首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
2.
Nine species of Lecythidaceae subfamily Lecythidoideae in four genera whose chromosome numbers were previously unknown, have 17 as their basic chromosome number:Eschweilera pittieri, three other unidentified species ofEschweilera, Grias cauliflora, Gustavia dubia, G. superba, Lecythis minor, andL. tuyrana. All are diploid exceptGustavia superba, which is tetraploid.Couroupita guianensis, which was previously—and probably incorrectly—reported to have a gametic chromosome number of 18, also hasn = 17. The known chromosome numbers support recognizing at least three of Niedenzu’s subfamilies: Planchonioideae withx = 13, Napoleonaeoideae withx = 16, and Lecythidoideae withx = 17. His fourth subfamily, Foetidioideae, with one genus of five species, has not been counted. Cytological data have been and probably will be useful in indicating to what subfamily problematic genera belong and in showing interesting phytogeographic patterns within the family. On the other hand, cytological data provide no recognizable clues relating the Lecythidaceae to other families.  相似文献   

3.
As an extension of the ongoing cytogenetic studies of the bug family Nabidae (Heteroptera: Cimicomorpha), the first evidence for the tribe Arachnocorini (the subfamily Nabinae), with reference to the Trinidad endemic, Arachnocoris trinitatus Bergroth, is provided. This is an attempt to gain a better insight into the evolution, systematics and within-family relationships of the family Nabidae. The studies were conducted using a number of cytogenetic techniques. The male karyotype (chromosome number and size; sex chromosome system; NOR location; C-heterochromatin amount, distribution and characterization in terms of the presence of AT-rich and GC-rich DNA), and male meiosis with particular emphasis on the behavior of the sex chromosomes in metaphase II are described. Also investigated are the male and female internal reproductive organs with special reference to the number of follicles in a testis and the number of ovarioles in an ovary. A. trinitatus was found to display a number of characters differentiating it from all hitherto studied nabid species placed in the tribe Nabini of the subfamily Nabinae, and in the tribe Prostemmatini of the subfamily Prostemmatinae. Among these characters are chromosome number 2n = 12 (10 + XY), the lowest within the family, nucleolus organizer regions (NORs) situated on the autosomes rather than on the sex chromosomes as is the case in other nabid species, and testes composed of 3 follicles but not of 7 as in other nabids. All the data obtained suggest many transformations during the evolution ofA. trinitatus.  相似文献   

4.
Although analyses of chromosome numbers represent a fundamental step in the study of any group of organisms, the xeric-adapted cheilanthoid ferns (Pteridaceae: subfamily Cheilanthoideae) have received little attention from cytogeneticists due to the difficulty in obtaining samples and accurate chromosome counts. In an effort to clarify patterns of chromosomal evolution in this group, we present 131 chromosome counts representing 75 taxa of cheilanthoid ferns from the western United States and Mexico. First reports are provided for 24 taxa, including the first count for the genus Cheiloplecton. Nine other taxa yielded numbers that had not been reported previously. Our data suggest that chromosome base numbers are more stable than previously thought and that much of the reported variation may involve erroneous counts. When coupled with published DNA sequence data, our counts suggest that the plesiomorphic base number of subfamily Cheilanthoideae is x = 30 and that x = 29 has arisen just once or twice among the taxa studied.  相似文献   

5.
In the present study, the first cytogenetic data was obtained for the ant species Strumigenys louisianae, from a genus possessing no previous cytogenetic data for the Neotropical region. The chromosome number observed was 2n = 4, all possessing metacentric morphology. Blocks rich in GC base pairs were observed in the interstitial region of the short arm of the largest chromosome pair, which may indicate that this region corresponds to the NORs. The referred species presented the lowest chromosome number observed for the subfamily Myrmicinae and for the Hymenoptera found in the Neotropical region. Observation of a low chromosome number karyotype has been described in Myrmecia croslandi, in which the occurrence of tandem fusions accounts for the most probable rearrangement for its formation. The accumulation of cytogenetic data may carry crucial information to ensure deeper understanding of the systematics of the tribe Dacetini.  相似文献   

6.
An account of the pollen morphology found in the genera Dysoxylum and Pseudocarapa (Meliaceae) is presented. Pollen grains are illustrated by means of electron and some light micrographs. The majority of taxa release grains as tetra-colporate monads. Tetrads have previously only been known in Pseudocarapa. They are also recorded here in three species of Dysoxylum. The taxonomic implications of this are discussed and Pseudocarapa is reduced to a synonym of Dysoxylum.  相似文献   

