首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Calcineurin, a calmodulin-regulated phosphatase, is composed of two distinct subunits (A and B) and requires certain metal ions for activity. The binding of the two most potent activators, Ni2+ and Mn2+, to calcineurin and its subunits has been studied. Incubation of the protein with 63Ni2+ (or 54Mn2+) followed by gel filtration to separate free and protein-bound ions indicated that calcineurin could maximally bind 2 mol/mol of Ni2+ or Mn2+. While isolated A subunit also bound 2 mol/mol of Ni2+, no Mn2+ binding was demonstrated for either isolated A or B subunit. When bindings were monitored by nitrocellulose filter assay, only 1 mol/mol bound Ni2+ or Mn2+ was detected, suggesting that the two Ni2+ (or Mn2+) binding sites had different relative affinities and that only metal ions bound at the higher affinity sites were detected by the filter assay. Preincubation of calcineurin with Mn2+ (or Ni2+) decreased the filter assay-measured Ni2+ (or Mn2+) binding by only 30%. Preincubation of the protein with Zn2+ decreased the filter assay-measured Ni2+ or Mn2+ binding by 90 or 17%, respectively. The results suggest that the higher affinity sites are a Ni2+-specific site and a distinct Mn2+-specific site. Preincubation of calcineurin with Mn2+ (or Ni2+) decreased the gel filtration-determined Ni2+ (or Mn2+) binding from 2 to 1 mol/mol suggesting that calcineurin also contains a site which binds either metal ion. The time course of Ni2+ (or Mn2+) binding was correlated with that of the enzyme activation, and the extent of deactivation of the Ni2+-activated calcineurin by EDTA or by incubation with Ca2+ and calmodulin (Pallen, C. J., and Wang, J. H. (1984) J. Biol. Chem. 259, 6134-6141) was correlated with the release of the bound ions, thus suggesting that the bound ion is directly responsible for enzyme activation.  相似文献   

2.
D-Arginine dehydrogenase activity was discovered in Pseudomonas aeruginosa. This enzyme was inducible by its substrate, D-arginine, as well as by its product, 2-ketoarginine, but not by L-arginine. The enzyme activity was measured in vitro, in the presence of artificial electron acceptore (phenazine methosulphate and iodonitrotetrazolium chloride). 2-ketoarginine was catabolized further to 4-guanidinobutyraldehyde, 4-guanidinobutyrate and 4-aminobutyrate. Two enzymes involved, 4-guanidinobutyraldehyde dehydrogenase and guanidinobutyrase, were inducible by 2-ketoarginine; the latter enzyme was also strongly induced by 4-guanidinobutyrate. An arginine racemase activity was detected by an invivo test. E-Arginine had the potential to be catabolized via the D-arginine dehydrogenase pathway and, after racemization, via the three L-arginine catabolic pathyways previously demonstrated in P. aeruginosa. In mutants blocked in the L-arginine succinyltransferase pathway, but no in the wild-type, L-arginine was channelled partially into the D-arginine dehydrogenase pathway. Mutations in the kauB locus abolished growth of P. aeruginosa on 2-ketoarginine, agmatine and putrescine, and led to loss of 4-guanidinobutyraldehyde dehydrogenase and 4-aminobutyaldehyde dehydrogenase activites. Thus, these two activites appear to be due to one enzyme in P. aeruginosa. The kauB locus was mapped on the chromosome between lysA and argB and was not linked to known genes involved in the three L-arginine catabolic pathways. The existence of four arginine catabolic pathways illustrates the metabolic versatility of P. aeruginosa.  相似文献   

