首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The peptide transmitter N-acetylaspartylglutamate (NAAG) is present in millimolar concentrations in mammalian spinal cord. Data from the rat peripheral nervous system suggest that this peptide is synthesized enzymatically, a process that would be unique for mammalian neuropeptides. To test this hypothesis in the mammalian CNS, rat spinal cords were acutely isolated and used to study the incorporation of radiolabeled amino acids into NAAG. Consistent with the action of a NAAG synthetase, inhibition of protein synthesis did not affect radiolabel incorporation into NAAG. Depolarization of spinal cords stimulated incorporation of radiolabel. Biosynthesis of NAAG by cortical astrocytes in cell culture was demonstrated by tracing incorporation of [3H]-glutamate by astrocytes. In the first test of the hypothesis that NAA is an immediate precursor in NAAG biosynthesis, [3H]-NAA was incorporated into NAAG by isolated spinal cords and by cell cultures of cortical astrocytes. Data from cerebellar neurons and glia in primary culture confirmed the predominance of neuronal synthesis and glial uptake of NAA, leading to the hypothesis that while neurons synthesize NAA for NAAG biosynthesis, glia may take it up from the extracellular space. However, cortical astrocytes in serum-free low-density cell culture incorporated [3H]-aspartate into NAAG, a result indicating that under some conditions these cells may also synthesize NAA. Pre-incubation of isolated spinal cords and cultures of rat cortical astrocytes with unlabeled NAA increased [3H]-glutamate incorporation into NAAG. In contrast, [3H]-glutamine incorporation in spinal cord was not stimulated by unlabeled NAA. These results are consistent with the glutamate-glutamine cycle greatly favoring uptake of glutamine into neurons and glutamate by glia and suggest that NAA availability may be rate-limiting in the synthesis of NAAG by glia under some conditions.  相似文献   

2.
N-Acetylaspartylglutamate (NAAG) is a nervous system-specific dipeptide that is released from retinal neurons on depolarization. In the present study, extracellular metabolism, uptake, and release of [3H]NAAG were examined in the chick retina. After in vitro incubation with NAAG radiolabeled in the glutamate moiety, [3H]glutamate and [3H]NAAG increased in retinal cells through time- and temperature-dependent processes, which were reduced in the absence of extracellular sodium. Coincubation of cells with [3H]NAAG and aspartylglutamate or phosphate resulted in the decreased extracellular appearance of [3H]glutamate, produced by hydrolysis of radiolabeled NAAG, and a consequent increased availability of [3H]NAAG for transport into the retinal cells. When this tissue was incubated with radiolabeled NAAG, glutamate, glutamine, or aspartate under similar conditions, only [3H]NAAG served as a significant source for the appearance of intracellular [3H]NAAG. These data support the conclusion that [3H]NAAG can be transported into retinal cells, whereas [3H]glutamate transport is the predominant process after release of this amino acid from NAAG by extracellular peptidase activities. After uptake, [3H]NAAG entered a cellular pool, from which the peptide was secreted under depolarizing conditions and in a calcium-dependent manner.  相似文献   

3.
The neuronal dipeptide N-acetylaspartylglutamate (NAAG) is thought to be synthesized enzymatically from N-acetylaspartate (NAA) and glutamate. We used radiolabeled precursors to examine NAA and NAAG biosynthesis in SH-SY5Y human neuroblastoma cells stimulated with activators of protein kinase A (dbcAMP; N6,2'-O-dibutyryl cAMP) and protein kinase C (PMA; phorbol-12-myristate-13-acetate). Differentiation over the course of several days with dbcAMP resulted in increased endogenous NAA levels and NAAG synthesis from l-[(3)H]glutamine, whereas PMA-induced differentiation reduced both. Exogenously applied NAA caused dose dependent increases in intracellular NAA levels, and NAAG biosynthesis from l-[(3)H]glutamine, suggesting precursor-product and mass-action relationships between NAA and NAAG. Incorporation of l-[(3)H]aspartate into NAA and NAAG occurred sequentially, appearing in NAA by 1 h, but not in NAAG until between 6 and 24 h. Synthesis of NAAG from l-[(3)H]aspartate was increased by dbcAMP and decreased by PMA at 24 h. The effects of PMA on l-[(3)H]aspartate incorporation into NAA were temporally biphasic. Using short incubation times (1 and 6 h), PMA increased l-[(3)H]aspartate incorporation into NAA, but with longer incubation (24 h), incorporation was significantly reduced. These results suggest that, while the neuronal production of NAA and NAAG are biochemically related, significant differences exist in the regulatory mechanisms controlling their biosynthesis.  相似文献   

