首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
γ-amino butyric acid (GABA) is the main inhibitory neurotransmitter in the mammalian central nervous system. GABA is also found in many peripheral tissues, where it has important functions during development. Here, we identified the existence of the GABA system in spermatogonial stem cells (SSCs) and found that GABA negatively regulates SSC proliferation. First, we demonstrated that GABA and its synthesizing enzymes were abundant in the testes 6 days postpartum (dpp), suggesting that GABA signaling regulates SSCs function in vivo. In order to directly examine the effect of GABA on SSC proliferation, we then established an in vitro culture system for long-term expansion of SSCs. We showed that GABAA receptor subunits, including α1, α5, β1, β2, β3 and γ3, the synthesizing enzyme GAD67, and the transporter GAT-1, are expressed in SSCs. Using phosphorylated histone H3 (pH3) staining, we demonstrated that GABA or the GABAAR-specific agonist muscimol reduced the proliferation of SSCs. This GABA regulation of SSC proliferation was shown to be independent of apoptosis using the TUNEL assay. These results suggest that GABA acts as a negative regulator of SSC proliferation to maintain the homeostasis of spermatogenesis in the testes.  相似文献   

2.
3.
4.
Metacaspases (MCAs) are caspase family cysteine peptidases that have been implicated in cell death processes in plants, fungi and protozoa. MCAs have also been suggested to be involved in cell cycle control, differentiation and clearance of aggregates; they are virulence factors. Dissecting the function of MCAs has been complicated by the presence in many organisms of multiple MCA genes or limitations on genetic manipulation. We describe here the creation of a MCA gene-deletion mutant (Δmca) in the protozoan parasite Leishmania mexicana, which has allowed us to dissect the role of the parasite''s single MCA gene in cell growth and cell death. Δmca parasites are viable as promastigotes, and differentiate normally to the amastigote form both in in vitro macrophages infection and in mice. Δmca promastigotes respond to cell death inducers such as the drug miltefosine and H2O2 similarly to wild-type (WT) promastigotes, suggesting that MCAs do not have a caspase-like role in execution of L. mexicana cell death. Δmca amastigotes replicated significantly faster than WT amastigotes in macrophages and in mice, but not as axenic culture in vitro. We propose that the Leishmania MCA acts as a negative regulator of amastigote proliferation, thereby acting to balance cell growth and cell death.  相似文献   

5.
A competitive enzyme immunoassay using acetylcholinesterase as tracer for thymosin beta 4, has been developed. Using this assay and a previously described EIA for AcSDKP, a negative regulator of pluripotent haematopoietic stem cell proliferation, the levels of these two peptides were determined in mouse tissue extracts. The combination of EIAs with different HPLC procedures validated these methods and clearly demonstrated the ubiquity of these peptides in mouse tissues. Similar results are reported for rabbit thymus which suggest different hypotheses for AcSDKP biosynthesis.  相似文献   

6.
Discs large homolog 1 (DLGH1), a founding member of the membrane-associated guanylate kinase family of proteins containing PostSynaptic Density-95/Discs large/Zona Occludens-1 domains, is an ortholog of the Drosophila tumor suppressor gene Discs large. In the mammalian embryo, DLGH1 is essential for normal urogenital morphogenesis and the development of skeletal and epithelial structures. Recent reports also indicate that DLGH1 may be a critical mediator of signals triggered by the antigen receptor complex in T lymphocytes by functioning as a scaffold coordinating the activities of T-cell receptor (TCR) signaling proteins at the immune synapse. However, it remains unclear if DLGH1 functions to enhance or attenuate signals emanating from the TCR. Here, we used Dlgh1 gene-targeted mice to determine the requirement for DLGH1 in T-cell development and activation. Strikingly, while all major subsets of T cells appear to undergo normal thymic development in the absence of DLGH1, peripheral lymph node Dlgh1(-/-) T cells show a hyper-proliferative response to TCR-induced stimulation. These data indicate that, consistent with the known function of Discs large proteins as tumor suppressors and attenuators of cell division, in T lymphocytes, DLGH1 functions as a negative regulator of TCR-induced proliferative responses.  相似文献   