3.
Bovine lens leucyl aminopeptidase (blLAP), a homohexameric metallopeptidase preferring bulky and hydrophobic amino acids at the N-terminus of (di)peptides, contains two Zn(2+) ions per subunit that are essential for catalytic activity. They may be replaced by other divalent cations with different exchange kinetics. The protein readily exchangeable site (site 1) can be occupied by Zn(2+), Mn(2+), Mg(2+), or Co(2+), while the tight binding site (site 2) can be occupied by Zn(2+) or Co(2+). We recently reported that introduction of Mn(2+) into site 1 generates a novel activity of blLAP toward CysGly [Cappiello, M., et al. (2004) Biochem. J. 378, 35-44], which in contrast is not hydrolyzed by the (Zn/Zn) enzyme. This finding, while disclosing a potential specific role for blLAP in glutathione metabolism, raised a question about the features required for molecules to be a substrate for the enzyme. To clarify the interaction of the enzyme with sulfhydryl-containing derivatives, (Zn/Zn)- and (Mn/Zn)blLAP forms were prepared and functional-structural studies were undertaken. Thus, a kinetic analysis of various compounds with both enzyme forms was performed; the crystal structure of (Zn/Zn)blLAP in complex with the peptidomimetic derivative Zofenoprilat was determined, and a modeling study on the CysGly-(Zn/Zn)blLAP complex was carried out. This combined approach provided insight into the interaction of blLAP with sulfhydryl-containing derivatives, showing that the metal exchange in site 1 modulates binding to these molecules that may result in enzyme substrates or inhibitors, depending on the nature of the metal.  相似文献   

4.
Phosphotriesterase, isolated from the soil-dwelling bacterium Pseudomonas diminuta, catalyzes the detoxification of organophosphate-based insecticides and chemical warfare agents. The enzyme has attracted significant research attention in light of its possible employment as a bioremediation tool. As naturally isolated, the enzyme is dimeric. Each subunit contains a binuclear zinc center that is situated at the C-terminal portion of a "TIM" barrel motif. The two zincs are separated by approximately 3.4 A and coordinated to the protein via the side chains of His 55, His 57, His 201, His 230, Asp 301, and a carboxylated Lys 169. Both Lys 169 and a water molecule (or hydroxide ion) serve to bridge the two zinc ions together. Interestingly, these metals can be replaced with cadmium or manganese ions without loss of enzymatic activity. Here we describe the three-dimensional structures of the Zn(2+)/Zn(2+)-, Zn(2+)/Cd(2+)-, Cd(2+)/Cd(2+)-, and Mn(2+)/Mn(2+)-substituted forms of phosphotriesterase determined and refined to a nominal resolution of 1.3 A. In each case, the more buried metal ion, referred to as the alpha-metal, is surrounded by ligands in a trigonal bipyramidal ligation sphere. For the more solvent-exposed or beta-metal ion, however, the observed coordination spheres are either octahedral (in the Cd(2+)/Cd(2+)-, Mn(2+)/Mn(2+)-, and the mixed Zn(2+)/Cd(2+)-species) or trigonal bipyramidal (in the Zn(2+)/Zn(2+)-protein). By measuring the anomalous X-ray data from crystals of the Zn(2+)/Cd(2+)-species, it has been possible to determine that the alpha-metal ion is zinc and the beta-site is occupied by cadmium.  相似文献   

5.
Bovine liver dihydropyrimidine amidohydrolase (EC 3.5.2.2) has been subjected to atomic absorption analysis. Three different preparations of homogeneous enzyme indicated that the enzyme contains 4.3 +/- 0.3 g atoms of Zn2+ per mol of enzyme or 1.1 g atoms of Zn2+ per subunit. No Co2+, Mn2+, Mg2+ or Cd2+ was detected. Exhaustive dialysis against either o-phenanthroline or EDTA did not reduce enzyme activity; however, prolonged incubation with dipicolinic acid resulted in inactivation which can be reversed by either Zn2+ or Co2+ but not Mg2+.  相似文献   

