首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
J M Martin  D M Goldberg 《Enzyme》1986,35(4):189-196
Duodenal aspirates were obtained before, during, and after stimulation with secretin-cholecystokinin in 26 patients whose pancreatic function was classified as normal, moderately reduced, or severely reduced. The activities of gamma-glutamyltransferase (GGT), alkaline phosphatase (ALP), and 5'-nucleotidase (5NT) in the aggregated duodenal aspirate collected 10-40 min after stimulation showed marked overlap between the functional groups and lacked diagnostic value. For all three enzymes, the peak response occurred later in the severely impaired group than in those with normal pancreatic function. The three enzymes showed significant positive correlations with each other, and were negatively correlated with the output of trypsin and chymotrypsin and, in contrast with these proteolytic enzymes which were reduced in pancreatic disease, GGT, ALP, and 5NT all tended to increase with pancreatic disease. Contrary to a previous report, GGT did not serve as a useful index of pancreatic cancer in this study.  相似文献   

2.
The alkaline phosphatase and 5′-nucleotidase activities of Dictyostelium discoideum are due to two distinct enzymes. Both enzymes are membrane bound, but over 90% of the 5′-nucleotidase activity is solubilized when the crude membrane fraction of the cell is treated with phospholipase C under conditions that release only 10% of the alkaline phosphatase.Part of the alkaline phosphatase activity can be detected in whole cells, suggesting that some of the enzyme molecules are located on the exterior surface of the plasma membrane. In contrast very low 5′-nucleotidase activity can be detected in whole cells. When membrane preparations, isolated from cells that had been surface labeled with 125I, were subjected to sedimentation equilibrium on sucrose density gradients, the majority of the 125I-radioactivity cosedimented with the alkaline phosphatase and 5′-nucleotidase activites, suggesting that both enzymes are plasma membrane components.The two enzymes have distinctly different pH optima, but otherwise their properties are remarkably similar. Both enzymes are inhibited by cyanide, sulfhydryl inhibitors and sulfhydryl reagents, although in each case the 5′-nucleotidase is slightly more susceptible. Both enzymes are inhibited by the levamisole analogue, R 8231, but the alkaline phosphatase is inhibited to a somewhat greater extent. Both enzymes are activated by incubation at 50 °C but inactivated by higher temperatures.The two enzymes increase in activity at identical times during differentiation, suggesting that they are under coordinate developmental control.  相似文献   

3.
The interaction of 5'-deoxy-5'-thioadenosine 5'-monophosphate (A(S)MP) and 5'-deoxy-5'-thioinosine 5'-monophosphate (I(S)MP) with snake venom, 5'nucleotidase, and calf intestinal mucosa alkaline phosphatase has been characterized. The substrates, A(S)MP and I(S)MP, are analogs of adenosine 5'-monophosphate and inosine 5'-monophosphate in which sulfur replaces oxygen as the bridge between the 5'-carbon of the ribose and the phosphorous. The P-S bond of both A(S)MP and I(S)MP was hydrolyzed by alkaline phosphatase producing the corresponding thionucleoside as a reaction product. The Km for A(S)MP was 270 microM and the V for alkaline phosphatase was 110 nmol/min/mg (8% of the V for AMP), whereas the corresponding values for I(S)MP were 300 microM and 530 nmol/min/mg protein, respectively. In contrast, 5'-nucleotidase did not catalyze hydrolysis of either A(S)MP or I(S)MP. A(S)MP and I(S)MP were competitive inhibitors of the 5'-nucleotidase hydrolysis of AMP and IMP, respectively, with Ki values of 975 and 13 microM. Decreasing the pH of the reaction from 8.1 to 7.1 lowered the Ki for I(S)MP by 100-fold, to a value of 0.15 microM.  相似文献   

4.
5.
Platelet aggregation induced by adrenaline is accompanied by release of beta-lipoprotein, alkaline phosphatase, 5'-nucleotidase and factor 3. Electrophoretic mobility of platelet alkaline phosphatase was the same as that of beta-lipoprotein. This suggest that beta-lipoprotein, alkaline phosphatase and 5'-nucleotidase are structural components of platelet compounds which possess factor 3 activity.  相似文献   