7.
Enomoto M  Park MK 《Zoological science》2004,21(10):1005-1013
Gonadotropin-releasing hormone (GnRH) is well known as the central regulator of the reproductive system through its stimulation of gonadotropin release from the pituitary. Studies on GnRH have demonstrated that GnRH has both stimulatory and inhibitory effects on cell proliferation depending on the cell type; however, the mechanisms of these effects remain to be elucidated. Against this background we used four human cell lines, TSU-Pr1, Jurkat, HHUA and DU145, and newly found that GnRH increased or decreased the colony-formation depending on the cell line. Moreover, we demonstrated that the stimulatory and inhibitory effects of GnRH exhibit distinct ligand selectivities. In order to investigate the molecular basis of these phenomena, analyses of the expression of human GnRH receptors were performed and, moreover, the effects of GnRH were analyzed under conditions in which human GnRH receptors were knocked down by the technique of RNA interference. Consequently, it was found that human type II GnRH receptor, which had been suspected of being nonfunctional because of alterations in its sequence, is involved in the effects of GnRH on cell proliferation. In this article, the influence of the autocrine activities of the cells is also reviewed, focusing on the characteristics of substances secreted from the four cell lines. Based on recent studies of GnRH and its receptors and our up-to-date findings, the evolutionary implications of GnRH action are discussed.  相似文献   

8.
Ubiquitin activating enzyme 2 (UBA2) is a basic component of E1-activating enzyme in the SUMOylation system. Expression and function of UBA2 in human cancers are largely unknown. In this study we investigate UBA2 expression the function in human non–small-cell lung cancer. Immunochemistry study showed that UBA2 was overexpressed in cancer tissues (53.3%, 40 of 75) compared with normal lung tissues (14.3%, 4 of 28) (P < 0.05). Immunostaining of UBA2 was mainly detected in nucleus. Overexpression of UBA2 in cancer tissues was significantly associated with poor differentiation, large tumor size ( > 5.0 cm), higher T stages (T3 + 4), lymph node metastasis and advanced TNM stages (III + IV). In vitro study showed that UBA2 was expressed in A549, 95D, H1975, and H1299 cells. Knockdown of UBA2 in A549 cells significantly inhibited cancer cell proliferation and upregulated cancer cell apoptosis (P < 0.05). Cell cycle analysis showed that knockdown of UBA2 in A549 cell significantly increased the G1 and G2/M phase cells and reduced the S phase cells (P < 0.05). Gene expression profile after knockdown of UBA2 in A549 cells showed that the most related function was cell cycle, cell death and survival, and cellular growth and proliferation. Western blot analysis study showed that knockdown of UBA2 significantly inhibited expression of poly(ADP-ribose) polymerase 1, mini-chromosome maintenance 7 (MCM7), MCM2, MCM3 and MCM7. These results indicated that UBA2 was a critical cell cycle and proliferation regulator and may be a novel cancer marker in this malignant tumor.  相似文献   

9.
10.
11.
12.
Diva is a novel proapoptotic member of the Bcl-2 protein family which binds apoptosis activating factor-1 (APAF-1). Diva is identical with Boo which was identified as a novel antiapoptotic Bcl-2 family protein. Here, we report that Diva promotes the cell cycle exit of human glioma cells in response to serum deprivation and inhibits apoptosis of these cells induced by CD95 ligand or chemotherapeutic drugs. In glioma cells, Diva interferes with apoptotic signaling downstream of cytochrome c release, but upstream of caspase activation, consistent with an inhibitory effect on the mitochondrial amplification step involving the apoptosome and APAF-1.  相似文献   