6.
AA-NADase from Agkistrodon acutus venom is a unique multicatalytic enzyme with both NADase and AT(D)Pase activities. Among all identified NADases, only AA-NADase contains Cu(2+) ions that are essential for its multicatalytic activity. In this study, the interactions between divalent metal ions and AA-NADase and the effects of metal ions on its structure and activity have been investigated by equilibrium dialysis, isothermal titration calorimetry, fluorescence, circular dichroism, dynamic light scattering and HPLC. The results show that AA-NADase has two classes of Cu(2+) binding sites, one activator site with high affinity and approximately six inhibitor sites with low affinity. Cu(2+) ions function as a switch for its NADase activity. In addition, AA-NADase has one Mn(2+) binding site, one Zn(2+) binding site, one strong and two weak Co(2+) binding sites, and two strong and six weak Ni(2+) binding sites. Metal ion binding affinities follow the trend Cu(2+) > Ni(2+) > Mn(2+) > Co(2+) > Zn(2+), which accounts for the existence of one Cu(2+) in the purified AA-NADase. Both NADase and ADPase activities of AA-NADase do not have an absolute requirement for Cu(2+), and all tested metal ions activate its NADase and ADPase activities and the activation capacity follows the trend Zn(2+) > Mn(2+) > Cu(2+) ~Co(2+) > Ni(2+). Metal ions serve as regulators for its multicatalytic activity. Although all tested metal ions have no obvious effects on the global structure of AA-NADase, Cu(2+)- and Zn(2+)-induced conformational changes around some Trp residues have been observed. Interestingly, each tested metal ion has a very similar activation of both NADase and ADPase activities, suggesting that the two different activities probably occur at the same site.  相似文献   

7.
D Solaiman  F Y Wu 《Biochemistry》1985,24(19):5077-5083
The Escherichia coli DNA-dependent RNA polymerase (RPase) holoenzyme (alpha 2 beta beta' sigma) possesses 2 mol equiv of Zn: beta and beta' subunits each contain one Zn ion. An in vitro metal-substitution method developed earlier (method I) was used to remove the two intrinsic Zn ions and then to reconstitute other metal ions into the beta subunit of RPase. One Cd or Hg ion was successfully reconstituted into half-active enzymes (rec-Cd1- or rec-Hg1-RPase), while Mn or Ni ion was not incorporated. A new, simplified in vitro metal-substitution method (method II), which omitted the low-pH treatment and subsequent urea dialysis in method I, was devised in this study. Consequently, Zn or Cd could be incorporated into both the beta and beta' subunits, resulting in rec-Zn2- or rec-Cd2-RPase, respectively. However, only one Hg was incorporated, probably due to steric hindrance by the large size of the Hg ion, while Mn, Ni, or Cr was not bound by the reconstituted enzyme, which instead incorporated only one Zn. Analysis of the metal content of various reconstituted RPases indicated that without low-pH treatment Zn bound to both the beta and beta' subunits when Zn concentrations were higher than 2 X 10(-6)M, but it bound only to the beta' subunit at lower concentrations. Moreover, low-pH treatment destroys the metal binding site in the beta' subunit. The metal sites on the beta and beta' subunits did not have significant affinity for the transition metals such as Mn, Ni, and Cr.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Bivalent metal ions, particularly Zn2+ and other members of the first-row transition series, promote irreversible inactivation of yeast hexokinase by Cibacron Blue F3G-A at a site competitive with both ATP and D-glucose. Difference spectroscopy indicates that the protein-dye dissociation constant is decreased from 250 micrometers in the absence of metal ions to less than 100 micrometers in the presence of appropriate concentrations of metal ions, with specificity displayed in the sequence of Zn2+ greater than Cu2+ greater than Ni2+ greater than Mn2+. Quantitative inactivation of yeast hexokinase leads to the incorporation of approx. 1 mol of Cibacron Blue F3G-A/mol of subunit of mol. wt. 51 000 in both the presence and the absence of metal ion. These results suggest the formation of a highly specific ternary complex involving enzyme, dye and metal ion at the active-site region of the enzyme, and correlate well with the known effects of metal ions in promoting the binding of hexokinase to immobilized Cibacron Blue F3G-A.  相似文献   