4.
This study was undertaken to explore in synaptosomal preparations the disposition of N-acetyl-aspartyl-glutamate (NAAG), an endogenous acidic dipeptide neurotransmitter candidate. Radiolabel from N-acetyl-aspartyl[3H]glutamate was taken up rapidly into an osmotically sensitive compartment by rat brain synaptosomal preparations in a sodium-, temperature-, and time-dependent manner. HPLC analysis of the accumulated radiolabel indicated that the bulk of the tritium cochromatographed with glutamic acid and not with NAAG. In contrast, [14C]NAAG, labeled on the N-terminal acetate, was not taken up by the synaptosomal preparation. All effective inhibitors of synaptosomal, Na+-dependent [3H]glutamate uptake were found to exhibit similar potency in inhibiting uptake of tritium derived from [3H]NAAG. However, certain alpha-linked acidic dipeptides, structurally similar to NAAG, as well as the potent convulsant quisqualic acid inhibited synaptosomal transport of [3H]NAAG but were ineffective as inhibitors of [3H]glutamate transport. Together with a demonstration of disparities between the regional accumulation of radiolabel from [3H]NAAG and high-affinity [3H]glutamate uptake, these data suggest the presence in brain of a specific peptidase targeting carboxy-terminal glutamate-containing dipeptides that may be coupled to the Na+-dependent glutamate transporter. These findings provide a possible mechanism for NAAG inactivation subsequent to its release from nerve endings.  相似文献   

5.
Glutamate carboxypeptidase II (GCPII), a glial ectoenzyme, is responsible for N-acetylaspartylglutamate (NAAG) hydrolysis. Its regulation in crayfish nervous tissue was investigated by examining uptake of [3H]glutamate derived from N-acetylaspartyl-[3H]glutamate ([3H]NAAG) to measure GCPII activity. Electrical stimulation (100 Hz, 10 min) during 30 min incubation with [3H]NAAG increased tissue [3H]glutamate tenfold. This was prevented by 2-(phosphonomethyl)-pentanedioic acid (2-PMPA), a GCPII inhibitor, suggesting that stimulation increased the hydrolysis of [3H]NAAG and metabolic recycling of [3H]glutamate. Antagonists of glial group II metabotropic glutamate receptors (mGLURII), NMDA receptors and acetylcholine (ACh) receptors that mediate axon-glia signaling in crayfish nerve fibers decreased the effect of stimulation by 58-83%, suggesting that glial receptor activation leads to stimulation of GCPII activity. In combination, they reduced [3H]NAAG hydrolysis during stimulation to unstimulated control levels. Agonist stimulation of mGLURII mimicked the effect of electrical stimulation, and was prevented by antagonists of GCPII or mGLURII. Raising extracellular K+ to three times the normal level stimulated [3H]NAAG release and GCPII activity. These effects were also blocked by antagonists of GCPII and mGLUR(II). No receptor antagonist or agonist tested or 2-PMPA affected uptake of [3H]glutamate. We conclude that NAAG released from stimulated nerve fibers activates its own hydrolysis via stimulation of GCPII activity mediated through glial mGLURII, NMDA and ACh receptors.  相似文献   

6.
Abstract: The structure of N -acetylaspartylglutamate (NAAG) suggests this neuronal dipeptide as a candidate for interaction with discrete subclasses of ionotropic and metabotropic acidic amino acid receptors. A substantial difficulty in the assay of these interactions is posed by membrane-bound peptidase activity that converts the dipeptide to glutamate and N -acetylaspartate, molecules that will interfere with receptor assays. We have developed two sets of unique receptor assay conditions and applied one standard assay to measure the interactions, under equilibrium binding conditions, of [3H]kainate, [3H]amino-3-hydroxy-5-methylisoxazole-4-propionic acid ([3H]AMPA), and [3H]CGS-19755 with the three classes (kainate, quisqualate, and N -methyl- d -aspartate) of ionotropic glutamate receptors, while inhibiting peptidase activity against NAAG. Under these conditions, NAAG exhibits apparent inhibition constants (IC50) of 500, 790, and 8.8 µ M in the kainate, AMPA, and CGS-19755 receptor binding assays, respectively. Glutamate was substantially more effective and less specific in these competition assays, with inhibition constants of 0.36, 1.1, and 0.37 µ M . These data support the hypothesis that, relative to glutamate, NAAG functions as a specific, low potency agonist at N -methyl- d -aspartate subclass of ionotropic acidic amino acid receptors, but the peptide is not likely to activate directly the kainate or quisqualate subclasses of excitatory ionotropic receptors under physiologic conditions.  相似文献   

