首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Negatively-charged polysialic acid (polySia) chains are usually membrane-bound and are often expressed on the surface of neuroinvasive bacterial cells, neural cells, and tumor cells. PolySia can mediate both repulsive and attractive cis interactions between membrane components, and trans interactions between membranes. Positively-charged long-chain bases are widely present in cells, are often localized in membranes and can function as bioactive lipids. Here we use Langmuir monolayer technique, fluorescence spectroscopy and electron microscopy of lipid vesicles to study the role of a simple long-chain base, octadecylamine (ODA), in both cis and trans interactions mediated by polySia in model membranes composed of ODA and dioleoylphospatidycholine (DOPC). When added free to an aqueous solution, polySia increases the collapse pressure of ODA/DOPC monolayers, reduces the effect of ODA on the limiting molecular area, inverses the values of excess area per molecule and of excess free energy of mixing from positive to negative, and induces fusion of ODA/DOPC vesicles. These results suggest that a polySia chain can act as a multi-bridge that mediates cis interactions between different components of a lipid membrane, disrupts membrane aggregates, and mediates trans interactions between lipids in apposing membranes. These observations imply that polySia in cellular systems can act in a similar way.  相似文献   

2.
Polysialic acid (polySia) is expressed on the surface of neural cells, neuroinvasive bacterial cells and several tumor cells. PolySia chains attached to NCAM can influence both trans interactions between membranes of two cells and cis interactions. Here, we report on the involvement of phospholipids in regulation of membrane interactions by polySia. The pH at the surface of liposomes, specific molecular area of phosphatidylcholine molecules, phase transition of DPPC bilayers, cyclic voltammograms of BLMs, and electron micrographs of phosphatidylcholine vesicles were studied after addition of polysialic acid free in solution. The results indicate that polySia chains can associate with phosphatidylcholine bilayers, incorporate into the polar part of a phospholipid monolayer, modulate cis interactions between phosphatidylcholine molecules, and facilitate trans interactions between apposing phospholipid vesicles. These observations imply that polySia attached to NCAM or to lipids can behave similarly.  相似文献   

3.
Transmembrane translocation of polyion homopolymers takes place in the case of polyanionic polysialic acid (polySia), polyanionic polynucleotides and polycationic polypeptides. The purpose of this work was to determine the role of membrane electrical parameters on the kinetics of polyion translocation, the influence of polysialic acid on ion adsorption on positively charged membrane surface and the dynamics of the phospholipid hydrocarbon chains and choline group by using 1H-NMR. The analysis of polyion translocation was performed by using the electrical equivalent circuit of the membrane for the initial membrane potential equal to zero. The changes in polysialic acid flux was up to 75% after 1 ms in comparison with the zero-time flux. Both a decrease of membrane conductance and an increase of polyion chain length resulted in the diminution of this effect. An increase of praseodymium ions adsorption to positively charged liposomes and an increase of the rate of segmental movement of the -CH2 and -CH3 groups, and the choline headgrup of lipid molecules, was observed in the presence of polySia. The results show that the direction of the vectorial polyion translocation depends both on the membrane electrical properties and the degree of polymerization of the polymer, and that polysialic acid can modulate the degree of ion adsorption and the dynamics of membrane lipids.  相似文献   

