首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J. A. Terri  M. M. Peet 《Oecologia》1978,34(2):133-141
Summary The responses of the kinetic properties of malate dehydrogenase to environmental temperature variability were compared for two populations of Potentilla glandulosa (Rosaceae). The two populations are native to regions of contrasting climates, with the inland population experiencing a high level of temperature variability during growth and the coastal populaton a low level of temperature variability. The substrate binding ability, as measured by apparent K m of both populations was relatively insensitive to assay temperature (Q 10<2.0) over the range of temperatures likely to be encountered during growth. The breadth of this thermal optimum was different for the two populations with the K m of the inland plants exhibiting relative temperature insensitivity over a much wider range of temperatures than the K m of the coastal plants. There was no difference between the two populations in the thermal stability of MDH activity.  相似文献   

2.
The magnitude and direction of carbon cycle feedbacks under climate warming remain uncertain due to insufficient knowledge about the temperature sensitivities of soil microbial processes. Enzymatic rates could increase at higher temperatures, but this response could change over time if soil microbes adapt to warming. We used the Arrhenius relationship, biochemical transition state theory, and thermal physiology theory to predict the responses of extracellular enzyme Vmax and Km to temperature. Based on these concepts, we hypothesized that Vmax and Km would correlate positively with each other and show positive temperature sensitivities. For enzymes from warmer environments, we expected to find lower Vmax, Km, and Km temperature sensitivity but higher Vmax temperature sensitivity. We tested these hypotheses with isolates of the filamentous fungus Neurospora discreta collected from around the globe and with decomposing leaf litter from a warming experiment in Alaskan boreal forest. For Neurospora extracellular enzymes, Vmax Q10 ranged from 1.48 to 2.25, and Km Q10 ranged from 0.71 to 2.80. In agreement with theory, Vmax and Km were positively correlated for some enzymes, and Vmax declined under experimental warming in Alaskan litter. However, the temperature sensitivities of Vmax and Km did not vary as expected with warming. We also found no relationship between temperature sensitivity of Vmax or Km and mean annual temperature of the isolation site for Neurospora strains. Declining Vmax in the Alaskan warming treatment implies a short‐term negative feedback to climate change, but the Neurospora results suggest that climate‐driven changes in plant inputs and soil properties are important controls on enzyme kinetics in the long term. Our empirical data on enzyme Vmax, Km, and temperature sensitivities should be useful for parameterizing existing biogeochemical models, but they reveal a need to develop new theory on thermal adaptation mechanisms.  相似文献   

3.
C. F. Mason 《Oecologia》1971,7(1):80-94
Summary Experiments were done to measure the respiration rates of twenty species of terrestrial snail. Acclimatization phenomena were sought in two species, Discus rotundatus and Hygromia striolata, but not detected. The Q 10s between 5 and 15° C for the twenty species varied between 1.20 and 4.27, with a mean Q 10 of 2.21. Q 10 was higher in larger snail species. There was an increase in respiration with body weight for those species which grew to a large size, but the trend was not detectable in species with small adult weight. A double log plot of mean respiration rate of each species against the mean weight of each species gave a linear relationship.Mean monthly leaf litter temperature was measured in a beech woodland site in Wytham Woods, Berkshire. Litter temperature, in combination with snail population data and size class distribution, was used to calculate population metabolism of the snails on the site. Annual population metabolism amounted to 7.0934 kcals/m2/annum. The estimated annual production was 4.4386 kcals/m2. The P/R ratios varied between 0.143 and 1.861, P/B ratios varying from 1.0 to 34.3. From the data it is suggested that respiration alone will not give a good measure of the importance of different species in litter breakdown.  相似文献   