13.
Ano1 is a recently discovered Ca(2+)-activated Cl(-) channel expressed on interstitial cells of Cajal (ICC) that has been implicated in slow-wave activity in the gut. However, Ano1 is expressed on all classes of ICC, even those that do not contribute to generation of the slow wave, suggesting that Ano1 may have an alternate function in these cells. Ano1 is also highly expressed in gastrointestinal stromal tumors. Mice lacking Ano1 had fewer proliferating ICC in whole mount preparations and in culture, raising the possibility that Ano1 is involved in proliferation. Cl(-) channel blockers decreased proliferation in cells expressing Ano1, including primary cultures of ICC and in the pancreatic cancer-derived cell line, CFPAC-1. Cl(-) channel blockers had a reduced effect on Ano1(-/-) cultures, confirming that the blockers are acting on Ano1. Ki67 immunoreactivity, 5-ethynyl-2'-deoxyuridine incorporation, and cell-cycle analysis of cells grown in low-Cl(-) media showed fewer proliferating cells than in cultures grown in regular medium. We confirmed that mice lacking Ano1 had less phosphorylated retinoblastoma protein compared with controls. These data led us to conclude that Ano1 regulates proliferation at the G(1)/S transition of the cell cycle and may play a role in tumorigenesis.  相似文献   

14.
15.
Mast cells are known to play a pivotal role in allergic diseases such as allergic rhinitis, asthma, and atopic dermatitis by releasing granules containing histamine, LTC4, and other preformed chemical mediators. Previous reports have demonstrated that IKK2 (also called IKKβ), a central intracellular component of NF-κB activation pathways, plays a critical role in IgE-mediated degranulation of mast cells and anaphylaxis in mice. In this study, we show that protein levels of tumor suppressor p53 are up-regulated upon IgE-mediated activation in mast cells and lack of p53 results in enhanced responses in both early and late phase anaphylaxis. p53 inhibits not only the catalytic activity of IKK2 presumably through the modulation of glycosylation but also p65 (RelA)-mediated transactivation. Our findings are the first to demonstrate that p53 functions as a negative regulator in mast cells.  相似文献   

16.
The PINOID (PID) family, which belongs to AGCVIII kinases, is known to be involved in the regulation of auxin efflux transporter PIN-FORMED (PIN) proteins through changes in the phosphorylation status. Recently, we demonstrated that the PID family is necessary for phytochrome-mediated phototropic enhancement in Arabidopsis hypocotyls and that the downregulation of PID expression by red-light pretreatment results in the promotion of the PIN-mediated auxin gradient during phototropic responses. However, whether PID participates in root phototropism in Arabidopsis seedlings has not been well studied. Here, we demonstrated that negative root phototropic responses are enhanced in the pid quadruple mutant and are severely impaired in transgenic plants expressing PID constitutively. The results indicate that the PID family functions in a negative root phototropism as a negative regulator. On the other hand, analysis with PID fused to a yellow fluorescent protein, VENUS, showed that unilateral blue-light irradiation causes a lower accumulation of PID proteins on the shaded side than on the irradiated side. This result suggests that the blue-light-mediated asymmetrical distribution of PID proteins may be one of the critical responses in phototropin-mediated signals during a negative root phototropism. Alternatively, such a transverse gradient of PID proteins may result from gravitropic stimulation produced by phototropic bending.  相似文献   

17.
Wang Y  Lam KS  Xu A 《Cell research》2007,17(4):280-282
The prevalence of obesity and its associated diseases hasposed a huge healthcare impact on our society.Obesity is amajor risk factor for many serious medical conditions,suchas metabolic syndrome,Type 2 Diabetes and cardiovasculardisorders etc.In addition,the close association of obesitywith cancers has attracted significant attentions[1].Severalobesity-related cancers,including breast,prostate,endo-metrium,colon and gallbladder cancer,have a hormonalbasis and are life style-related.Breast cancer is the mostfrequent cancer and the second leading cause of cancerdeath among women.Excess adiposity over the pre-andpost-menopausal years is an independent risk factor for thedevelopment of breast cancer,and is also associated withlate-stage disease and poor prognosis[2].Adipose tissue has been shown to be an important playerin obesity-related mammary carcinogenesis[2].Adipocyteis one of the predominant stromal cell types in the microen-vironment of mammary tissue.It is also the major site forlocal estrogen production from androgens by aromatase,  相似文献   