7.
The members of the Ipl1-aurora like kinase (IARK) subfamily are conserved serine/threonine kinases that play a key role in the control of chromosome segregation, centrosome separation, and cytokinesis from yeast to mammals. We report on the isolation of a new Drosophila member of the family, designated Ipl1-aurora-like kinase (ial) Phylogenetic analysis of kinase domains established that ial is more divergent from known mammalian IARKs than is aurora. Mapping based on examination of chromosomal aberrations, together with mapping within contigs identified by the Drosophila Genome Project, placed the gene at 32B on the left arm of the second chromosome. Discrete single-gene mutations in this region, including all known relevant P-element disruptions, were examined and proven not to be mutations in ial. Characterization of spatial and temporal expression of ial and its gene product showed that it manifests itself in patterns which can be consistent with a role in cell cycle control.  相似文献   

8.
The Cyperaceae are well known for having a large amount of variation in chromosome numbers both within and among genera. Most of this variation has been previously attributed to agmatoploid or qualitative aneuploid chromosome number change. To date there have been 4,231 reported chromosome number counts in the family. Despite the large number of counts made, they only represent approximately 16% of the species currently recognized. These counts are here presented in an indexed list with standardized nomenclature following a draft copy of the World Checklist of Cyperaceae. Additionally, I explore variation within genera where a significant number of counts have been made. Given the distributions of counts within genera there is evidence for both agmatoploid and polyploid chromosome number changes.  相似文献   

9.
10.
Most species of the genus Tripogandra (Commelinaceae) are taxonomically poorly circumscribed, in spite of having a relatively stable basic number x = 8. Aiming to estimate the cytological variation among Tripogandra species carrying this base number, several structural karyotypic characters were investigated in the diploid T. glandulosa, the hexaploid T. serrulata, and the octoploid T. diuretica. A careful evaluation of chromosome size and morphology did not reveal clear chromosome homeologies among karyotypes. The mean chromosome size was strongly reduced in the octoploid species, but not in the hexaploid species. They also differed largely in the CMA(+) banding pattern and in the number of 5S and 45S rDNA sites per monoploid chromosome complement. All three species showed proximal DAPI (+) heterochromatin, although in T. serrulata this kind of heterochromatin was only visible after FISH. Further, the meiosis in T. serrulata was highly irregular, suggesting that this species has a hybrid origin. The data indicate that, in spite of the conservation of the base number, these species are karyologically quite different from each other.  相似文献   

11.
The objectives of this study were to assign both microsatellite and gene-based markers on porcine chromosome X to two radiation hybrid (RH) panels and to develop a more extensive integrated map of SSC-X. Thirty-five microsatellite and 20 gene-based markers were assigned to T43RH, and 16 previously unreported microsatellite and 15 gene-based markers were added to IMpRH map. Of these, 30 microsatellite and 12 gene-based markers were common to both RH maps. Twenty-two gene-based markers were submitted to BLASTN analysis for identification of orthologues of genes on HSA-X. Single nucleotide polymorphisms (SNPs) were detected for 12 gene-based markers, and nine of these were placed on the genetic map. A total of 92 known loci are present on at least one porcine chromosome X map. Thirty-seven loci are present on all three maps; 31 loci are found on only one map. Location of 33 gene-based markers on the comprehensive map translates into an integrated comparative map that supports conservation of gene order between SSC-X and HSA-X. This integrated map will be valuable for selection of candidate genes for porcine quantitative trait loci (QTLs) that map to SSC-X.  相似文献   

12.
A study on sex-determination and karyotypic evolution inTetranychidae   总被引:1,自引:1,他引:0  
The chromosome complements of 45 species of spider mites (Tetranychidae) were studied, making the total number of species now examined in this family 57, approximately 10% of all species known. The chromosome numbers range fromn=2 ton=7. The modal number of the family is 3 (found in 44% of the species). It is argued that the ancestral number isn=2 (21% of the species).In the more primitive subfamily of theBryobiinae both thelytokous and arrhenotokous species occur, whereas the subfamily of theTetranychinae exclusively exhibits arrhenotoky. The karyotype evolution is discussed in connection with arrhenotoky. It is stated that karyotype information is a useful tool for the spider mite taxonomist.This study was financially supported by the Netherlands Foundation for the Advancement of Tropical Research (W.O.T.R.O.) and the Uyttenboogaart-Eliasen Foundation.  相似文献   

13.
The two Iberian species of pine voles, Microtus (Terricola) duodecimcostatus and M. (T.) lusitanicus of the subfamily Arvicolinae (Cricetidae, Rodentia), were compared after G- and C-banding and chromosomal mapping of ribosomal RNA genes (rDNA), telomeric repeats, and satellite DNA Msat-160. Notwithstanding their close relationship (one sister group in phylogenetic analyses) and sharing of the diploid and fundamental chromosome numbers, the 2 species show notable differences in the sex chromosome morphology, the number and distribution of rDNA sites, constitutive heterochromatin and satDNA patterns. The only telomeric repeats showed normal, all-telomeric, distribution in karyotypes of both species. The data are discussed with regard to interspecific and intrageneric variation of the analyzed characters and the chromosomal evolution in the genus Microtus.  相似文献   