9.
H-N-H is a motif found in the nuclease domain of a subfamily of bacteria toxins, including colicin E7, that are capable of cleaving DNA nonspecifically. This H-N-H motif has also been identified in a subfamily of homing endonucleases, which cleave DNA site specifically. To better understand the role of metal ions in the H-N-H motif during DNA hydrolysis, we crystallized the nuclease domain of colicin E7 (nuclease-ColE7) in complex with its inhibitor Im7 in two different crystal forms, and we resolved the structures of EDTA-treated, Zn(2+)-bound and Mn(2+)-bound complexes in the presence of phosphate ions at resolutions of 2.6 A to 2.0 A. This study offers the first determination of the structure of a metal-free and substrate-free enzyme in the H-N-H family. The H-N-H motif contains two antiparallel beta-strands linked to a C-terminal alpha-helix, with a divalent metal ion located in the center. Here we show that the metal-binding sites in the center of the H-N-H motif, for the EDTA-treated and Mg(2+)-soaked complex crystals, were occupied by water molecules, indicating that an alkaline earth metal ion does not reside in the same position as a transition metal ion in the H-N-H motif. However, a Zn(2+) or Mn(2+) ions were observed in the center of the H-N-H motif in cases of Zn(2+) or Mn(2+)-soaked crystals, as confirmed in anomalous difference maps. A phosphate ion was found to bridge between the divalent transition metal ion and His545. Based on these structures and structural comparisons with other nucleases, we suggest a functional role for the divalent transition metal ion in the H-N-H motif in stabilizing the phosphoanion in the transition state during hydrolysis.  相似文献   

10.
The identity of the physiological metal cofactor for human methionine aminopeptidase-2 (MetAP2) has not been established. To examine this question, we first investigated the effect of eight divalent metal ions, including Ca(2+), Co(2+), Cu(2+), Fe(2+), Mg(2+), Mn(2+), Ni(2+), and Zn(2+), on recombinant human methionine aminopeptidase apoenzymes in releasing N-terminal methionine from three peptide substrates: MAS, MGAQFSKT, and (3)H-MASK(biotin)G. The activity of MetAP2 on either MAS or MGAQFSKT was enhanced 15-25-fold by Co(2+) or Mn(2+) metal ions in a broad concentration range (1-1000 microM). In the presence of reduced glutathione to mimic the cellular environment, Co(2+) and Mn(2+) were also the best stimulators (approximately 30-fold) for MetAP2 enzyme activity. To determine which metal ion is physiologically relevant, we then tested inhibition of intracellular MetAP2 with synthetic inhibitors selective for MetAP2 with different metal cofactors. A-310840 below 10 microM did not inhibit the activity of MetAP2-Mn(2+) but was very potent against MetAP2 with other metal ions including Co(2+), Fe(2+), Ni(2+), and Zn(2+) in the in vitro enzyme assays. In contrast, A-311263 inhibited MetAP2 with Mn(2+), as well as Co(2+), Fe(2+), Ni(2+), and Zn(2+). In cell culture assays, A-310840 did not inhibit intracellular MetAP2 enzyme activity and did not inhibit cell proliferation despite its ability to permeate and accumulate in cytosol, while A-311263 inhibited both intracellular MetAP2 and proliferation in a similar concentration range, indicating cellular MetAP2 is functioning as a manganese enzyme but not as a cobalt, zinc, iron, or nickel enzyme. We conclude that MetAP2 is a manganese enzyme and that therapeutic MetAP2 inhibitors should inhibit MetAP2-Mn(2+).  相似文献   

