition. The decrease was marked in cells from fed rats. 7. To determine whether phosphorolysis and glycogen synthesis occur concurrently, glycogen was prelabelled with [2-3H,1-14C]-galactose. During subsequent glycogen deposition there was no loss of activity from glycogen in spite of high amounts of assayable active phosphorylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号