14.
Members of subfamily Gronovioideae are distinctive among Loasaceae in their androecial and gynoecial simplicity. The four genera of the subfamily differ, however, in chromosome number, floral novelties, and pollen exine sculpturing, which led to suggestions that the Gronovioideae were polyphyletic. Phylogenetic analyses based on sequences of the chloroplast gene matK and the internal transcribed spacer region (ITS) of nuclear rDNA have been conducted using parsimony and maximum likelihood methods to assess the monophyly of Gronovioideae and to determine the sister group relationships of gronovioid genera. The results show Gronovioideae are monophyletic and placed as the sister to Mentzelia. Within Gronovioideae, Petalonyx is sister to a clade consisting of Cevallia, Gronovia, and Fuertesia. Among the remaining Loasaceae, subfamily Mentzelioideae, as originally circumscribed, is paraphyletic. Subfamily Loasoideae is placed as the sister to the Gronovioideae-Mentzelia clade.  相似文献   

15.
EUCYCLOCERATIN AMMONITES FROM THE CALLOVIAN CHARI FORMATION, KUTCH, INDIA   总被引:1,自引:0,他引:1  
Abstract:  The subfamily Eucycloceratinae Spath, 1928, belonging to the family Sphaeroceratidae, is an important Indo-Madagascan faunal element and is reported here from the Callovian of Kutch, India. Previously the subfamily was considered to consist of 14 morphospecies placed in four morphogenera. The present study is based on re-examination of the type material and more than 350 new specimens, collected with secure stratigraphical control, from sections in mainland Kutch. It reveals that the subfamily includes only two highly variable monospecific genera: Eucycloceras Spath, 1924 and Idiocycloceras Spath, 1928. Dimorphism in Eucycloceratinae, which was not previously recognized, is firmly established. Cladograms have been constructed, based on numerous morphological characters, which show relationships among different subfamilies of the Sphaeroceratidae and genera of the Macrocephalitinae and Eucycloceratinae. The palaeobiogeography and evolution of the Eucycloceratinae are discussed in the light of the new data.  相似文献   

16.
Chromosome studies in the superfamily Bovoidea   总被引:1,自引:0,他引:1  
The chromosome morphology of about 50 species of Bovoidea has now been investigated. Although the diploid number varies from 30 to 60 among these species, the fundamental number (NF) varies only (with but three exceptions) from 58 to 62. This indicates an almost exclusive use of the Robertsonian fusion mechanism of karyotype evolution in this group of species which represent 30 different genera. All known cytogenetic information on the Bovoidea has been summarized and a complete bibliography is presented for each species. Karyotypes and data on a number of previously unstudied species are presented.  相似文献   

17.
Henochilus wheatlandii, the only species of this genus, is critically endangered and was considered extinct for over a century. The rediscovery of this fish in 1996 made it possible to study its phylogenetic relationships with other species in the subfamily Bryconinae. The aim of this study was to characterise the karyotype of H. wheatlandii. Standard staining, C-positive heterochromatin and nucleolar organiser region (NOR) banding, chromomycin A(3) staining, and fluorescent in situ hybridisation (FISH) using 5S rDNA and 18S rDNA probes were conducted on nineteen specimens collected in the Santo Antonio River, a sub-basin of the Doce River in Ferros municipality, Minas Gerais State, Brazil. Henochilus wheatlandii shared the same diploid number and chromosome morphology as other species of Bryconinae. However, its heterochromatin distribution patterns, NOR localisation, and FISH patterns revealed a cytogenetic profile unique among Neotropical Bryconinae, emphasizing the evolutionary uniqueness of this threatened species.  相似文献   

18.
We describe a new subfamily of satellite III DNA (pTRS-63), which, by a combination of in situ hybridization to human metaphase chromosomes and analysis of a panel of somatic cell hybrids, is shown to be specific for human chromosome 14. This DNA has a basic 5-bp repeating unit of diverged GGAAT which is tandemly repeated and organized into either one of two distinct higher-order structures of 5 kb (designated the "L" form) or 4.8 kb (designated the "S" form). In addition, a third (Z) form, representing no detectable levels of this satellite III subfamily, is found. Results from five somatic cell hybrid lines and from a number of informative human individuals suggest that, on any one chromosome 14, only one of the three forms may exist. Subchromosomally, this sequence has been mapped to the p11 region and is distal to the domain occupied by another previously described satellite III subfamily (pTRS-47) found on chromosome 14. The pTRS-63 sequence described adds to the understanding of the structural organization of the short arm of human chromosome 14 and should be useful for the investigation of the molecular etiology of the frequently occurring t(13q14q) and t(14q21q) Robertsonian translocations.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号