4.
The synapsins (I, II, and III) comprise a family of peripheral membrane proteins that are involved in both regulation of neurotransmitter release and synaptogenesis. Synapsins are concentrated at presynaptic nerve terminals and are associated with the cytoplasmic surface of synaptic vesicles. Membrane-binding of synapsins involves interaction with both protein and lipid components of synaptic vesicles. Synapsin I binds rapidly and with high affinity to liposomes containing anionic lipids. The binding of bovine synapsin I to liposomes was studied using fluoresceinphosphatidyl-ethanolamine (FPE) to measure membrane electrostatic potential. Synapsin binding to liposomes caused a rapid increase in FPE fluorescence, indicating an increase in positive charge at the membrane surface. Synapsin I binding to monolayers resulted in a substantial increase in monolayer surface pressure. At higher initial surface pressures, the synapsin-induced increase in monolayer surface pressure is dependent on the presence of anionic lipids in the monolayer. Synapsin I also induced rapid aggregation of liposomes, but did not induce leakage of entrapped carboxyfluorescein, while other aggregation-inducing agents promoted extensive leakage. These results are in agreement with the presence of amphipathic stretches of amino acids in synapsin I that exhibit both electrostatic and hydrophobic interactions with membranes, and offer a molecular explanation for the high affinity binding of synapsin I to liposomes and for stabilization of membranes by synapsin I.  相似文献   

5.
In hydrophilic media of high refraction index the cilia of the epithelium of the tracheo-bronchial mucous membrane and the mucous film demonstrate birefringence positive to the longitudinal axis of the mucous membrane owing to the identical orientation the glycoprotein macromolecules and of the fatty acid chains of the ciliary membrane. By means of toluidine blue staining the mucous film and the ciliary zone can be studied selectively by polarization microscopy. The opposite optical character suggests that the dye molecules are perpendicularly connected to the long glycoprotein chains of the mucous, and there is an oriented connection perpendicular to the longitudinal axis of the cilium in its lipid membrane. In smears of bronchial secretion or mucous membrane scrapings after staining, with toluidine blue pH 7.0, the selective optical reaction of the cilia provides a possibility for the study of isolated desquamated ciliary cells. The reaction is given by the lipid membrane boundary of the cilia. In embedded, lipid-extracted sections, the cilia and the mucous film show a minimum of birefringence in the unstained state. After toluidine blue staining or aldehyde-bisulphite-toluidine blue (ABT) reaction the mucoid surface and the ciliary zone display an opposite optical reaction originating from the dehydrated mucoproteins adsorbed onto the surface of lipid-extracted cilia.  相似文献   

6.
Basic amino acids play a key role in the binding of membrane associated proteins to negatively charged membranes. However, side chains of basic amino acids like lysine do not only provide a positive charge, but also a flexible hydrocarbon spacer that enables hydrophobic interactions. We studied the influence of hydrophobic contributions to the binding by varying the side chain length of pentapeptides with ammonium groups starting with lysine to lysine analogs with shorter side chains, namely ornithine (Orn), α,γ-diaminobutyric acid (Dab) and α, β-diaminopropionic acid (Dap). The binding to negatively charged phosphatidylglycerol (PG) membranes was investigated by calorimetry, FT-infrared spectroscopy (FT-IR) and monolayer techniques. The binding was influenced by counteracting and sometimes compensating contributions. The influence of the bound peptides on the lipid phase behavior depends on the length of the peptide side chains. Isothermal titration calorimetry (ITC) experiments showed exothermic and endothermic effects compensating to a different extent as a function of side chain length. The increase in lipid phase transition temperature was more significant for peptides with shorter side chains. FTIR-spectroscopy revealed changes in hydration of the lipid bilayer interface after peptide binding. Using monolayer techniques, the contributions of electrostatic and hydrophobic effects could clearly be observed. Peptides with short side chains induced a pronounced decrease in surface pressure of PG monolayers whereas peptides with additional hydrophobic interactions decreased the surface pressure much less or even lead to an increase, indicating insertion of the hydrophobic part of the side chain into the lipid monolayer.  相似文献   