18.
19.
Glycosylation is one of the most abundant posttranslational modification reactions, and nearly half of all known proteins in eukaryotes are glycosylated. In fact, changes in oligosaccharide structure (glycan) are associated with many physiological and pathological events, including cell adhesion, migration, cell growth, cell differentiation and tumor invasion. Glycosylation reactions are catalyzed by the action of glycosyltransferases, which add sugar chains to various complex carbohydrates such as glycoproteins, glycolipids and proteoglycans. Functional glycomics, which uses sugar remodeling by glycosyltransferases, is a promising tool for the characterization of glycan functions. Here, we will focus on the positive and negative regulation of biological functions of integrins by the remodeling of N-glycans with N-acetylglucosaminyltransferase III (GnT-III) and N-acetylglucosaminyltransferase V (GnT-V), which catalyze branched N-glycan formations, bisecting GlcNAc and β1,6 GlcNAc, respectively. Typically, integrins are modified by GnT-III, which inhibits cell migration and cancer metastasis. In contrast, integrins modified by GnT-V promote cell migration and cancer invasion.  相似文献   

20.
Glycosylation is one of the most abundant posttranslational modification reactions, and nearly half of all known proteins in eukaryotes are glycosylated. In fact, changes in oligosaccharide structure (glycan) are associated with many physiological and pathological events, including cell adhesion, migration, cell growth, cell differentiation and tumor invasion. Glycosylation reactions are catalyzed by the action of glycosyltransferases, which add sugar chains to various complex carbohydrates such as glycoproteins, glycolipids and proteoglycans. Functional glycomics, which uses sugar remodeling by glycosyltransferases, is a promising tool for the characterization of glycan functions. Here, we will focus on the positive and negative regulation of biological functions of integrins by the remodeling of N-glycans with N-acetylglucosaminyltransferase III (GnT-III) and N-acetylglucosaminyltransferase V (GnT-V), which catalyze branched N-glycan formations, bisecting GlcNAc and β1,6 GlcNAc, respectively. Typically, integrins are modified by GnT-III, which inhibits cell migration and cancer metastasis. In contrast, integrins modified by GnT-V promote cell migration and cancer invasion.Key words: integrin, E-cadherin, GnT-III, GnT-V, N-glycosylation, glycosyltransferaseProtein glycosylation encompasses N-glycans, O-glycans and Glycosaminoglycans. N-glycans are linked to asparagine residues of proteins, which is a specific subset residing in the Asn-X-Ser/Thr motif, whereas O-glycans are attached to a subset of serines and threonines (Fig. 1).1 An increasing body of evidence indicates that glycans in glycoproteins are involved in the regulation of cellular functions including cell-cell communication and signal transduction.2,3 In fact, most receptors on the cell surface are N-glycosylated—integrins and epithelial growth factor receptors; and transforming growth factor β receptors. Here, we focus mainly on the modification of N-glycans of integrin α3β1 and α5β1 to address the important roles of N-glycans in cell adhesion and migration.Open in a separate windowFigure 1Two major types of protein glycosylation. N-glycans are covalently linked to asparagine (Asn) residue of proteins, specifically the Asn-X-Ser/Thr motif. In contrast, O-glycans are attached to a subset of glycosidically linked hydroxyl groups of the amino acids serine (Ser) and threonine (Thr).Previous studies indicate that the presence of the appropriate oligosaccharide can modulate integrin activation. When human fibroblasts were cultured in the presence of l-deoxymannojirimycin, an inhibitor of α-mannosidase II, which prevents N-linked oligosaccharide processing, immature α5β1 integrin appeared at the cell surface, and fibronectin (FN)-dependent adhesion was greatly reduced.4 In addition, the treatment of purified integrin α5β1 with N-glycosidase F, which cleaves between the innermost GlcNAc and asparagine residues