首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using the membrane-permeant chelator of heavy metal ions, N,N,N',N'-tetrakis(2-pyridylmethyl)ethylene diamine (TPEN), we demonstrate that in pancreatic acinar cells, hepatocytes, and a variety of mammalian cell lines, endogenous heavy metal ions bind to cytosolic fura-2 causing basal cytosolic free [Ca2+] ([Ca2+]i) to be overestimated. TPEN had most effect in cells lightly loaded with fura-2, suggesting the presence of a limited pool of heavy metal ions (> or = 12 microM in pancreatic acinar cells) that does not rapidly exchange across the plasma membrane. In fura-2-loaded hepatocytes, vasopressin failed to evoke a detectable change in fluorescence, but after preincubation of cells with TPEN, it caused fluorescence changes characteristic of an increase in [Ca2+]i. We conclude that in many mammalian cells, a slowly exchanging mixture of cytosolic heavy metal ions binds to fura-2 both to quench its fluorescence and to mimic the effects of Ca2+ binding, thereby causing basal [Ca2+]i to be overestimated. By chelating endogenous heavy metal ions, TPEN allows basal [Ca2+]i to be accurately measured and, by preventing competition between heavy metal ions and Ca2+ for binding to fura-2, unmasks the full effect of agonists in increasing [Ca2+]i.  相似文献   

2.
Mouse medullary thymocytes have specific receptors for 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). The mitogenic stimulation of these cells by phytohemagglutinin in the presence or absence of the phorbol ester TPA is inhibited by 1,25(OH)2D3. The calcium ionophore A23187 did not reverse the inhibition by 1,25(OH)2D3 of phytohemagglutinin. Stimulation of thymocytes with either TPA or A23187 alone did not result in proliferation. Co-stimulation of the thymocytes with TPA and A23187 induces cell proliferation. 1,25(OH)2D3 markedly enhanced the TPA and A23187-induced cell proliferation even when added 4 h after the initiation of the culture. In contrast, DNA synthesis by thymocytes incubated for 4 h in the presence of TPA and A23187 and then cultured in medium containing 1,25(OH)2D3 but in the absence of both TPA and A23187, was inhibited by 1,25(OH)2D3. The extent of inhibition was comparable to the inhibition of lectin-induced stimulation by the hormone. Using monoclonal antibodies to neutralize IL-2 and block IL-2 receptors we showed that 1,25(OH)2D3 enhanced the IL-2-independent component of the A23187- and TPA-induced mitogenesis. In conclusion: (1) The nature and presence of the mitogenic signal determines whether 1,25(OH)2D3 enhances or inhibits thymocyte stimulation. (2) Both stimulatory and inhibitory actions of 1,25(OH)2D3 seem to take place at points distal to the initial increase in intracellular calcium or activation of protein kinase C.  相似文献   

3.
The intracellularly trappable fluorescent Ca2+ indicator quin-2 was used to measure free cytosolic Ca2+, [Ca2+]i, in the two highly dedifferentiated tumor cell lines, Ehrlich and Yoshida ascites carcinomas. It was found that these carcinoma cells can trap quin-2 similarly to normal cells, but [Ca2+]i was apparently significantly lower than in any normal cell tested previously with this method. By using a new lipid-soluble heavy metal chelator TPEN (N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine), which crosses artificial and natural membranes, it was found that endogenous heavy metals are responsible for partially quenching quin-2 fluorescence trapped inside the cells. Although the quenching of intracellular quin-2 fluorescence is quantitatively more relevant in these ascites carcinomas, TPEN was effective also in normal cells like lymphocytes and granulocytes. Both in the normal and especially in the malignant cell lines [Ca2+]i can be grossly underestimated at low intracellular quin-2 concentrations. Endogenous heavy metal quenching is thus a potential source of artifact when [Ca2+]i is measured with quin-2. When corrected for quin-2 fluorescence quenching by intracellular heavy metals, [Ca2+]i and basic regulatory mechanisms of [Ca2+]i homeostasis in Ehrlich and Yoshida carcinomas are similar to those of nontransformed cells.  相似文献   