4.
To explain the six-banded pattern obtained upon electrophoresis of the soluble form of malate dehydrogenase (sMDH, EC 1.1.1.37) from the characiform Hoplias malabaricus, a recent locus duplication of its A isoform (sMDH-A*), in addition to its sMDH-B* isoform, was proposed. Klebe’s serial dilutions carried out using skeletal muscle, heart and liver extracts showed that the A1 and A2 subunits have the same visual end-points, indicating that these A-duplicated genes have a nondivergent pattern. Since there is no evidence of polyploidy in the Erythrinidae family, the MDH-A* loci have probably evolved from regional gene duplication. While these sMDH-A* loci encode nondivergent thermostable isoforms, the sMDH-B* encodes a thermolabile one. Thermostable sMDHs differ from the thermolabile sMDHs in that they have a higher Km of oxaloacetate. Liver, muscle and heart unfractionated sMDH levels at three different temperature and two pH regimens were analysed and the results showed that, in the adaptative temperature range of Hoplias, the variation in Km under conditions of constant pH (imidazole buffer) was less (approximately threefold) than that measured in the presence of temperature-dependent pH imidazole buffer (sevenfold). Estimation of the ratio of both isoforms in these tissues by Klebe’s method showed that, in unfractionated liver – where Km values were the highest and the minimum Km was obtained at 30^C (both for temperature-dependent pH and constant-pH imidazole buffer) – the duplicate A (thermostable, A1 and A2) and B (thermolabile) subunits were detected in a ratio of 2:1. On the other hand, in muscle extracts – in which the lowest Km values were measured, with the minimum Km at 10–20^C (temperature-dependent pH and constant-pH imidazole buffer, respectively) – a ratio of two thermolabile to one thermostable subunits was observed.  相似文献   

5.
Sah S  Phale PS 《Biodegradation》2011,22(3):517-526
1-Naphthol 2-hydroxylase (1-NH) which catalyzes the conversion of 1-naphthol to 1,2-dihydroxynaphthalene was purified to homogeneity from carbaryl-degrading Pseudomonas sp. strain C6. The enzyme was found to be a homodimer with subunit molecular weight of 66 kDa. UV, visible and fluorescence spectral properties, identification of flavin moiety by HPLC as FAD, and reconstitution of apoenzyme by FAD suggest that enzyme is FAD-dependent. 1-NH accepts electron from NADH as well as NADPH. Besides 1-naphthol (K m, 9.1 μM), the enzyme also accepts 5-amino 1-naphthol (K m, 6.4 μM) and 4-chloro 1-naphthol (K m, 2.3 μM) as substrates. Enzyme showed substrate inhibition phenomenon at high concentration of 1-naphthol (K i, 283 μM). Stoichiometric consumption of oxygen and NADH, and biochemical properties suggest that 1-NH belongs to FAD containing external flavomonooxygenase group of oxido-reductase class of enzymes. Based on biochemical and kinetic properties, 1-NH from Pseudomonas sp. strain C6 appears to be different than that reported earlier from Pseudomonas sp. strain C4. Chemical modification and protection by 1-naphthol and NADH suggest that His, Arg, Cys, Tyr and Trp are at or near the active site of 1-NH.  相似文献   

6.
Summary Xanthine dehydrogenase (XDH) from Drosophila melanogaster has been purified to homogeneity by immunoaffinity chromatography, and its kinetic parameters determined. Drosophila XDH exhibits ordered binding for substrate and NAD+, analogous to the corresponding enzymes from vertebrate sources. The wild-type enzyme exhibits a Km for xanthine of 2.4x10-5 M, and for NAD+ of 4.0x10-5 M. XDH purified from a genetic variant exhibiting elevated levels of enzyme activity has similar kinetic constants. The results provide further evidence that the site of variation in the latter strain results in higher steady state numbers of XDH molecules per fly.  相似文献   