7.
Summary The histogenesis of the dorsal root ganglia of chick embryos (ages 3 to 9 days) was followed in three different tissue culture systems. Organotypic explants included dorsal root ganglia connected to the lumbosacral segment of the spinal cord or isolated explants of the contralateral ganglia. Additionally, dissociated monolayer cultures of ganglia tissue were established. The gradual differentiation of progenitor neuroblasts into distinct populations of large ventrolateral and small dorsomedial neurons was observed in vivo and in vitro. Neurites developed after 3 days in the presence or absence of nerve growth factor in the medium. In contrast, autoradiographic analysis indicates that [3H]thymidine incorporation in neuronal cultures differed significantly from intact embryos. In vivo, the number of neuronal progenitor cells labeled with [3H]thymidine decreased in older embryos; in vitro, uptake of [3H]thymidine label was not observed in ganglionic progenitor cells regardless of the age of the donor embryo or the type of culture system. Lack of proliferation in ganglionic progenitor cells was not due to degeneration because vital staining and uptake of [3H]deoxyglucose indicated that neurons were metabolically active. Furthermore, the block in mitotic activity in vitro was limited to presumptive ganglionic neuronal cells. In the ependyma of the spinal cord segment connected to the dorsal root ganglia, neuronal progenitor cells were heavily labeled as were non-neuronal cells within both spinal cord and ganglia. Our results suggest that in vitro conditions can promote the differentiation of sensory neurons from early embryos (E3.5–4.5) without proliferation of progenitor cells.  相似文献   

8.
The effects of insulin, cortisol and prolactin on amino acid uptake and protein biosynthesis were determined in mammary-gland explants from mid-pregnant mice. Insulin stimulated [3H]leucine incorporation into protein within 15 min of adding insulin to the incubation medium. Insulin also had a rapid stimulatory effect on the rate of aminoiso[14C]butyric acid uptake, but it had no effect on the intracellular accumulation of [3H]leucine. Cortisol inhibited the rate of [3H]leucine incorporation into protein during the initial 4h of incubation, but it had no effect at subsequent times. [3H]Leucine uptake was unaffected by cortisol, but amino[14C]isobutyric acid uptake was inhibited after a 4h exposure period to this hormone. Prolactin stimulated the rate of [3H]leucine incorporation into protein when tissues were exposed to this hormone for 4h or more; up to 4h, however, no effect of prolactin was detected. At all times tested, prolactin had no effect on the uptake of either amino[14C]isobutyric acid or [3H]leucine. Incubation with actinomycin D abolished the prolactin stimulation of protein biosynthesis, but this antibiotic did not affect the insulin response. A distinct difference in the mechanism of action of these hormones on protein biosynthesis in the mammary gland is thus apparent.  相似文献   

9.
The dipeptide N-acetylaspartyl-glutamate (NAAG) is an abundant neuropeptide in the mammalian brain. Despite this fact, its physiological role is poorly understood. NAAG is synthesized by a NAAG synthetase catalyzing the ATP-dependent condensation of N-acetylaspartate and glutamate. In vitro NAAG synthetase activity has not been described, and the enzyme has not been purified. Using a bioinformatics approach we identified a putative dipeptide synthetase specifically expressed in the nervous system. Expression of the gene, which we named NAAGS (for NAAG synthetase) was sufficient to induce NAAG synthesis in primary astrocytes or CHO-K1 and HEK-293T cells when they coexpressed the NAA transporter NaDC3. Furthermore, coexpression of NAAGS and the recently identified N-acetylaspartate (NAA) synthase, Nat8l, in CHO-K1 or HEK-293T cells was sufficient to enable these cells to synthesize NAAG. Identity of the reaction product of NAAGS was confirmed by HPLC and electrospray ionization tandem mass spectrometry (ESI-MS). High expression levels of NAAGS were restricted to the brain, spinal cord, and testis. Taken together our results strongly suggest that the identified gene encodes a NAAG synthetase. Its identification will enable further studies to examine the role of this abundant neuropeptide in the vertebrate nervous system.  相似文献   