4.
The effects of luteinizing hormone-releasing hormone (LHRH) and its putative intracellular mediators on progesterone (P) and prostaglandin E2 (PGE2) formation were studied in rat granulosa cells. A calcium ionophore (A23187), 12-0-tetradecanoylphorbol-13-acetate (TPA), and melittin (a phospholipase A2-stimulator) were used to later intracellular calcium, protein kinase C, and arachidonic acid levels, respectively. During a 5-h incubation, LHRH increased basal P levels but failed to affect the formation of P induced by cholera toxin (CT). On the other hand, both basal and CT-stimulated PGE2 formation were increased by LHRH. Treatment of the cells with A23187 or TPA attenuated the formation of P induced by CT or FSH. By contrast, A23187 or TPA significantly augmented CT- or FSH-stimulated PGE2 formation. Interestingly, the effects of A23187 and TPA on PGE2 were synergistic, whether or not FSH or CT was present during the incubation. This synergy was not observed with regard to P formation. Melittin also increased basal P and PGE2 levels, and enhanced the stimulation of PGE2 by A23187 or TPA. However, in the combined presence of A23187 and TPA, melittin failed to further enhance the high levels of PGE2 accumulated. These findings further support a role for the intracellular calcium, protein kinase C, and arachidonic acid metabolic pathways in the multiple actions of LHRH in the ovary.  相似文献   

5.
The cell-permeant heavy metal chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine(TPEN) was found to counteract phorbol ester-induced actin reorganization in PTK2 and Swiss 3T3 cells. By using fluorescence and the higher resolution technique of photoelectron microscopy to monitor actin patterns, 15-min pretreatment with 25-50 microM TPEN was found to dramatically reduce actin alterations resulting from subsequent phorbol ester treatment in PTK2 cells. Similar results were obtained with Swiss 3T3 cells using 50 microM TPEN for 1.5 h. Phorbol ester-induced actin alterations are thought to depend on activation of protein kinase C (PKC). In contrast to the phorbol ester effect, the PKC-independent actin cytoskeletal disruption caused by staurosporine and cytochalasin B was unaffected by TPEN pretreatment. TPEN did not block phorbol ester-induced activation of PKC in Swiss 3T3 cells, as observed by the phosphorylation of the 80K PKC substrate protein (MARCKS protein). TPEN also did not inhibit partially purified PKC from Swiss 3T3 cells in an in vitro PKC-specific commercial assay. To establish that the effect of TPEN is the removal of metal ions and not some other nonspecific effect of TPEN, a series of transition metal ions was added at the end of the TPEN pretreatment. The results indicate that the transient but dramatic phorbol ester-induced reorganization of the actin cytoskeleton in cultured cells depends on an interaction of PKC with a heavy metal, probably zinc.  相似文献   

6.
Cortical and medullary thymocytes can be separated from each other by virtue of the fact that only cortical thymocytes bear peanut agglutinin (PNA) receptors. The mitogenic responses of subpopulations of thymocytes were studied. We have confirmed the results of Conlon et al. [(1982) J. Immun. 128, 797-801], that lectin-induced stimulation of unseparated cells, and PNA- but not PNA+ thymocytes, results in DNA synthesis. In contrast, both subpopulations, as well as unseparated cells, synthesize DNA in response to the calcium ionophore A23187 in the presence of the phorbol ester TPA, suggesting an impairment of signal transduction in PNA+ cells. However, comparable amounts of inositol phosphates were accumulated in PNA- and PNA+ thymocytes in response to Concanavalin A (Con A). We suggest that mitogenic lectins generate a third signal in addition to elevation of intracellular free calcium concentration and activation of protein kinase C. This signal is generated in PNA- but not in PNA+ thymocytes and is obligatory for lectin-induced stimulation.  相似文献   