7.
J M Storey  K B Storey 《Cryobiology》1982,19(2):185-194
The kinetic properties of cytoplasmic glycerol-3-P dehydrogenase from the third instar larva of the gall fly, Eurosta solidaginis, were studied with emphasis on temperature effects on the enzyme and the regulation of enzyme activity during the synthesis of the cryoprotectant, glycerol. Isoelectrofocusing revealed one major and two minor forms of the enzyme with no alteration in the pI's or relative activities of the forms in larvae acclimated to 24 versus ?30 °C. Kinetic properties of the enzyme were also the same in larvae acclimated to high and low temperatures. Arrhenius plots were linear over a 30 to 0 °C range with an activation energy of 12,630 ± 185 cal/mol and a Q10 of 2.16. The Km for dihydroxyacetone-P was constant, at 50 μM, between 30 and 10 °C but increased by 75% at 0 °C; this increase may be a factor in the cessation of glycerol synthesis which occurs below 5 °C in this species. The Km(NADH), by contrast, was higher (5–6 μM) at 30 °C but decreased (3 μM) at lower temperatures. In the reverse direction, Km's were 340 μM for glycerol-3-P and 12 μM for NAD+. Effects of most inhibitors (of the forward reaction), glycerol-3-P (Ki = 2.4 mM), NAD+ (Ki = 0.2 mM), ATP, Mg·ATP, and Pi, were unaltered by assay temperature but ADP effects were potentiated by low temperature while citrate inhibition was greatest at high temperatures. Glycerol and sorbitol, which accumulate as cryoprotectants in E. solidaginis, had no significant effects on kinetic constants at any temperature but decreased the Vmax activity of the enzyme. Thermal inactivation studies showed an increased thermal stability of the larval enzyme compared to the homologous enzyme from rabbit muscle while added polyols stabilized enzyme activity, decreasing the rate of enzyme inactivation at 50 °C.  相似文献   

8.
Summary The evolutionary behavior of two mitochondrial enzymes (L-glycerol 3-phosphate:cytochrome c oxidoreductase E.C.1.1.1.95,GPO, and L-malate: NAD+ oxidoreductase, E.C.1.1.1.37, m-MDH) obtained from several temperate and tropicalDrosophila species was examined by comparing their catalytic properties, which related to temperature (Km-Ea-Q10-Thermostability). MitochondrialGPO or m-MDH obtained either from temperate or from tropical species was found to exhibit similar catalytic properties while for both cytosolic enzymes, theGPDH and s-MDH, Km patterns were similar among species from the same thermal habitat and different between thermal habitats. In combination with other observations reported in the literature these facts support the view that the function, and probably the structure, of mitochondrial enzymes are better conserved in evolution than those of the corresponding enzymes found in the cytosol. It is proposed that the relative invariance of the mitochondrial enzymes structure is probably linked to a necessary relative invariance of molecular interactions inside the mitochondrion.  相似文献   

9.
Single-channel properties of a delayed rectifier voltage-gated K+ channel (I-type) were investigated in peripheral myelinated axons from Xenopus laevis. Channels activated between −60 and −40 mV with a potential of half-maximal activation, E50, at −47.5 mV. Averaged single-channel currents activated with a time delay at all membrane potentials tested. Time to half-maximal activation decreased from 80 to 1.6 msec between −60 and +40 mV. The channel inactivated monoexponentially with a time constant of 10.9 sec at −40 mV. The time constant of deactivation was 126 msec at −80 mV and 16.9 msec at −110 mV. In symmetrical 105 mm K+, the single-channel conductance (γ) was 22 and 13 pS at negative and positive membrane potentials, respectively, at 13–15°C. In Na+-rich solution with 2.5 mm extracellular K+γ was 7 pS and the reversal potential was negative to −80 mV, indicating a high selectivity for K+ over Na+. γ depended on extracellular K+ concentration (K D = 19.6 mm) and temperature (Q 10= 1.45). External tetraethylammonium (TEA) reduced the apparent single-channel current amplitude at all potentials tested with a half-maximal inhibiting concentration (IC50) of 0.6 mm. Open probability of the channel, but not single-channel current amplitude was decreased by extracellular dendrotoxin (DTX, IC50= 6.8 nm) and mast cell degranulating peptide (MCDP, IC50= 41.9 nm). In Ringer solution the membrane potential of macroscopic I-channel patches was about −65 mV and depolarized under TEA and DTX. It is concluded that besides their activation during action potentials, I-channels may also stabilize the resting membrane potential. Received: 2 June 1995/Revised: 13 October 1995  相似文献   