10.
We have proposed that N-acetylaspartylglutamate (NAAG) or its hydrolytic product glutamate, is a chemical signaling agent between axons and periaxonal glia at non-synaptic sites in crayfish nerves, and that glutamine is a probable precursor for replenishing the releasable pool of NAAG. We report here, that crayfish central nerve fibers synthesize NAAG from exogenous glutamine. Cellular accumulation of radiolabel during in vitro incubation of desheathed cephalothoracic nerve bundles with [3H]glutamine was 74% Na(+)-independent. The Na(+)-independent transport was temperature-sensitive, linear with time for at least 4 h, saturable between 2.5 and 10 mM L-glutamine, and blocked by neutral amino acids and analogs that inhibit mammalian glutamine transport. Radiolabeled glutamine was taken up and metabolized by both axons and glia to glutamate and NAAG, and a significant fraction of these products effluxed from the cells. Both the metabolism and release of radiolabeled glutamine was influenced by extracellular Na(+). The uptake and conversion of glutamine to glutamate and NAAG by axons provides a possible mechanism for recycling and formation of the axon-to-glia signaling agent(s).  相似文献   

11.
N-Acetylaspartylglutamate (NAAG) is a neuropeptide localized to several putative glutamatergic neuronal systems, including the rodent optic pathway. To determine whether the peptide is released by depolarization, the superior colliculus of the rat was perfused with 2 microCi of [3H]NAAG, then with Krebs-bicarbonate buffer for 1 h, using a microdialysis system. Subsequently, 10-min fractions were collected and analyzed by HPLC for [3H]NAAG. Addition of 100 microM veratridine resulted in a several-fold increase in the evoked release of [3H]NAAG that was virtually abolished by coperfusion with Ca2+-free Krebs buffer containing 1 mM EGTA. When [3H]glutamate was used as the precursor, veratridine depolarization resulted in only an 80% increase in the release of [3H]NAAG. Prior enucleation of the right eye reduced the spontaneous release of [3H]NAAG by 50%, and the veratridine-evoked release by greater than 85%, from the left superior colliculus. These results suggest that NAAG is released upon depolarization and may serve as a neurotransmitter/neuromodulator in the optic tract.  相似文献   

12.
The elongation of [9,10-3H]oleoyl-CoA with malonyl-CoA to form 20, 22, and 24 carbon monounsaturated fatty acids was demonstrated in housefly microsomes by radio-GLC. These elongation reactions, which have been postulated to be involved in hydrocarbon biosynthesis, have not been previously demonstrated in insects. 2-Octadecynoate (18:1 Δ2=) inhibited the in vivo incorporation of [1-14C]acetate into both fatty acids and hydrocarbons in a dose-dependent manner. At doses of 10 μg per female housefly of the alkynoic acid, the incorporation of [1-14C]acetate into hydrocarbon was inhibited 93%, the incorporation of [9,10-3H]oleate into hydrocarbon was inhibited 64%, and the incorporation of [1-14C]acetate into total internal lipid was inhibited 65%. Partially purified FAS was inhibited 50% and 95% at 15 μM and 40 μM, respectively, of the alkynoic acid. These results show that 2-octadecynoate inhibits hydrocarbon biosynthesis in the housefly by inhibiting FAS, and the in vivo data suggest that the elongation of 18:1 to longer chain fatty acids is also inhibited.  相似文献   