11.
Arginase from Saccharomyces cerevisiae has long been known to be a metal ion-requiring enzyme as it requires heating at 45 degrees C in the presence of 10 mM Mn2+ for catalytic activation. Metals are also thought to play a structural role in the enzyme, but the identity of the structural metal and its precise structural role have not been defined. Analysis of the metal ions that bind to yeast arginase by atomic absorption spectroscopy reveals that there is a weakly associated Mn2+ that binds to the trimeric enzyme with a stoichiometry of 1.04 +/- 0.05 mol of Mn2+ bound per subunit and an apparent K'D value of 26 microM at pH 7.0 and 4 degrees C. A more tightly associated Zn2+ ion can only be removed by dialysis against chelating agents. In occasional preparations, this site contained some Mn2+; however, Zn2+ and Mn2+ together bind to high affinity sites with a stoichiometry of 1.14 +/- 0.25/mol of subunit. Both the loosely associated catalytic Mn2+ ion and the more tightly associated structural Zn2+ ion confer stability to the enzyme. Removal of the weakly bound Mn2+ ion results in a 3 degree C decrease in the midpoint of the thermal transition (T 1/2) (from 57 by 54 degrees C) as monitored by UV difference absorption spectroscopy. Removal of the tightly bound Zn2+ ion produces a 19 degrees C decrease in T 1/2 (to 38 degrees C). Similar results are obtained by circular dichroism measurements. When the Zn2+ ion is removed, the steady-state fluorescence intensity increases 100% as compared to the holoenzyme, with a shift in the emission maximum from 337 to 352 nm. This suggests that in the folded trimeric metalloenzyme, the tryptophan fluorescence is quenched and that upon removal of the structural metal, the quenching is relieved as tryptophan residues become exposed to more polar environments. Equilibrium sedimentation experiments performed after dialysis of the enzyme against EDTA demonstrate that arginase exists in a reversible monomer-trimer equilibrium, in the absence of metal ions, with a KD value of 5.05 x 10(-11) M2. In contrast, the native enzyme exists as a trimer with no evidence of dissociation when Mn2+ and Zn2+ are present (Eisenstein, E., Duong, L.T., Ornberg, R. L., Osborne, J.C., Jr., and Hensley, P. (1986) J. Biol. Chem. 261, 12814-12819). In summary, the study presented here demonstrates that binding of a weakly bound Mn2+ ion confers catalytic activity. In contrast, binding of a more tightly associated Zn2+ ion confers substantial stability to the tertiary and quaternary structure of the enzyme.  相似文献   

12.
The enzymes 3-deoxy-d-manno-octulosonic acid-8-phosphate synthase (KDO8PS) and 3-deoxy-d-arabino-heptulosonic acid-7-phosphate synthase (DAHPS) catalyze analogous condensation reactions between phosphoenolpyruvate and d-arabinose 5-phosphate or d-erythrose 4-phosphate, respectively. While several similarities exist between the two enzymatic reactions, classic studies on the Escherichia coli enzymes have established that DAHPS is a metalloenzyme, whereas KDO8PS has no metal requirement. Here, we demonstrate that KDO8PS from Aquifex aeolicus, representing only the second member of the KDO8PS family to be characterized in detail, is a metalloenzyme. The recombinant KDO8PS, as isolated, displays an absorption band at 505 nm and contains approximately 0.4 and 0.2-0.3 eq of zinc and iron, respectively, per enzyme subunit. EDTA inactivates the enzyme in a time- and concentration-dependent manner and eliminates the absorption at 505 nm. The addition of Cu(2+) to KDO8PS produces an intense absorption at 375 nm, while neither Co(2+) nor Ni(2+) produce such an effect. The EDTA-treated enzyme is reactivated by a wide range of divalent metal ions including Ca(2+), Cd(2+), Co(2+), Cu(2+), Fe(2+), Mg(2+), Mn(2+), Ni(2+), and Zn(2+) and is reversibly inhibited by higher concentrations (>1 mm) of certain metals. Analysis of several metal forms of the enzyme by plasma mass spectrometry suggests that the enzyme preferentially binds one, two, or four metal ions per tetramer. These observations strongly suggest that A. aeolicus KDO8PS is a metalloenzyme in vivo and point to a previously unrecognized relationship between the KDO8PS and DAHPS families.  相似文献   