7.
The interaction of adriamycin with lipids was studied in model (monolayers, small unilamellar vesicles, large multilamellar vesicles) and natural (chinese hamster ovary cell) membranes by measurement of fluorescence energy transfer and fluorescence quenching. 2-APam, 7-ASte, 12-ASte and anthracene-phosphatidylcholine were used as fluorescent probes in which the anthracene group is well located at graded depths in the membrane. Egg-yolk phosphatidylcholine and a 1/1 mixture of it with bovine brain phosphatidylserine were used in model membrane systems. Large fluorescence energy transfer was observed between these molecules as donors and the drug as acceptor. With liposomes, at pH 7.4 and over an adriamycin concentration range of 0-100 microM, the efficiency of energy transfer was 12-ASte greater than 7-ASte greater than 2-APam, with 100% energy transfer for 12-ASte above a drug concentration of 30 microM. At pH 5, where the fatty acids are buried deeper (0.45 nm) in the lipid bilayer due to protonation of the carboxyl group, the order of energy transfer 7-ASTe greater than 12-ASte = 2-APam was observed. Measurements of fluorescence quenching using the non-permeant Cu2+ ion as quencher and spectrophotometric assays indicated that around 40% of the adriamycin molecules were deeply embedded in the lipid bilayer. Adriamycin molecules thus appear to penetrate the lipid bilayer, with the aminoglycosyl group interacting with the lipid phosphate groups and the dihydroanthraquinone residue in contact with the lipid fatty acid chains. In contrast, fluorescence energy transfer and quenching studies on CHO cells showed that adriamycin penetrated the plasma membrane of these cells to a much more limited extent than in the model membrane systems. This can be related to the squeezing out of the drug from a film of phosphatidylcholine which was observed in monolayers by means of surface pressure, potential and fluorescence experiments. These observations indicated that the penetration of adriamycin into lipid bilayers strongly depends on the molecular packing of the lipid.  相似文献   

8.
Summary The ability of native and chemically modified myelin basic protein to induce fusion of chicken erythrocytes and to interact with lipids in monolayers at the air-water interface and liposomes was studied. Chemical modifications of myelin basic protein were performed by acetylation and succinylation: the positive charges of the native protein were blocked to an extent of about 90–95%.Cellular aggregation and fusion of erythrocytes into multinucleated cells was induced by the native myelin basic protein. This effect was diminished for both acetylated and succinylated myelin basic protein. Native myelin basic protein penetrated appreciably in sulphatide-containing lipid monolayers while lower penetration occurred in monolayers of neutral lipids. Contrary to this, both chemically modified myelin basic proteins did not show any selectivity to penetrate into interfaces of neutral or negatively charged lipids. The intrinsic fluorescence of the native and chemically modified myelin basic proteins upon interacting with liposomes constituted by dipalmitoylphosphatidycholine, glycosphingolipids, egg phosphatidic acid or dipalmitoylphosphatidyl glycerol was studied. The interaction with liposomes of anionic lipids is accompanied by a blue shift of the maximum of the native protein emission fluorescence spectrum from 346 nm to 335 nm; no shift was observed with liposomes containing neutral lipids. The acetylated and succinylated myelin basic proteins did not show changes of their emission spectra upon interacting with any of the lipids studied. The results obtained in monolayers and the fluorescence shifts indicate a lack of correlation between the ability of the modified proteins to penetrate lipid interfaces and the microenvironment sensed by the tryptophan-containing domain.Abbreviations MBP myelin basic protein - DPPC dipalmitoyl phosphatidylcholine - DPPG dipalmitoyl phosphatidylglycerol - PA phosphatidic acid  相似文献   

9.
The effect of 2, 4-dinitrophenol, DNP, on monolayers of egg lecithin, hydrogenated egg lecithin, dipalmitoyl lecithin and mitochondrial lipids has been examined. Both the undissociated and dissociated forms of DNP bind to the phospholipid polar groups. Binding of the acid form leads to a decrease in monolayer surface potential and an expansion of the monolayer. The amount of penetration of the acid form into lecithin monolayers appears to depend on the London-Van der Waals attractions between the lecithin hydrocarbon chains. Binding of the 2,4-dinitro-phenolate anion is reflected in a decrease in surface potential for lecithin monolayers, and an increase in surface potential for mitochondrial lipid monolayers. The adsorption of dinitro-phenolate to egg lecithin has been further investigated by micro-electrophoresis of lecithin liposomes. It is suggested that binding of DNP to phospholipid-water interfaces is important in determining its action as an uncoupler of oxidative phosphorylation, and as a compound that increases the electrical conductance of artificial lipid membranes.  相似文献   