6.
Earlier reports suggested that the adenosine monophosphate (AMP)- and the p-nitrophenyl phosphate (pNPP)-hydrolyzing activities of Dictyostelium discoideum membrane preparations are due to different proteins. These results have been apparently contradicted by the recent purification to homogeneity of the two activities from culmination phase cells as a single protein [D. R. Armant and C. L. Rutherford (1981) J. Biol. Chem. 256, 12710-12718]. Results presented here from studies on the activities of vegetative cells support the concept of a single protein. Nondenaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis of Triton X-100 extracts of cell membrane preparations of D. discoideum showed identical migration of pNPPase and AMPase activities. Furthermore, the previously reported different pH optima of the two activities was due to the fact that pH optima are dependent upon the substrate concentration, and the selective solubilization of AMPase from membrane preparations by phospholipase C can probably be accounted for by the finding that phospholipase C preparations from the same commercial source contain 5'-nucleotidase activity. Moreover, there are alterations in the Km and the stability of both AMPase and pNPPase in a strain with a mutationally altered alkaline phosphatase, further supporting the concept that the two activities are due to a single protein. Both substrates serve as transphosphorylation donors demonstrating that the enzyme activity is mechanistically an alkaline phosphatase.  相似文献   

7.
1. The effect of levamisole (LMS) on alkaline phosphatase (EC 3.1.3.1) and 5'-nucleotidase (EC 3.1.3.5) activities of bovine milk fat globule membranes (MFGM) was examined. 2. LMS inhibited MFGM alkaline phosphatase activity in a concentration-dependent manner with 50% inhibition produced by 49 +/- 23 microM LMS. 3. 5'-Nucleotidase was resistant to LMS inhibition with 30.9% inhibition produced by 10 mM LMS, the highest concentration tested. 4. LMS was an uncompetitive inhibitor of MFGM alkaline phosphatase with a Ki of 45 +/- 6 microM. 5. The extent of LMS inhibition of alkaline phosphatase was dependent on the substrate utilized in the assay. 6. The effect of LMS on bovine MFGM alkaline phosphatase was similar to LMS effects on other mammalian alkaline phosphatases of liver/kidney/bone/placental isoenzyme origin.  相似文献   

8.
An attempt has been made to show that the increase in enzyme activities in sera of pregnant women found with glucose-6-phosphate and adenosine 5'-monophosphate as substrates (described as glucose-6-phosphatase and 5'-nucleotidase) was due to the increase in alkaline phosphatase. The three enzyme activities has pH optima and heat stability characteristics of alkaline phosphatase. The response to the action of inhibitors and activators was typical for alkaline phosphatase. There was an identical increase in all three enzyme activities during pregnancy. As a control similar investigations were made with liver and placental tissue extracts.  相似文献   

9.
A new species of orthophosphate repressible extracellular 5'-nucleotidase (5'-ribonucleotide phosphohydrolase, EC 3.1.3.5) was found to be released into mycelial culture media when a wild type strain of Neurospora crassa was grown on limiting amounts of phosphate. The production of 5'-nucleotidase and extracellular acid and alkaline phosphatase was inhibited by the addition of rifampicin when it was added at the later stage of mycelial growth, but not when it was added at a very early stage. The 5'-nucleotidase and extracellular alkaline phosphatase were partially purified and characterized. pH optimum of the former was 6.8 and that of the latter was higher than 10.0. The 5'-nucleotidase activity was inhibited by ethylenediaminetetraacetate (EDTA) and ZnCl2 at pH 6.8 and stimulated by MnCl2 and CoCl2 at pH 4.0. Alkaline phosphatase activity was stimulated by EDTA, MgCl2, CoCl2 and MnCl2. 5'-nucleotidase activity was stimulated by EDTA, MgCl2, CoCl2 and MnCl2. 5'-nucleotidase hydrolyzed various 5'-nucletides but not 3'-nucleotides or other various phosphomono- and diester compounds. Alkaline phosphatase hydrolyzed all the phosphomonoester compounds tested. Mutants, nuc-1 and nuc-2, which were originally isolated by the inability to utilize RNA or DNA as a sole source of phosphate, were unable to produce 5'-nucleotidase or six other repressible enzymes reported previously. These mutants showed no or significantly reduced growth on orthophosphate-free nucleotide media depending on the number of conidia inoculated, mainly because of loss of ability to produce these repressible extracellular phosphatases.  相似文献   