10.
A significant lag in the thenoyltrifluoroacetone (TTFA)-sensitive succinate: ubiquinone reductase activity was observed when a ubiquinone-deficient resolved preparation of the enzyme was assayed in the presence of exogenous ubiquinone-2 (Q2) and 2,6-dichlorophenolindophenol. No such lag was seen when the free radical of N,N,N′,N′-tetramethyl-p-phenylenediamine (Wurster's Blue) was used as the terminal electron acceptor, or when the reduction of Q2 was directly measured. The apparent Km value for exogenous Q2 was determined in the Q2-mediated TTFA-sensitive succinate: Wurster's Blue reductase reaction. When the enzyme activity was measured directly by monitoring Q2 reduction without terminal acceptors, the time course of the reaction deviated from zero-order kinetics at Q2 concentrations which were much higher than those expected from the KQ2m value determined in the presence of Wurster's Blue. The time course of Q2 reduction fits a curve describing a competitive interrelationship between oxidized and reduced Q2 at the specific binding site. The data obtained are in agreement with the Q-pool behavior of ubiquinone in mitochondrial membranes and suggest that the rate of ubiquinone reduction by succinate is dependent on the ratio.  相似文献   

11.
Summary The apparent Michaelis constant (K m) of NADH for muscle-type (M4 isozyme) lactate dehydrogenases (LDHs) is highest, at any given temperature of measurement, for LDHs of cold-adapted vertebrates (Table 1). However, these interspecific differences in theK m of NADH are not due to variations in LDH-NADH binding affinity. Rather, theK m differences result entirely from interspecific variation in the substrate turnover constant (k cat) (Fig. 1; Table 2). This follows from the fact that theK m of NADH is equal tok cat divided by the on constant for NADH binding to LDH,k 1, so that interspecific differences ink cat, combined with identical values fork 1 among different LDH reactions, make the magnitude of theK m of NADH a function of substrate turnover number. The temperature dependence of theK m of NADH for a single LDH homologue is the net result of temperature dependence of bothk cat andk 1 (Figs. 3 and 4). Temperature independentK m values can result from simultaneous, and algebraically offsetting, increases ink cat andk 1 with rising temperature. Salt-induced changes in theK m of NADH also may be due to simultaneous perturbation of bothk cat andk 1 (Table 3). These findings are discussed from the standpoint of the evolution of LDH kinetic properties, particularly the interspecific conservation of catalytic and regulatory functions, in differently-adapted species.  相似文献   

12.
Decomposition of soil organic matter (SOM) is mediated by microbial extracellular hydrolytic enzymes (EHEs). Thus, given the large amount of carbon (C) stored as SOM, it is imperative to understand how microbial EHEs will respond to global change (and warming in particular) to better predict the links between SOM and the global C cycle. Here, we measured the Michaelis–Menten kinetics [maximal rate of velocity (Vmax) and half‐saturation constant (Km)] of five hydrolytic enzymes involved in SOM degradation (cellobiohydrolase, β‐glucosidase, β‐xylosidase, α‐glucosidase, and N‐acetyl‐β‐d ‐glucosaminidase) in five sites spanning a boreal forest to a tropical rainforest. We tested the specific hypothesis that enzymes from higher latitudes would show greater temperature sensitivities than those from lower latitudes. We then used our data to parameterize a mathematical model to test the relative roles of Vmax and Km temperature sensitivities in SOM decomposition. We found that both Vmax and Km were temperature sensitive, with Q10 values ranging from 1.53 to 2.27 for Vmax and 0.90 to 1.57 for Km. The Q10 values for the Km of the cellulose‐degrading enzyme β‐glucosidase showed a significant (= 0.004) negative relationship with mean annual temperature, indicating that enzymes from cooler climates can indeed be more sensitive to temperature. Our model showed that Km temperature sensitivity can offset SOM losses due to Vmax temperature sensitivity, but the offset depends on the size of the SOM pool and the magnitude of Vmax. Overall, our results suggest that there is a local adaptation of microbial EHE kinetics to temperature and that this should be taken into account when making predictions about the responses of C cycling to global change.  相似文献   