7.
The significance of the macrophage in the inflammatory response that occurs concurrently with phorbol ester induced tumor promotion has not yet been determined. Biologically active phorbol ester tumor promoters modify several functional responses of macrophages including chemotaxis, cytotoxicity, secretion and prostaglandin synthesis and release. The present study examines calcium metabolism as a possible underlying biochemical mechanism through which 12-0-tetradecanoyl-phorbol-13-acetate (TPA) exerts its effects on macrophage chemotaxis. The chemotaxis of mouse resident peritoneal macrophages was evaluated in the presence of pharmacological agents known to alter cellular calcium metabolism. The calcium ionophore A23187 in microM concentrations enhanced macrophage chemotaxis to TPA by approximately 41%. This enhancement was dependent on the presence of extracellular calcium. TPA-induced chemotaxis was also enhanced by the histological dye ruthenium red (RR), an agent known to modify mitochondrial calcium fluxes and calcium-dependent neuronal transmission. Ruthenium red (0.1 and 1.0 microM) produced a maximal stimulation of macrophage chemotaxis to TPA of approximately 62%. An intracellular calcium antagonist, 8-(N,N-diethylamino) octyl 3,4,5-trimethoxybenzoate hydrochloride (TMB-8) inhibited macrophage chemotaxis to TPA in a dose related fashion (1.0 to 100 microM). Varying extracellular calcium concentrations (0-3.6 mM) had no effect on macrophage chemotaxis in response to TPA. In drug combination studies neither A23187 nor RR was able to overcome the inhibitory effects of TMB-8 on macrophage chemotaxis to TPA. These results indicate that intracellular calcium metabolism may be playing a significant role in modulating TPA's effect on macrophage chemotaxis, while extracellular calcium may be of little import. A possible mode of TPA's effect on the macrophage via mobilization of calcium from cellular storage sites is discussed.  相似文献   

8.
The membrane-permeant oxidizing agent 2,2'-dithiodipyridine (DTDP) can induce Zn(2+) release from metalloproteins in cell-free systems. Here, we report that brief exposure to DTDP triggers apoptotic cell death in cultured neurons, detected by the presence of both DNA laddering and asymmetric chromatin formation. Neuronal death was blocked by increased extracellular potassium levels, by tetraethylammonium, and by the broad-spectrum cysteine protease inhibitor butoxy-carbonyl-aspartate-fluoromethylketone. N,N,N', N'-Tetrakis-(2-pyridylmethyl)ethylenediamine (TPEN) and other cell-permeant metal chelators also effectively blocked DTDP-induced toxicity in neurons. Cell death, however, was not abolished by the NMDA receptor blocker MK-801, by the intracellular calcium release antagonist dantrolene, or by high concentrations of ryanodine. DTDP generated increases in fluorescence signals in cultured neurons loaded with the zinc-selective dye Newport Green. The fluorescence signals following DTDP treatment also increased in fura-2- and magfura-2-loaded neurons. These responses were completely reversed by TPEN, consistent with a DTDP-mediated increase in intracellular free Zn(2+) concentrations. Our studies suggest that under conditions of oxidative stress, Zn(2+) released from intracellular stores may contribute to the initiation of neuronal apoptosis.  相似文献   

9.
The increase in the intracellular concentration of Ca2+ in A431 cells induced by the calcium ionophore A23187 leads to phosphorylation of epidermal growth factor (EGF) receptors at serine and/or threonine residues. This process is accompanied by the decrease in the level of EGF receptor autophosphorylation at tyrosine residues. Preincubation of cells in a A23187-containing medium in the presence of phorbol-12-myristoyl-13-acetate leads to a further decrease of the phosphotyrosine content in EGF receptors. At increased intracellular concentrations of Ca2+ preincubation of A431 cells with the protein kinase C inhibitor H-7 has no effect on the degree of EGF receptor autophosphorylation. Down-regulation of cellular protein kinase C does not change the A23187-induced effect either. The data obtained suggest that the decreased autophosphorylation of EGF receptors induced by Ca2+ is not due to the activation of cellular protein kinase C.  相似文献   

10.
Zn(2+) has multiple implications in cellular metabolism, including free radicals metabolism and cell death by apoptosis. In the present study, we examined the role of Zn(2+) in the regulation of apoptosis in cultured rat hepatocytes. The chelation of Zn(2+) by a membrane permeable metal ion chelator, N, N, N', N'-tetrakis(2-pyridylmethyl) ethylenediamine (TPEN), induced apoptosis. Addition of ZnSO(4) prevented TPEN-induced apoptosis. Unlike the effect of TPEN, a membrane impermeable metal ion chelator, diethylenetriamine pentaacetic acid (DTPA), did not induce apoptosis, indicating that chelation of intracellular Zn(2+) was required to trigger apoptosis. Caspase-3-like proteolytic activity, a general biochemical mediator of apoptosis in a variety of cells and tissues, was also activated with the treatment of TPEN but not DTPA. TPEN treatment, but not DTPA, also resulted in the depletion of intracellular reduced glutathione (GSH) but addition of Zn(2+) recovered the GSH level. N-acetyl-L-cysteine (NAC), a thiol antioxidant, prevented TPEN-induced apoptosis. These results taken together suggest that intracellular Zn(2+) interfere with the apoptosis process, possibly through the regulation of cellular redox potential involving GSH.  相似文献   