10.
The neural cell adhesion molecule (NCAM) and its associated glycan polysialic acid play important roles in the development of the nervous system and N-methyl-D-aspartate(NMDA)receptor-dependent synaptic plasticity in the adult. Here, we investigated the influence of polysialic acid on NMDA receptor activity. We found that glutamate-elicited NMDA receptor currents in cultured hippocampal neurons were reduced by approximately 30% with the application of polysialic acid or polysialylated NCAM but not by the sialic acid monomer, chondroitin sulfate, or non-polysialylated NCAM. Polysialic acid inhibited NMDA receptor currents elicited by 3 microm glutamate but not by 30 microm glutamate, suggesting that polysialic acid acts as a competitive antagonist, possibly at the glutamate binding site. The polysialic acid induced effects were mimicked and fully occluded by the NR2B subunit specific antagonist, ifenprodil. Recordings from single synaptosomal NMDA receptors reconstituted in lipid bilayers revealed that polysialic acid reduced open probability but not the conductance of NR2B-containing NMDA receptors in a polysialic acid and glutamate concentration-dependent manner. The activity of single NR2B-lacking synaptosomal NMDA receptors was not affected by polysialic acid. Application of polysialic acid to hippocampal cultures reduced excitotoxic cell death induced by low micromolar concentration of glutamate via activation of NR2B-containing NMDA receptors, whereas enzymatic removal of polysialic acid resulted in increased cell death that occluded glutamate-induced excitotoxicity. These observations indicate that the cell adhesion molecule-associated glycan polysialic acid is able to prevent excitotoxicity via inhibition of NR2B subunit-containing NMDA receptors.  相似文献   

11.
Polysialic acid (polySia) is a long polyanionic polymer (with the degree of polymerization, DP, up to 200) of negatively charged sialic acid monomers. PolySia chains are bound to the external surface of some neuroinvasive bacterial cells and neural cells. PolySia serves as a potent regulator of cell interactions via its unusual biophysical properties. In the present paper, the analysis, based on the Goldman-Hodgkin-Katz equation, of transmembrane potential changes resulting from transmembrane translocation of polySia is performed. The relationships between the transmembrane potential and the polySia DP (up to 200), the temperature, the cation/ anion permeability ratio, and the inner/outer concentration ratio of polySia has been plotted and discussed. The maximal membrane potential changes, up to 118 mV, were found for a permeability ratio greater than one. The increase of the polySia chain length resulted in the diminution of this effect. The temperature-dependent changes in membrane potential were less than 7 mV in the range 0-50 degrees C. The change in the concentration ratio (into its reciprocal) resulted in a mirror reflection of the membrane potential curves. The results show that the expression of polySia chains in bacterial cells can be responsible for the modulation of the transmembrane potential of the bacterial inner membrane. We suggest that the polySia chains can influence the transmembrane potential of neural cell membranes in a similar way. This analysis also describes the effect of the transmembrane translocation of negatively charged polyanionic polynucleotydes on the cell membrane potential.  相似文献   