13.
Four species of groupers, genus Epinephelus, exhibiting overlapping distribution ranges in the middle and lower regions of the Sea of Cortez, were studied in terms of biochemical, genetic, and functional enzymic features. The results of enzymatic assays of muscle-type lactate dehydrogenases (M4-LDH) from tropical-, subtropical- and temperate-zone groupers showed thermal compensatory differences in their kinetic properties (apparent Km of pyruvate and catalytic rate constant, kcat). These kinetic adaptations are reflected in a strong conservation of the functional characteristics of the enzyme at the mean temperature of their habitats which differ by 3–6°C on the average. These results point out that minor differences in habitat (body) temperature are sufficient to favor the evolution of functional adaptations in the enzymes of the species. The use of closely related congeneric species inhabiting different thermal environments is a valuable approach to the study of molecular evolution at a fine scale level.  相似文献   

14.
The photosynthetic performance of macroalgae isolated in Antarctica was studied in the laboratory. Species investigated were the brown algae Himantothallus grandifolius, Desmarestia anceps, Ascoseira mirabilis, the red algae Palmaria decipiens, Iridaea cordata, Gigartina skottsbergii, and the green algae Enteromorpha bulbosa, Acrosiphonia arcta, Ulothrix subflaccida and U. implexa. Unialgal cultures of the brown and red algae were maintained at 0°C, the green algae were cultivated at 10°C. IK values were between 18 and 53 μmol m?2 s?1 characteristic or low light adapted algae. Only the two Ulothrix species showed higher IK values between 70 and 74 μmol m?2 s?1. Photosynthesis compensated dark respiration at very low photon fluence rates between 1.6 and 10.6 μmol m?2 s?1. Values of α were high: between 0.4 and 1.1 μmol O2 g?1 FW h?1 (μmol m?2 s?1)?1 in the brown and red algae and between 2.1 and 4.9 μmol O2 g?1 FW h?1 (μmol m?2 s?1)?1 in the green algal species. At 0°C Pmax values of the brown and red algae ranged from 6.8 to 19.1 μmol O2 g?1 FW h?1 and were similarly high or higher than those of comparable Arctic-cold temperate species. Optimum temperatures for photosynthesis were 5 to 10°C in A. mirabilis, 10°C in H. grandifolius, 15°C in G. skottsbergii and 20°C or higher in D. anceps and I. cordata. P: R ratios strongly decreased in most brown and red algae with increasing temperatures due to different Q10 values for photosynthesis (1.4 to 2.5) and dark respiration (2.5 to 4.1). These features indicate considerable physiological adaptation to the prevailing low light conditions and temperatures of Antarctic waters. In this respect the lower depth distribution limits and the northern distribution boundaries of these species partly depend on the physiological properties described here.  相似文献   

15.
Lactate dehydrogenase (LDH) present in the tail muscle of the lobster (H. vulgaris) exhibits substrate (pyruvate and L-lactate) inhibition which is temperature-dependent. Such inhibitions can be related to the formation of stable LDH-NAD +-pyruvate and LDH-NADH-lactate complexes. The apparent Km of pyruvate and L-lactate increase when the temperature rises above 12°. These temperature-dependent kinetic properties may play a major role in determining the metabolic fate of pyruvate.  相似文献   