of N-glycans from N-linked glycoproteins, resulted in the blockage of α5β1 binding to FN and the inherent association of both subunits,5 suggesting that N-glycosylation is essential for functional integrin α5β1. The production of glycoprotein glycans is catalyzed by various glycosyltransferases. N-Acetylglucosaminyltransferase III (GnT-III) transfers N-acetylglucosamine (GlcNAc) from UDP-GlcNAc to a β1, 4 mannose in N-glycans to form a “bisecting” GlcNAc linkage, as shown in Figure 2. Bisecting GlcNAc linkage is found in various hybrid and complex N-glycans. GnT-III is generally regarded as a key glycosyltransferase in N-glycan biosynthetic pathways. Introduction of a bisecting GlcNAc suppresses further processing and elongation of N-glycans catalyzed by N-acetylglucosaminyltransferase V (GnT-V), which is strongly associated with cancer metastasis, since GnT-V cannot utilize the bisected oligosaccharide as a substrate.68 It has also been reported that GnT-V activity and β1, 6 branched N-glycan levels are increased in highly metastatic tumor cell lines.9,10 When NIH3T3 cells were transformed with the oncogenic Ras gene, cell spreading on FN was greatly enhanced due to an increase in β1, 6 GlcNAc branched tri- and tetra-antennary oligosaccharides in α5β1 integrins.9 Similarly, the characterization of N-glycans of integrin α3β1 from non-metastatic and metastatic human melanoma cell lines showed that β1, 6 GlcNAc branched structures were expressed at high levels in metastatic cells compared with non-metastatic cells.10 Cancer metastasis was consistently, and significantly, suppressed in GnT-V knockout mice.11Open in a separate windowFigure 2Glycosylation reactions catalyzed by the action of glycosyltransferase GnT-III and GnT-V. The remodeled N-glycans regulate cell adhesion and migration. Enhanced expression of GnT-V in epithelial cells results in a loss of cell-cell adhesion, increasing integrin-mediated cell migration. In contrast, overexpression of GnT-III strengthens cell-cell interaction and downregulates integrin-mediated cell migration, which may contribute to the suppression of cancer metastasis. The β1,6GlcNAc branching is preferentially modified by polylactosamine and other sugar motifs such as sialyl Lewis X, which also contribute to promotion of cancer metastasis. It is worth mentioning that GnT-III could be proposed as an antagonistic of GnT-V, since GnT-V cannot utilize the bisected oligosaccharide as a substrate.To explore the possible mechanisms involved in increased β1, six branched N-glycans on cancer cells, Guo et al. found that cell migration toward FN and invasion through the matrigel were both substantially stimulated in cells in which the expression of GnT-V was induced.12 Increased branched sugar chains inhibited the clustering of integrin α5β1 and the organization of F-actin into extended microfilaments in cells plated on FN-coated plates, which supports the hypothesis that the degree of adhesion of cells to their extracellular matrix (ECM) substrate is a critical factor in regulating the rate of cell migration, i.e., migration is maximal under conditions of intermediate levels of cell adhesion.13 Conversely, GnT-V null mouse embryonic fibroblasts (MEF) displayed enhanced cell adhesion to, and spreading on, FN-coated plates with the concomitant inhibition of cell migration. The restoration of GnT-V cDNA in the null MEF reversed these abnormal characteristics, indicating the direct involvement of N-glycosylation events in these phenotypic changes.In contrast to GnT-V, the overexpression of GnT-III resulted in an inhibition of α5β1 integrin-mediatedcell spreading and migration, and the phosphorylation of the focal adhesion kinase.14 The affinity of the binding of integrin α5β1 to FN was significantly reduced as a result of the introduction of a bisecting GlcNAc to the α5 subunit. In addition, overexpression of GnT-III in highly metastatic melanoma cells reduced β1, six branching in cell-surface N-glycans and increased bisected N-glycans.15 Therefore, GnT-III has been proposed as an antagonistic of GnT-V, thereby contributing to the