12.
D Rapaport  M Danin  E Gazit  Y Shai 《Biochemistry》1992,31(37):8868-8875
A 24-amino acid peptide corresponding to the S4 segment of the sodium channel was synthesized. In order to perform fluorescence energy transfer measurements and to monitor the interaction of the peptide with lipid vesicles, the peptide was selectively labeled with fluorescence probes at either its N- or C-terminal amino acids. The fluorescent emission spectra of 7-nitrobenz-2-oxa-1,3-diazol-4- yl-(NBD-)labeled analogues displayed blue shifts upon binding to small unilamellar vesicles (SUV), reflecting the relocation of the fluorescent probe to an environment of increased apolarity. The results revealed that both the N- and C-terminus of the S4 segment are located within the lipid bilayer. Titration of solutions containing NBD-labeled peptides with SUV was used to generate binding isotherms, from which surface partition constants, in the range of 10(4) M-1, were derived. The shape of the binding isotherms as well as fluorescence energy transfer measurements suggest that aggregation of peptide monomers within the membrane readily occurs in acidic but not in zwitterionic vesicles. Furthermore, the results provide good correlation between the incidence of aggregation in PC/PS vesicles and the ability of the peptides to permeate the vesicle's membrane. However, a transmembrane diffusion potential had no detectable effect on the location of the peptide within the lipid bilayer or on its aggregation state.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Both natural and synthetic polycations can induce demixing of negatively charged components in artificial and possibly in natural membranes. This process can result in formation of clusters (binding of several components to a polycation chain) and/or domains (aggregation of clusters and formation of a separate phase enriched in some particular component). In order to distinguish between these two phenomena, a model lipid membrane system containing ion channels, formed by a negatively charged peptide, O-pyromellitylgramicidin, and polycations of different structures was used. Microelectrophoresis of liposomes, changes in boundary potential of planar bilayers, the shape of compression curves and potentials of lipid and lipid/peptide monolayers were used to monitor the electrostatic factors in polymer adsorption to the membrane and peptide-polymer interactions. The synthesized PEO-grafted polylysine, PLL-PEO20000, did not induce peptide demixing monitored by stabilization of the gramicidin channels, in contrast to parent polylysine (PLL). Both polymers were shown to bind effectively to negatively charged liposomes and lipid monolayers, suggesting that the ineffectiveness of PLL-PEO20000 was not due to reduction of its binding. It was hypothesized that PLL-PEO20000 could not induce domain formation due to steric hindrance of long PEO chains preventing lateral fusion of clusters. Another copolymer, PLL-PEO4000, having four PEO chains of 4000 Da, exhibited intermediate effect between PLL and PLL-PEO20000, which shows the importance of the copolymer architecture for the effect on the lateral distribution of OPg channels. The model system can be relevant to regulation of lateral organization of ion channels and other components in natural membrane systems.  相似文献   

14.
Both natural and synthetic polycations can induce demixing of negatively charged components in artificial and possibly in natural membranes. This process can result in formation of clusters (binding of several components to a polycation chain) and/or domains (aggregation of clusters and formation of a separate phase enriched in some particular component). In order to distinguish between these two phenomena, a model lipid membrane system containing ion channels, formed by a negatively charged peptide, O-pyromellitylgramicidin, and polycations of different structures was used. Microelectrophoresis of liposomes, changes in boundary potential of planar bilayers, the shape of compression curves and potentials of lipid and lipid/peptide monolayers were used to monitor the electrostatic factors in polymer adsorption to the membrane and peptide-polymer interactions. The synthesized PEO-grafted polylysine, PLL-PEO20000, did not induce peptide demixing monitored by stabilization of the gramicidin channels, in contrast to parent polylysine (PLL). Both polymers were shown to bind effectively to negatively charged liposomes and lipid monolayers, suggesting that the ineffectiveness of PLL-PEO20000 was not due to reduction of its binding. It was hypothesized that PLL-PEO20000 could not induce domain formation due to steric hindrance of long PEO chains preventing lateral fusion of clusters. Another copolymer, PLL-PEO4000, having four PEO chains of 4000 Da, exhibited intermediate effect between PLL and PLL-PEO20000, which shows the importance of the copolymer architecture for the effect on the lateral distribution of OPg channels. The model system can be relevant to regulation of lateral organization of ion channels and other components in natural membrane systems.  相似文献   