10.
Alkaline phosphatase and 5'-nucleotidase activities were analysed cytophotometrically in cryostat sections of female rat liver after partial hepatectomy. Alkaline phosphatase activity increased rapidly after operation up to a maximum seven-fold rise at 24 h in comparison with sham operated or control rats. There was no indication of preferential localization of alkaline phosphatase activity in either periportal or pericentral areas at any time point in control rats, sham operated rats or hepatectomized rats. Microscopical observation revealed that (a) all alkaline phosphatase activity was present at the bile canalicular surface of hepatocytes and (b) hepatocytes in mitosis did not show any increase in activity. These findings indicate that the high alkaline phosphatase activity after partial hepatectomy is not involved primarily in proliferation processes because cell division mainly takes place periportally. It may be needed for enhanced bile secretion by conversion of intracellular phosphorylcholine into choline which can be transported into the bile. The intracellular phosphorylcholine level is high after operation due to changes in phospholipid metabolism. 5'-Nucleotidase appeared to be three times higher pericentrally than periportally under normal conditions. Partial hepatectomy caused a 40 per cent decrease in activity in pericentral areas and only a small decrease periportally. It has been suggested that 5'-nucleotidase plays a role in breakdown of messenger RNA and its activity in control liver could be considerably lower periportally because plasma protein synthesis mainly takes place in this area.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
1. The effects of theophylline (1,3-dimethylxanthine) on alkaline phosphatase and 5'-nucleotidase activities of bovine milk fat globule membranes (MFGM) were examined. 2. Theophylline inhibited MFGM alkaline phosphatase in a concentration-dependent manner with 50% inhibition produced by 99 +/- 28 microM theophylline. 3. The 5'-nucleotidase activity was resistant to theophylline inhibition with 50% inhibition produced by 33.9 +/- 3.1 mM theophylline. 4. Theophylline was an uncompetitive inhibitor of MFGM alkaline phosphatase with a Ki of 126 +/- 15 microM. 5. The extent of theophylline inhibition of alkaline phosphatase activity was independent of the substrate utilized in the assay. 6. The effect of theophylline on bovine MFGM alkaline phosphatase was similar to theophylline effects on other mammalian alkaline phosphatases of liver/bone isoenzyme origin.  相似文献   

12.
Variations on the distribution of acid phosphatase and 5'-nucleotidase were observed among the cerebral nuclei of the Uromastix hardwickii. Most of the nuclei revealed more intensely positive reaction for 5'-nucleotidase than the acid phosphatase. However, an identical enzymatic pattern, demonstrating intense activity for the two enzymes, was observed in the cortical centers excepting the primordial hippocampus. The possible causes of the intensity and the functions of the enzymes were established in relation to the nuclei and fiber bundles.  相似文献   

13.
14.
Activities of Ca2(+)-dependent ATPase, Mg2(+)-dependent ATPase, Na(+)-K(+)-dependent ATP-ase, alkaline phosphatase, and 5'-nucleotidase were demonstrated after incubation of 40-microns vibratome sections of bovine parathyroids and subsequent visualization by electron microscopy. Prior to sectioning, parathyroid tissue was fixed with 1% glutaraldehyde for localization of alkaline phosphatase, and with 2% formaldehyde and 1% glutaraldehyde for demonstration activities of ATPases and 5'-nucleotidase. The activities of the five enzymes were found at the apicolateral domain of the plasma membrane in parathyroid cells, i.e. at the site parathyroid cells face neighbouring parenchymal cells. Ca2(+)-ATPase activity was also seen on mitochondria, Golgi complex and RER. The presence of these plasma membrane associated enzymes at the apicolateral domain only indicate polarity in parathyroid cells. It further suggests that many processes including transmembrane transport take place at the apicolateral domain, the site of parathyroid cells opposing blood capillaries.  相似文献   

15.
By means of histochemical techniques at light and electron microscopic levels, as well as immunomorphological, biochemical and immunochemical methods localization and dynamics of alkaline phosphatase and 5'-nucleotidase contents have been determined in anlages of long tubular bones in 85 human embryos and prefetuses from the 6th up to 12th week of the intrauterine development, obtained as a result of artificial abortions in healthy women. The greatest activity of the enzymes studied is revealed in areas of an intensive osteogenesis and mineralization. Also, by means of the immunofluorescent method alkaline phosphatase of a placental type is revealed, that is not revealed, however, immunochemically. With increasing time of the intrauterine development, thermostability of alkaline phosphatase increases.  相似文献   