16.
The desmid Staurastrum luetkemuellerii Donat et Ruttner and the cyanobacterium Microcystis aeruginosa Kütz. showed pronounced differences in chemical composition and ability to maintain P fluxes. The cellular P:C ratio (Qp) and the surplus P:C ratio (Qsp) were higher in M. aeruginosa, indicating a lower yield of biomass C per unit of P. The subsistence quota (Qp) was 1.85 μg P·mg C?1in S. luetkemuellerii and 6.09 μg P·mg C?1in M. aeruginosa, whereas the respective Qp of P saturnted organisms (Qs) were 43 and 63 μg P·mg C?1. These stores could support four divisions in S. luetkemuellerii and three divisions in M. aeruginosa, which suggests that the former exhibited highest storage capacity (Qs/Q0). M. aeruginosa showed a tenfold higher activity of alkaline phosphatase than S. luetkemuellerii when P starved. The optimum N:P ratio (by weight) was 5 in S. luetkemuellerii and 7 in M. aeruginosa. The initial uptake of Pi pulses in the organisms was not inhibited by rapid (<1 h) internal feedback mechanisms and the short term uptake rote could be expressed solely as a function of ambient Pi. The maximum cellular C-based uptake rate (Vm) in P starved M. aeruginosa was up to 50 times higher than that of S. luetkemuellerii. It decreased with increasing growth rate (P status) in the former species and remained fairly constant in the latter. The corresponding cellular P-based value (Um= Vm/Qp) decreased with growth rate in both species and was about 10 times higher in P started M. aeruginosa than in S. luetkemuellerii. The average half saturation constant for uptake (Km) was equal for both species (22 μg P·L?1) and varied with the P status. S. luetkemuellerii exhibited shifts in the uptake rate of Pi that were characterized by increased affinity (Um/Km) at low Pi, concentrations (<4 μg P·L?1) compared to that at higher concentrations. The species thus was well adapted to uptake at low ambient Pi, but M. aeruginosa was superior in Pi uptake under steady state and transient conditions when the growth rate was lower than 0.75 d?1. Moreover, M. aeruginosa was favored by pulsed addition of Pi. M. aeruginosa relpased Pi at a higher rate than S. luetkemuellerii. Leakage of Pi from the cells caused C-shaped μ vs. Pi curves. Therefore, no unique Ks for growth could be estimated. The maximum growth rate (μm) (23° C) was 0.94 d?1for S. luetkemuellerii and 0.81 d?1for M. aeruginosa. The steady state concentration of Pi (P*) was lower in M. aeruginosa than in S. luetkemuellerii at medium growth rates. The concentration of Pi at which the uptake and release of Pi was equal (Pc was, however, lower in S. luetkemuellerii.  相似文献   

17.
The simple Langmuir isotherm is frequently employed to describe the equilibrium behavior of protein adsorption on a wide variety of adsorbents. The two adjustable parameters of the Langmuir isotherm—the saturation capacity, orq m, and the dissociation constant,K d—are usually estimated by fitting the isotherm equation to the equilibrium data acquired from batch equilibration experiments. In this study, we have evaluated the possibility of estimatingq m andK d for the adsorption of bovine serum albumin to a cation exchanger using batch kinetic data. A rate model predicated on the kinetic form of the Langmuir isotherm, with three adjustable parameters (q m,K d, and a rate constant), was fitted to a single kinetic profile. The value ofq m determined as the result of this approach was quantitatively consistent with theq m value derived from the traditional batch equilibrium data. However, theK d value could not be retrieved from the kinetic profile, as the model fit proved insensitive to this parameter. Sensitivity analysis provided significant insight into the identifiability of the three model parameters.  相似文献   