11.
The Ca2+ ionophore A23187 increases intracellular calcium content in normal thymic cells, while it is without effect on the corresponding neoplastic cell (Ascites thymoma) and on Ehrlich ascites tumour cells. The A23187-induced total cell calcium increase in normal thymocytes takes place both in control and energy-depleted cells, while it is lacking in neoplastic cells. In addition the ionophore stimulates aerobic glycolysis of normal thymocytes, whereas it is ineffective on neoplastic cells. The study of intracellular calcium exchange properties reveals that in normal cells the ionophore A23187 provokes a 60% increase of the exchangeable pool together with a more significant, 4-fold enlargement of the unexchangeable pool. These effects are lacking in cancer cells. The data give rise to interesting considerations concerning the regulation and compartmentalization of calcium in neoplastic cells. The results will be also discussed in relation to the models that predict altered cell calcium metabolism as a cause of cancer cell high aerobic glycolysis and uncontrolled growth.  相似文献   

12.
We have studied the activation of human blood platelets by the inflammatory and tumor-promoting sesquiterpene lactone, thapsigargin. The effect of thapsigargin was compared with other common agonists (calcium ionophore A23187, phorbol ester TPA and thrombin). Platelet aggregation, serotonin release, raised cytoplasmic free calcium level and phosphorylation of platelet proteins was examined in platelet-rich plasma and washed platelet suspension. In contrast to A23187 and thrombin, the platelet activation induced by thapsigargin developed slowly, with maximal response obtained after 2-3 min. Both the thapsigargin- and the A23187-induced serotonin releases were synergistically increased by TPA. Studies of the phosphorylation of platelet proteins revealed that thapsigargin and A23187 equally well induced a selective phosphorylation of two proteins with apparent molecular masses of 20 kDa and 47 kDa. These proteins, which are substrates of myosin light-chain kinase and protein kinase C respectively, are known to be involved in platelet activation. The thapsigargin-induced platelet aggregation and serotonin release was completely inhibited by class I (nimodipine), class II (verapamil) and class III (diltiazem) calcium-channel blockers. The inhibitory activity of nimodipine was abolished by the corresponding 1,4-dihydropyridine calcium-channel agonist, BAY K 8644. These results shows that the thapsigargin-induced platelet activation is mediated by an increase in the cytoplasmic free calcium level, presumably obtained by stimulation of the passive calcium transport through specific channels. These thapsigargin-sensitive channels should predominantly be located in the membranes of intracellular calcium stores rather than in the plasma membrane, because removal of extracellular calcium by EGTA had only an insignificant effect on the thapsigargin-induced rise in cytoplasmic free calcium level.  相似文献   

13.
In dispersed rat thymocytes neither basal alpha-aminoisobutyric acid influx nor influx stimulated by insulin, prostaglandin theophylline, or butyryl adenosine 3':5'-monophosphate (cyclic AMP) depended on extracellular calcium or magnesium. The divalent cation ionophore A23187 inhibited both basal and stimulated alpha-aminoisobutyric acid influx. The extent to which influx was inhibited depended on ionophore concentration, extracellular calcium concentration, and time but did not depend on extracellular magnesium. Significant inhibition could be detected at an ionophore concentration of 1 muM and maximal inhibition occurred with 6 muM A23187. A23187 increased cellular uptake of calcium and there was good agred calcium uptake and that for ionophore inhibition of alpha-aminoisobutyric acid influx. Incubating cells with A23187 and then adding ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N',-tetraacetic acid completely reversed ionophore-stimulated cellular calcum uptake but did not reverse inhibition of alpha-aminoisobutyric acid influx. Thus, A23187 produces irreversible inhibition of alpha-aminoisobutyric acid transport in dispersed rat thymocytes. Ethanol abolished insulin-stimulated alpha-aminoisobutyric acid influx but did not alter basal influx or that stimulated by prostaglandin E1, theophylline, or N6,O2'-dibutyryl adenosine 3':5'-monophosphate. Inhibition could be detected with 0.2% (v/v) ethanol and insulin-stimulated alpha-aminoisobutyric influx was abolished with 1% ethanol. The effect of ethanol occurred immediately and could be reversed completely. This ability of ethanol to inhibit selectively insulin-stimulated alpha-aminoisobutyric acid influx indicates that the mechanism through which insulin stimulates alpha-aminoisobutyric acid influx is functionally distinct from the stimulation produced by cyclic AMP.  相似文献   