15.
The topology of association of the monotopic protein cyclooxygenase-2 (COX-2) with membranes has been examined using EPR spectroscopy of spin-labeled recombinant human COX-2. Twenty-four mutants, each containing a single free cysteine substituted for an amino acid in the COX-2 membrane binding domain were expressed using the baculovirus system and purified, then conjugated with a nitroxide spin label and reconstituted into liposomes. Determining the relative accessibility of the nitroxide-tagged amino acid side chains for the solubilized COX-2 mutants, or COX-2 reconstituted into liposomes to nonpolar (oxygen) and polar (NiEDDA or CrOx) paramagnetic reagents allowed us to map the topology of COX-2 interaction with the lipid bilayer. When spin-labeled COX-2 was reconstituted into liposomes, EPR power saturation curves showed that side chains for all but two of the 24 mutants tested had limited accessibility to both polar and nonpolar paramagnetic relaxation agents, indicating that COX-2 associates primarily with the interfacial membrane region near the glycerol backbone and phospholipid head groups. Two amino acids, Phe(66) and Leu(67), were readily accessible to the non-polar relaxation agent oxygen, and thus likely inserted into the hydrophobic core of the lipid bilayer. However these residues are co-linear with amino acids in the interfacial region, so their extension into the hydrophobic core must be relatively shallow. EPR and structural data suggest that membrane interaction of COX-2 is also aided by partitioning of 4 aromatic amino acids, Phe(59), Phe(66), Tyr(76), and Phe(84) to the interfacial region, and by the electrostatic interactions of two basic amino acids, Arg(62) and Lys(64), with the phospholipid head groups.  相似文献   

16.
The roles of peptide-peptide charged interaction and lipid phase separation in helix-helix association in lipid bilayers were investigated using a model peptide, P(24), as a transmembrane alpha-helical peptide, and its four analogues. Fluorescence amino acids, tryptophan (P(24)W) and pyrenylalanine (P(24)Pya), were introduced into the sequence of P(24), respectively. Association of these peptides permits the resonance excitation energy transfer between tryptophan in P(24)W and pyrenylalanine in P(24)Pya or excimer formation between P(24)Pya themselves. To evaluate the effect of charged interaction on the association between alpha-helical transmembrane segments in membrane proteins, charged amino acids, glutamic acid (P(24)EW) and lysine (P(24)KPya), were introduced into P(24)W and P(24)Pya, respectively. Energy transfer experiments indicated that the charged interaction between the positive charge of lysine residue in P(24)KPya and the negative charge of glutamic acid residue in P(24)EW did not affect the aggregation of transmembrane peptides in lipid membranes. As the content ratio of sphingomyelin (SM) and cholesterol (Ch) was increased in the egg phosphatidylcholine (PC), the stronger excimer fluorescence spectra of P(24)Pya were observed, indicating that the co-existence of SM and Ch in PC liposomes, that is, the raft of SM and Ch, promotes the aggregation of the alpha-helical transmembrane peptides in lipid bilayers. Since the increase in the contents of SM and Ch leads to the decrease in the content of liquid crystalline-order phase, the moving area of transmembrane peptides might be limited in the liposomes, resulting in easy formation of the excimer in the presence of the lipid-raft.  相似文献   

17.
The influence of lipid bilayer properties on a defined and sequence-specific transmembrane helix-helix interaction is not well characterized yet. To study the potential impact of changing bilayer properties on a sequence-specific transmembrane helix-helix interaction, we have traced the association of fluorescent-labeled glycophorin A transmembrane peptides by fluorescence spectroscopy in model membranes with varying lipid compositions. The observed changes of the glycophorin A dimerization propensities in different lipid bilayers suggest that the lipid bilayer thickness severely influences the monomer-dimer equilibrium of this transmembrane domain, and dimerization was most efficient under hydrophobic matching conditions. Moreover, cholesterol considerably promotes self-association of transmembrane helices in model membranes by affecting the lipid acyl chain ordering. In general, the order of the lipid acyl chains appears to be an important factor involved in determining the strength and stability of transmembrane helix-helix interactions. As discussed, the described influences of membrane properties on transmembrane helix-helix interactions are highly important for understanding the mechanism of transmembrane protein folding and functioning as well as for gaining a deeper insight into the regulation of signal transduction via membrane integral proteins by bilayer properties.  相似文献   