13.
Pure L-threonine dehydrogenase from Escherichia coli is a tetrameric protein (Mr = 148,000) with 6 half-cystine residues/subunit; its catalytic activity as isolated is stimulated 5-10-fold by added Mn2+ or Cd2+. The peptide containing the 1 cysteine/subunit which reacts selectively with iodoacetate, causing complete loss of enzymatic activity, has been isolated and sequenced; this cysteine residue occupies position 38. Neutron activation and atomic absorption analyses of threonine dehydrogenase as isolated in homogeneous form now show that it contains 1 mol of Zn2+/mol of enzyme subunit. Removal of the Zn2+ with 1,10-phenanthroline demonstrates a good correlation between the remaining enzymatic activity and the zinc content. Complete removal of the Zn2+ yields an unstable protein, but the native metal ion can be exchanged by either 65Zn2+, Co2+, or Cd2+ with no change in specific catalytic activity. Mn2+ added to and incubated with the native enzyme, the 65Zn2(+)-, the Co2(+)-, or the Cd2(+)- substituted form of the enzyme stimulates dehydrogenase activity to the same extent. These studies along with previously observed structural homologies further establish threonine dehydrogenase of E. coli as a member of the zinc-containing long chain alcohol/polyol dehydrogenases; it is unique among these enzymes in that its activity is stimulated by Mn2+ or Cd2+.  相似文献   

14.
The photoreceptor cGMP phosphodiesterase (PDE6) plays a key role in vertebrate vision, but its enzymatic mechanism and the roles of metal ion co-factors have yet to be determined. We have determined the amount of endogenous Zn(2+) in rod PDE6 and established a requirement for tightly bound Zn(2+) in catalysis. Purified PDE6 contained 3-4-g atoms of zinc/mole, consistent with an initial content of two tightly bound Zn(2+)/catalytic subunit. PDE with only tightly bound Zn(2+) and no free metal ions was inactive, but activity was fully restored by Mg(2+), Mn(2+), Co(2+), or Zn(2+). Mn(2+), Co(2+), and Zn(2+) also induced aggregation and inactivation at higher concentrations and longer times. Removal of 93% of the tightly bound Zn(2+) by treatment with dipicolinic acid and EDTA at pH 6.0 resulted in almost complete loss of activity in the presence of Mg(2+). This activity loss was blocked almost completely by Zn(2+), less potently by Co(2+) and almost not at all by Mg(2+), Mn(2+), or Cu(2+). The lost activity was restored by the addition of Zn(2+), but Co(2+) restored only 13% as much activity, and other metals even less. Thus tightly bound Zn(2+) is required for catalysis but could also play a role in stabilizing the structure of PDE6, whereas distinct sites where Zn(2+) is rapidly exchanged are likely occupied by Mg(2+) under physiological conditions.  相似文献   

15.
Imidase catalyzes the hydrolysis of a variety of imides. The removal of metal from imidase eliminates its activity but does not affect its tetrameric and secondary structure. The reactivation of the apoenzyme with transition metal ions Co(2+), Zn(2+), Mn(2+), and Cd(2+) shows that imidase activity is linearly dependent on the amount of metal ions added. Ni(2+) and Cu(2+) are also inserted, one per enzyme subunit, into the apoimidase, but do not restore imidase activity. Enzyme activity with different metal replaced imidase varies significantly. However, the changes of the metal contents do not appear to affect the pK(a)s obtained from the bell-shaped pH profiles of metal reconstituted imidase. The metal-hydroxide mechanism for imidase action is not supported based on the novel findings from this study. It is proposed that metal ion in mammalian imidase functions as a Lewis acid, which stabilizes the developing negative charge of imide substrate in transition state.  相似文献   