13.
Autoradiographical studies revealed that 10 nM [3H]N-acetyl-aspartyl-glutamate (NAAG) labelled grey matter structures, particularly in the hippocamus, cerebral neocortex, striatum, septal nuclei and the cerebellar cortex. The binding was inhibited by (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)-glycine (DCG IV), an agonist at group II metabotropic glutamate receptors (mGluR II). (RS)-alpha-Methyl-4-tetrazolylphenylglycine (MTPG), (RS)-alpha-cyclopropyl-4-phosphonoglycine (CPPG) and (RS)-alpha-methylserine-O-phosphate monophenyl ester (MSOPPE), all antagonists at mGluR II and mGluR III, also inhibited [3H]NAAG binding. Other inhibitors were (1S,3R)-1-aminocyclopentane-1,3-dicarboxylate (ACPD), a broad-spectrum mGluR agonist with preference for groups I and II and the mGluR I agonists/mGluR II antagonists (S)-3-carboxy-4-hydroxyphenylglycine (3,4-CHPG) and (S)-4-carboxy-3-hydroxyphenylglycine (4,3-CHPG). Neither the mGluR I specific agonist (S)-dihydroxyphenylglycine nor any of the ionotropic glutamate receptor ligands such as kainate, AMPA and MK-801 had strong effects (except for the competitive NMDA antagonist CGS 19755, which produced 20-40% inhibition at 100 microM) suggesting that, at low nM concentrations, [3H]NAAG binds predominantly to metabotropic glutamate receptors, particularly those of the mGluR II type. Several studies have indicated that NAAG can interact with mGluR II and the present study supports this notion by demonstrating that sites capable of binding NAAG at low concentrations and displaying pharmacological characteristics of mGluR II exist in the central nervous tissue. Furthermore, the results show that autoradiography of [3H]NAAG binding can be used to quantify the distribution of such sites in distinct brain regions and study their pharmacology at the same time.  相似文献   

14.
Studies of crayfish Medial Giant nerve Fiber suggested that glutamate (GLU) released from the axon during action potential generation initiates metabolic and electrical responses of periaxonal glia. This investigation sought to elucidate the mechanism of GLU appearance extracellularly following axon stimulation. Axoplasm and periaxonal glial sheath from nerve fibers incubated with radiolabelled L-GLU contained radiolabeled GLU, glutamine (GLN), GABA, aspartate (ASP), and NAAG. Total radiolabel release was not altered by electrical stimulation of nerve cord loaded with [14C]-GLU by bath application or loaded with [14C]-GLU, [3H]-D-ASP, or [3H]-NAAG by axonal injection. However, radioactivity distribution among GLU and its metabolic products in the superfusate was changed, with NAAG accounting for the largest fraction. In axons incubated with radiolabeled GLU, the stimulated increase in radioactive NAAG in the superfusate coincided with the virtual clearance of radioactive NAAG from the axon. The increase in [3H]-GLU in the superfusion solution that was seen upon stimulation of nerve bathloaded with [3H]-NAAG was reduced when beta-NAAG, a competitive NAALADase inhibitor, was present. Together, these results suggest that some GLU is metabolized to NAAG in the giant axon and its periaxonal glia and that, upon stimulation, NAAG is released and converted to GLU by NAALADase. A quisqualate-, beta-NAAG-sensitive NAALADase activity was detected in nerve cord homogenates. Stimulation or NAAG administration in the presence of NAALADase inhibitor caused a transient hyperpolarization of the periaxonal glia comparable to that produced by L-GLU. The results implicate N-acetylaspartylglutamate (NAAG) and GLU as potential mediators. of the axon-glia interactions.  相似文献   

15.
Abstract: N -Acetylaspartylglutamate (NAAG) is the most abundant neuropeptide in the mammalian nervous system. Considerable data support the hypothesis that NAAG is synaptically released in a manner consistent with neurotransmission. Primary murine brain cultures containing neurons and glia expressed 1.2-3.5 nmol of NAAG/mg of protein. In contrast to conclusions drawn from immunohistochemistry, pure glial cultures also expressed high levels of NAAG (0.6-2.11 nmol/mg of protein). These data suggest that although a subpopulation of neurons contains very high NAAG levels, micromolar concentrations of the peptide also are present in glia. Both culture types demonstrated robust extracellular peptidase activity when incubated with NAAG, as well as peptide transport. Uptake of [3H]NAAG was both temperature and sodium dependent, yet relatively insensitive to the presence of extracellular glutamate. These results indicate that synaptically released NAAG, as well as that which may be released from glia, is removed from the extracellular space by direct uptake as well as the robust enzymatic degradation of the peptide. A kinetic analysis of this NAAG transport (estimated K m= 1.8 μ M ) suggests a high-affinity NAAG transport system. The balance of the two processes of direct peptide uptake and peptide hydrolysis would markedly influence the sequence of receptor-mediated events that follow NAAG release.  相似文献   