suppression of cancer metastasis. In fact, the opposing effects of GnT-III and GnT-V have been observed for the same target protein, integrin α3β1.16 GnT-V stimulates α3β1 integrin-mediated cell migration, while overexpression of GnT-III inhibits GnT-V-induced cell migration. The modification of the α3 subunit by GnT-III supersedes modification by GnT-V. As a result, GnT-III inhibits GnT-V-induced cell migration. These results strongly suggest that remodeling of glycosyltransferase-modified N-glycan structures either positively or negatively modulates cell adhesion and migration.In addition, sialylation on the non-reducing terminus of N-glycans of α5β1 integrin plays an important role in cell adhesion. The increased sialylation of the β1 integrin subunit was correlated with a decreased adhesiveness and metastatic potential.1719 On the other hand, the enzymatic removal of α2, eight-linked oligosialic acids from the α5 integrin subunit inhibited cell adhesion to FN,20 supporting the observation that the N-glycans of α and β integrin subunits play distinct roles in cell-ECM interactions.21 Collectively, these findings suggest that the interaction of integrin α5β1 with FN is dependent on N-glycosylation and the processing status of N-glycans.Although alteration of the oligosaccharide portion on integrin α5β1 could affect cis- and trans-interactions caused by GnT-III, ST6GalI and GnT-V, as described above, the molecular mechanism remains unclear. Considering integrin α5β1 contains 26 potential N-linked glycosylation sites (14 in the α subunit and 12 in the β subunit), the determination of those crucial N-glycosylation sites for its biological function is, therefore, quite important for an understanding of the underlying mechanism. We sequentially mutated either one or a combination of asparagine residues in the putative N-glycosylation sites of glutamine residues, and found that N-glycosylation on the β-propeller domain of the α5 subunit (in particular sites number 3–5) is essential for its hetero-dimer formation and its biological functions such as cell spreading and cell migration, as well as for the proper folding of the α5 subunit.22 On the other hand, N-glycans on β1 integrin also play important roles in the regulation of its biological functions23,24 (and our unpublished data). Very recently, we also found that GnT-III specifically modifies one of the important glycosylation sites, which results in functional regulation (unpublished data). We postulate that these important sites may participate in supramolecular complex formation on the cell surface, which controls intracellular signal transduction.It also is worth noting that N-glycans regulate cell-ECM association as well as cell-cell adhesion. Overexpression of GnT-III slowed E-cadherin turnover, resulting in increased E-cadherin expression on the surface of B16 melanoma cells.25 E-cadherin engagement at cell-cell contacts is known to suppress cell migration, and that effect has been best described in the context of tumorigenesis.26 Conversely, the disruption of E-cadherin-mediated cell adhesion appears to be a central event in the transition from non-invasive to invasive carcinomas. Interestingly, we recently found that E-cadherin-mediated cell-cell interaction upregulated GnT-III expression,27,28 suggesting that regulation of GnT-III and E-cadherin expression may exist as a positive feedback loop. Taken together, the overexpression of GnT-III inhibits cell migration by at least two mechanisms: an enhancement in cell-cell adhesion and a downregulation of cell-ECM adhesion (Fig. 2).Indeed, glycosylation defects in humans and their links to disease have shown that the mammalian glycome contains a significant amount of biological information.29 The mammalian glycome repertoire is estimated to be between hundreds and thousands of glycan structures and could be larger than its proteome counterpart. Nevertheless, characterization of the biological functions of each glycan could one day make a significant contribution to the diagnosis and treatment of disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号