18.
Soil microbial respiration is a critical component of the global carbon cycle, but it is uncertain how properties of microbes affect this process. Previous studies have noted a thermodynamic trade-off between the rate and efficiency of growth in heterotrophic organisms. Growth rate and yield determine the biomass-specific respiration rate of growing microbial populations, but these traits have not previously been used to scale from microbial communities to ecosystems. Here we report seasonal variation in microbial growth kinetics and temperature responses (Q10) in a coniferous forest soil, relate these properties to cultured and uncultured soil microbes, and model the effects of shifting growth kinetics on soil heterotrophic respiration (Rh). Soil microbial communities from under-snow had higher growth rates and lower growth yields than the summer and fall communities from exposed soils, causing higher biomass-specific respiration rates. Growth rate and yield were strongly negatively correlated. Based on experiments using specific growth inhibitors, bacteria had higher growth rates and lower yields than fungi, overall, suggesting a more important role for bacteria in determining Rh. The dominant bacteria from laboratory-incubated soil differed seasonally: faster-growing, cold-adapted Janthinobacterium species dominated in winter and slower-growing, mesophilic Burkholderia and Variovorax species dominated in summer. Modeled Rh was sensitive to microbial kinetics and Q10: a sixfold lower annual Rh resulted from using kinetic parameters from summer versus winter communities. Under the most realistic scenario using seasonally changing communities, the model estimated Rh at 22.67 mol m−2 year−1, or 47.0% of annual total ecosystem respiration (Re) for this forest.  相似文献   

19.
Acclimation of loach to relatively low and high temperatures gives rise to changes in the properties of LDH from oocytes. The minimum of apparent Km values for pyruvate of LDH from immature oocytes of fish acclimated to low temperature was registered at low assay temperatures, whereas adaptation to high temperatures leads to the enzyme showing a minimum at high temperatures. In thermal acclimation of fish the Km minimum value drifts during 15 days. During oocyte maturation, the Km minimum drifts during 40 hr. The differences in the kinetic features of LDH from oocytes both at thermal acclimation and during oocyte maturation are not associated with the appearance of new isozymes.  相似文献   

20.
Soil microbes produce extracellular enzymes that degrade carbon (C)‐containing polymers in soil organic matter. Because extracellular enzyme activities may be sensitive to both increased nitrogen (N) and temperature change, we measured the effect of long‐term N addition and short‐term temperature variation on enzyme kinetics in soils from hardwood forests at Bear Brook, Maine, and Fernow Forest, West Virginia. We determined the Vmax and Km parameters for five hydrolytic enzymes: α‐glucosidase, β‐glucosidase, β‐xylosidase, cellobiohydrolase, and N‐acetyl‐glucosaminidase. Temperature sensitivities of Vmax and Km were assessed within soil samples subjected to a range of temperatures. We hypothesized that (1) N additions would cause microbial C limitation, leading to higher enzyme Vmax values and lower Km values; and (2) both Vmax and Km would increase at higher temperatures. Finally, we tested whether or not temperature sensitivity of enzyme kinetics is mediated by N addition. Nitrogen addition significantly or marginally significantly increased Vmax values for all enzymes, particularly at Fernow. Nitrogen fertilization led to significantly lower Km values for all enzymes at Bear Brook, but variable Km responses at Fernow Forest. Both Vmax and Km were temperature sensitive, with Q10 values ranging from 1.64–2.27 for enzyme Vmax and 1.04–1.93 for enzyme Km. No enzyme showed a significant interaction between N and temperature sensitivity for Vmax, and only β‐xylosidase showed a significant interaction between N and temperature sensitivity for Km. Our study is the first to experimentally demonstrate a positive relationship between Km and temperature for soil enzymes. Higher temperature sensitivities for Vmax relative to Km imply that substrate degradation will increase with temperature. In addition, the Vmax and Km responses to N indicate greater substrate degradation under N addition. Our results suggest that increasing temperatures and N availability in forests of the northeastern US will lead to increased hydrolytic enzyme activity, despite the positive temperature sensitivity of Km.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号