16.
In the presence of copper significant induction of citric acid overflow was observed, while concomitantly lower levels of total lipids were detected in the cells. Its effect was more obvious in a medium with magnesium as sole divalent metal ions, while in a medium with magnesium and manganese the addition of copper had a less pronounced effect. Since the malic enzyme was recognised as a supplier of reducing power in the form of reduced nicotinamide adenine dinucleotide phosphate for lipid biosynthesis, its kinetic parameters with regard to different concentrations of metal ions were investigated. Some inhibition was found with Fe(2+) and Zn(2+), while Cu(2+) ions in a concentration of 0.1 mM completely abolished malic enzyme activity. The same metal ions proportionally reduced the levels of total lipids in Aspergillus niger cells. A strong competitive inhibition of the enzyme by Cu(2+) was observed. It seemed that copper competes with Mg(2+) and Mn(2+) for the same binding site on the protein.  相似文献   

17.
Green crab (Scylla serrata) alkaline phosphatase (EC 3.1.3.1) is a metalloenzyme, which catalyzes the nonspecific hydrolysis of phosphate monoesters. The present paper deals with the study of the effect of some kinds of metal ions on the enzyme. The positive monovalent alkali metal ions (Li(+), Na(+) and K(+)) have no effect on the enzyme; positive bivalent alkaline-earth metal ions (Mg(2+), Ca(2+) and Ba(2+)) and transition metal ions (Mn(2+), Co(2+), Ni(2+) and Cd(2+)) activate the enzyme; heavy metal ions (Hg(2+), Ag(+), Bi(2+), Cu(2+) and Zn(2+)) inhibit the enzyme. The activation of magnesium ion on the enzyme appears to be a partial noncompetitive type. The kinetic model has been set up and a new plot to determine the activation constant of Mg(2+) was put forward. From the plot, we can easily determine the activation constant (K(a)) value and the activation ratio of Mg(2+) on the enzyme. The inhibition effects of Cu(2+) and Hg(2+) on the enzyme are of noncompetitive type. The inhibition constants have been determined. The inhibition effect of Hg(2+) is stronger than that of Cu(2+).  相似文献   

18.
It is well established that the prion protein (PrP) contains metal ion binding sites with specificity for copper. Changes in copper levels have been suggested to influence incubation time in experimental prion disease. Therefore, we studied the effect of heavy metal ions (Cu(2+), Mn(2+), Ni(2+), Co(2+), and Zn(2+)) in vitro in a model system that utilizes changes in the concentration of SDS to induce structural conversion and aggregation of recombinant PrP. To quantify and characterize PrP aggregates, we used fluorescently labelled PrP and cross-correlation analysis as well as scanning for intensely fluorescent targets in a confocal single molecule detection system. We found a specific strong pro-aggregatory effect of Mn(2+) at low micromolar concentrations that could be blocked by nanomolar concentration of Cu(2+). These findings suggest that metal ions such as copper and manganese may also affect PrP conversion in vivo.  相似文献   

19.
20.
L-carnosine is a bioactive dipeptide (beta-alanyl-L-histidine) present in mammalian tissues, including the central nervous system, and has potential neuroprotective and neurotransmitter functions. In mammals, two types of L-carnosine-hydrolyzing enzymes (CN1 and CN2) have been cloned thus far, and they have been classified as metallopeptidases of the M20 family. The enzymatic activity of CN2 requires Mn(2+), and CN2 is inhibited by a nonhydrolyzable substrate analog, bestatin. Here, we present the crystal structures of mouse CN2 complexed with bestatin together with Zn(2+) at a resolution of 1.7 A and that with Mn(2+) at 2.3 A CN2 is a homodimer in a noncrystallographic asymmetric unit, and the Mn(2+) and Zn(2+) complexes closely resemble each other in the overall structure. Each subunit is composed of two domains: domain A, which is complexed with bestatin and two metal ions, and domain B, which provides the major interface for dimer formation. The bestatin molecule bound to domain A interacts with several residues of domain B of the other subunit, and these interactions are likely to be essential for enzyme activity. Since the bestatin molecule is not accessible to the bulk water, substrate binding would require conformational flexibility between domains A and B. The active site structure and substrate-binding model provide a structural basis for the enzymatic activity and substrate specificity of CN2 and related enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号