16.
Human placental alkaline phosphatase, a marker protein for some nontrophoblastic neoplasms, was found to have phosphoprotein phosphatase activity. This was demonstrated by the dephosphorylation of 32P-labeled histones, protamine, glycogen synthetase, casein, and phosvitin at various pH values. Unlike the general phosphoprotein phosphatase, the placental alkaline phosphatase does not have phosphorylase a phosphatase activity.  相似文献   

17.
The human tissue nonspecific alkaline phosphatase (TNAP) is found in liver, kidney, and bone. Mutations in the TNAP gene can lead to Hypophosphatasia, a rare inborn disease that is characterized by defective bone mineralization. TNAP is 74% homologous to human placental alkaline phosphatase (PLAP) whose crystal structure has been recently determined at atomic resolution (Le Du, M. H., Stigbrand, T., Taussig, M. J., Ménez, A., and Stura, E. A. (2001) J. Biol. Chem, 276, 9158-9165). The degree of homology allowed us to build a reliable TNAP model to investigate the relationship between mutations associated with hypophosphatasia and their probable consequences on the activity or the structure of the enzyme. The mutations are clustered within five crucial regions, namely the active site and its vicinity, the active site valley, the homodimer interface, the crown domain, and the metal-binding site. The crown domain and the metal-binding domain are mammalian-specific and were observed for the first time in the PLAP structure. The crown domain contains a collagen binding loop. A synchrotron radiation x-ray fluorescence study confirms that the metal in the metal-binding site is a calcium ion. Several severe mutations in TNAP occur around this calcium site, suggesting that calcium may be of critical importance for the TNAP function. The presence of this extra metal-binding site gives new insights on the controversial role observed for calcium.  相似文献   

18.
1. We have compared the effect of phosphatidyl inositol specific phospholipase C (PI-PLC) on the attachment of both 5'-nucleotidase and alkaline phosphatase to the liver plasma membrane from different species. 2. Our results demonstrate differences in the susceptibilities of both enzymes to PI-PLC treatment in relation to their origin. 3. These results were confirmed by immunoblotting using polyclonal anti-5'-nucleotidase antibodies. 4. In addition, in a single animal, susceptibility of both enzymes to PI-PLC treatment is different from one tissue to another. 5. The different percentages of released enzymes could be explained either by a polymorphism in the anchoring of these proteins at the cell surface membrane, or by a different steric hindrance or environment at the cleavage site itself.  相似文献   

19.
In this review the roles of specific proteins during the first step of mineralization and nucleation are discussed. Mineralization is initiated inside the extracellular organelles-matrix vesicles (MVs). MVs, containing relatively high concentrations of Ca2+ and inorganic phosphate (Pi), create an optimal environment to induce the formation of hydroxyapatite (HA). Special attention is given to two families of proteins present in MVs, annexins (AnxAs) and tissue-nonspecific alkaline phosphatases (TNAPs). Both families participate in the formation of HA crystals. AnxAs are Ca2+ - and lipid-binding proteins, which are involved in Ca2+ homeostasis in bone cells and in extracellular MVs. AnxAs form calcium ion channels within the membrane of MVs. Although the mechanisms of ion channel formation by AnxAs are not well understood, evidence is provided that acidic pH or GTP contribute to this process. Furthermore, low molecular mass ligands, as vitamin A derivatives, can modulate the activity of MVs by interacting with AnxAs and affecting their expression. AnxAs and other anionic proteins are also involved in the crystal nucleation. The second family of proteins, TNAPs, is associated with Pi homeostasis, and can hydrolyse a variety of phosphate compounds. ATP is released in the extracellular matrix, where it can be hydrolyzed by TNAPs, ATP hydrolases and nucleoside triphosphate (NTP) pyrophosphohydrolases. However, TNAP is probably not responsible for ATP-dependent Ca2+/phosphate complex formation. It can hydrolyse pyrophosphate (PPi), a known inhibitor of HA formation and a byproduct of NTP pyrophosphohydrolases. In this respect, antagonistic activities of TNAPs and NTP pyrophosphohydrolases can regulate the mineralization process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号