16.
1. Oestrogen treatment induces the formation of a Ca(2+)-binding glycolipophosphoprotein, vitellogenin, in Xenopus laevis. 2. The incorporation of l-[4,5-(3)H]-leucine into vitellogenin in vivo and in vitro was observed 12-24h after hormone treatment and increased progressively up to 21 days after treatment. 3. Vitellogenin is shown to be the major protein component biosynthesized and released into the incubation medium in vitro by livers from oestrogen-treated animals. 4. The biosynthesis in vitro of vitellogenin was inhibited by cycloheximide and carbonyl cyanide m-chlorophenylhydrazone, stimulated by increased Ca(2+) concentrations and decreased by raising the incubation temperature from 22 to 37 degrees C. 5. Incorporation of labelled amino acids into vitellogenin began after approx. 2h. No lag phase was noted for the incorporation of labelled amino acids into total tissue proteins. 6. The incorporation of label from [(32)P]phosphate and [2-(14)C]acetate into the protein as well as into the lipid moiety of vitellogenin showed a lag phase similar to that noted for the incorporation of amino acids. 7. These results suggest that the release of vitellogenin into the incubation medium occurs about 2h after the initiation of its biosynthesis.  相似文献   

17.
Abstract— The effects of supramaximal electrical stimulation on the metabolism of amino acids and proteins in incubated superior cervical ganglia of the rat were studied by the use of a gas-liquid chromatographic (GLC) assay procedure. Stimulation at 5 Hz for 2 h caused an apparent increase in tissue levels of free amino acids, with alanine, serine, glycine, valine, threonine, isoleucine and aspartate (+ asparagine) most noticeably affected. The amino acid composition (partial) of the TCA-insoluble proteins of resting and stimulated ganglia was approximately the same after 60 min of incubation, but there was less TCA-insoluble protein in the stimulated ganglia. The addition of amino acids (at plasma concentrations) to the standard media had no apparent affect on the amino acid composition of this protein fraction. Stimulation for 0 , 5 h initially increased the efflux of alanine, valine, proline and ornithine into the incubation media but prolonged stimulation (for 4–0 h) decreased the efflux of alanine, serine, glycine and isoleucine and increased the efflux of lysine into the incubation media. The leakage of amino acids from the ganglia appeared to be a sodium-dependent process. The incorporation of 14C from [U-14C]glucose into glutamate (+ glutamine) and aspartate (+ asparagine) was greater in stimulated than in resting ganglia. However, the conversion of glutamate carbons from [U-14C]l -glutamate into aspartate was not affected by stimulation. Incorporation of 14C from [U-14C]glucose into glycine and serine was apparently not affected by stimulation during the 60 min of incubation. However, serine was the only amino acid which exhibited a higher specific radioactivity in stimulated ganglia than in resting ganglia incubated for 4 h in standard media. Lithium ions had the apparent specific effect of increasing the labelling with 14C from [U-14C]glucose into ornithine, and increasing the efflux and overall metabolism of serine in the ganglia. Incorporation of 14C from [U-14C]glucose into proteins was lower in the stimulated than in the resting ganglia if compensation was made for the higher radioactivity available in the total free amino acid pool of the stimulated ganglia. The rate of 14C incorporation from [U-14C]glutamate into the TCA-insoluble proteins of resting ganglia was greater when no other amino acids at concentrations approximating plasma levels were added to the bathing media; this rate was lower in stimulated than in resting ganglia.  相似文献   