18.
Krishna AG  Menon ST  Terry TJ  Sakmar TP 《Biochemistry》2002,41(26):8298-8309
The crystal structure of rhodopsin revealed a cytoplasmic helical segment (H8) extending from transmembrane (TM) helix seven to a pair of vicinal palmitoylated cysteine residues. We studied the structure of model peptides corresponding to H8 under a variety of conditions using steady-state fluorescence, fluorescence anisotropy, and circular dichroism spectroscopy. We find that H8 acts as a membrane-surface recognition domain, which adopts a helical structure only in the presence of membranes or membrane mimetics. The secondary structural properties of H8 further depend on membrane lipid composition with phosphatidylserine inducing helical structure. Fluorescence quenching experiments using brominated acyl chain phospholipids and vesicle leakage assays suggest that H8 lies within the membrane interfacial region where amino acid side chains can interact with phospholipid headgroups. We conclude that H8 in rhodopsin, in addition to its role in binding the G protein transducin, acts as a membrane-dependent conformational switch domain.  相似文献   

19.
In this work, we report on the interaction of polyacrylic acid with phosphatidylcholine bilayers and monolayers in slightly acidic medium. We found that adsorption of polyacrylic acid on liposomes composed of egg lecithin at pH 4.2 results in the formation of small pores permeable for low molecular weight solutes. However, the pores were impermeable for trypsin indicating that no solubilization of liposomes occurred. The pores were permeable for both positively charged trypsin substrate N-benzoyl-l-arginine ethyl ester and negatively charged pH-indicator pyranine. Two lines of evidence were obtained confirming the involvement of the membrane dipole potential in the insertion of polyacrylic acid into lipid bilayer. (i) Addition of phloretin, a molecule which is known to decrease dipole potential of lipid bilayer, reduced the rate of a polyacrylic acid induced leakage of pyranine from liposomes. (ii) Direct measurements of air/lipid monolayer/water interface surface potential using Kelvin probe showed that adsorption of polyacrylic acid at pH 4.2 induced a decrease in both boundary and dipole potential by 37 and 62mV for ester lipid dioleoylphosphatidylcholine (DOPC). Replacement of DOPC by ether lipid 1,2-di-O-oleyl-sn-glycero-3-phosphocholine (DiOOPC) which is known to form monolayers and bilayers with only minor dipole component of membrane potential showed that addition of PAA produced similar response in the boundary potential (by 50mV) but negligible response in dipole potential of monolayer. These observations agree with our assumption that dipole potential is an important driving force for the insertion of polyacids into biological membranes.  相似文献   

20.
Several studies have shown that the physical state of the phospholipid membrane has an important role in protein-membrane interactions, involving both electrostatic and hydrophobic forces. We have investigated the influence of the interaction of the calcium-depleted, (apo)-conformation of bovine alpha-lactalbumin (BLA) on the integrity of anionic glycerophospholipid vesicles by leakage experiments using fluorescence spectroscopy. The stability of the membranes was also studied by measuring surface tension/molecular area relationships with phospholipid monolayers. We show that the degree of unsaturation of the acyl chains and the proportion of charged phospholipid species in the membranes made of neutral and acidic glycerophospholipids are determinants for the association of BLA with liposomes and for the impermeability of the bilayer. Particularly, tighter packing counteracted interaction with BLA, while unsaturation-leading to looser packing-promoted interaction and leakage of contents. Equimolar mixtures of neutral and acidic glycerophospholipids were more permeable upon protein binding than pure acidic lipids. The effect of lipid structure on BLA-membrane interaction and bilayer integrity may throw new light on the membrane disrupting mechanism of a conformer of human alpha-lactalbumin (HAMLET) that induces death of tumour cells but not of normal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号