18.
Koo SJ  Neal JC  DiTomaso JM 《Plant physiology》1996,112(3):1383-1389
The mode of action of the herbicide 3,7-dichloroquinolinecar-boxylic acid (quinclorac) was examined by measuring incorporation of [14C]glucose, [14C]acetate, [3H]thymidine, and [3H]uridine into maize (Zea mays) root cell walls, fatty acids, DNA, and RNA, respectively. Among the precursors examined, 10 [mu]M quinclorac inhibited [14C]glucose incorporation into the cell wall within 3 h. Fatty acid and DNA biosynthesis were subsequently inhibited, whereas RNA biosynthesis was unaffected. In contrast to the cellulose synthesis inhibitor 2,6-dichlorobenzonitrile, quinclorac strongly inhibited cellulose and a hemicellulose fraction presumed to be glucuronoarabinoxylan. However, the synthesis of (1->3),(1->4)-[beta]-D-glucans was only slightly inhibited. The degree of inhibition was time- and dose-dependent. By 4 h after treatment, the concentration that inhibited [14C]glucose incorporation into the cell wall, cellulose, and the sensitive hemicellulose fraction by 50% was about 15, 5, and 20 [mu]M, respectively. Concomitant with an inhibition of [14C]glucose incorporation into the cell wall, quinclorac treatment led to a marked accumulation of radioactivity in the cytosol. The increased radioactivity was found mostly in glucose and fructose. However, total levels of glucose, fructose, and uridine diphosphate-glucose were not changed greatly by quinclorac. These data suggest that quinclorac acts primarily as a cell-wall biosynthesis inhibitor in a susceptible grass by a mechanism that is different from that of 2,6-dichlorobenzonitrile.  相似文献   

19.
Cerebral hyperammonemia is a hallmark of hepatic encephalopathy, a debilitating condition arising secondary to liver disease. Pyruvate oxidation including tricarboxylic acid (TCA) cycle metabolism has been suggested to be inhibited by hyperammonemia at the pyruvate and -ketoglutarate dehydrogenase steps. Catabolism of the branched-chain amino acid isoleucine provides both acetyl-CoA and succinyl-CoA, thus by-passing both the pyruvate dehydrogenase and the -ketoglutarate dehydrogenase steps. Potentially, this will enable the TCA cycle to work in the face of ammonium-induced inhibition. In addition, this will provide the -ketoglutarate carbon skeleton for glutamate and glutamine synthesis by glutamate dehydrogenase and glutamine synthetase (astrocytes only), respectively, both reactions fixing ammonium. Cultured cerebellar neurons (primarily glutamatergic) or astrocytes were incubated in the presence of either [U-13C]glucose (2.5 mM) and isoleucine (1 mM) or [U-13C]isoleucine and glucose. Cell cultures were treated with an acute ammonium chloride load of 2 (astrocytes) or 5 mM (neurons and astrocytes) and incorporation of 13C-label into glutamate, aspartate, glutamine and alanine was determined employing mass spectrometry. Labeling from [U-13C]glucose in glutamate and aspartate increased as a result of ammonium-treatment in both neurons and astrocytes, suggesting that the TCA cycle was not inhibited. Labeling in alanine increased in neurons but not in astrocytes, indicating elevated glycolysis in neurons. For both neurons and astrocytes, labeling from [U-13C]isoleucine entered glutamate and aspartate albeit to a lower extent than from [U-13C]glucose. Labeling in glutamate and aspartate from [U-13C]isoleucine was decreased by ammonium treatment in neurons but not in astrocytes, the former probably reflecting increased metabolism of unlabeled glucose. In astrocytes, ammonia treatment resulted in glutamine production and release to the medium, partially supported by catabolism of [U-13C]isoleucine. In conclusion, i) neuronal and astrocytic TCA cycle metabolism was not inhibited by ammonium and ii) isoleucine may provide the carbon skeleton for synthesis of glutamate/glutamine in the detoxification of ammonium.  相似文献   

20.
The incorporation of [3H]phenylalanine, [3H]tyrosine, and [3H]tryptophan into protein and amino acyl-tRNA was studied in cell-free preparations from rat brain. Tyrosine and tryptophan inhibited the incorporation of phenylalanine into protein, and tyrosine inhibited the incorporation of phenylalanine and tryptophan into amino acyl-tRNAs. In most cases, homogentisate, phenylpyruvate, and phenyllactate inhibited the incorporation of phenylalanine, tyrosine, and tryptophan into protein and amino acyl-tRNAs, and the incorporation of phenylalanine into polyphenylalanine. All other protein amino acids, and phenylacetate, salicylate, and benzoate were wholly ineffectual. The results suggest that the formation of amino acyl-tRNAs may have been the step which was affected most by the inhibitors. The incorporation data at different concentrations of the aromatic amino acids were fitted to the simple Michaelis equation. Homogentisate and phenylpyruvate generally tended to reduce both Km and V in the incorporation of aromatic amino acids into protein and amino acyl-tRNAs, even if V decreased more than Km.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号