14.
The addition of low concentrations (less than 10(-7) M) of the calcium ionophore A23187 to rabbit neutrophils releases the intracellular pool of calcium previously shown in radioactive steady-state and chlortetracycline fluorescence studies to be mobilized by chemotactic factors. A23187 at these concentrations elicits no functional responses from these cells. However, A23187, added before chemotactic factors such as fMet-Leu-Phe and leukotriene B4, inhibits the ability of the latter stimuli to induce, in the presence of cytochalasin B, an exocytotic release of the neutrophil's cytoplasmic granules. These results imply that the chemotactic-factor-induced release of intracellular calcium is a necessary event for the optimal activation of the neutrophils. Phorbol ester-induced neutrophil degranulation on the other hand is unaffected by exposure to A23187, thereby completely dissociating its mechanism of action from rises in cytoplasmic free calcium.  相似文献   

15.
Effects of the Ca2+-ionophore A23187 and concanavalin A on the membrane potential of human lymphocytes and rat thymocytes have been studied using the fluorescent potential probe diS-C3-(5). At concentrations of 10(-8) to 10(-6) M A23187 changes the membrane potential, inducing both hyper- and depolarization. Depending on concentrations of A23187 and the external Ca2+, and on the type of lymphocytes, one of these effects predominates. The hyperpolarization induced by A23187 is caused by activation of Ca2+-dependent K+ channels. It is blocked by quinine and high concentrations of extracellular K+. The dependence of Ca2+-activated K+ transport on extracellular Ca2+ and its sensitivity to calmodulin antagonists is different for human lymphocytes and for thymocytes. As distinct from lymphocytes, in thymocytes calmodulin is not involved in activation of Ca2+-dependent K+ transport. The depolarization induced in lymphocytes by A23187 is caused by an increase in Na+ permeability of the lymphocyte plasma membrane: it is eliminated in a low-Na+ medium. At mitogenic concentrations concanavalin A does not change the membrane potential of the lymphocytes. The results obtained permit elucidation of the relationship between two early events in lymphocyte activation, namely the increase in intracellular Ca2+ concentration and the increase in lymphocyte plasma membrane permeabilities to monovalent cations.  相似文献   

16.
Calcium ionophore, A23187, is known to be a comitogen, but it activates a suicide process characterized by DNA fragmentation at linker regions in mouse immature thymocytes. It did not induce DNA fragmentation in T lymphocytes prepared from lymph node and spleen cells. Induction of DNA fragmentation by A23187 depends on protein phosphorylation and synthesis of mRNA and protein, because an inhibitor of protein kinase, 1-(5-isoquinolinesulfonyl)-2-methyl-piperazine dihydrochloride (H-7), actinomycin D, and cycloheximide, respectively, inhibits the DNA fragmentation and cell death. Studies adding the inhibitors at various times show that protein phosphorylation and mRNA synthesis occur within a few hours after incubation with A23187 followed by the protein synthesis responsible for inducing DNA fragmentation. Phorbol esters, 12-O-tetradecanoyl 13-acetate (TPA) and phorbol 12,13-dibutyrate (PBD), which are capable of activating protein kinase C, also induced similar DNA fragmentation in immature thymocytes, followed by cell death. PBD committed the suicide process after 6 h of incubation, because the DNA fragmentation above the control level was not induced when PDB was removed from the medium before 6 h of incubation. A23187 or a phorbol ester alone induced DNA fragmentation followed by cell death, whereas the addition of TPA at low concentration inhibited the DNA fragmentation induced by A23187 accompanied with an increase in DNA synthesis. The result suggests that TPA switched a suicide process induced by A23187 to an opposite process: stimulation of DNA synthesis. Physiologic factors and mechanisms which regulate cell proliferation and death in the thymus are not known at present, but the signals by protein kinases and calcium ions may regulate both cell proliferation and death, independently, synergistically or antagonistically.  相似文献   

17.
Our previous work showed that chelation of intracellular Zn2+ with N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN) induces apoptosis in rat thymocytes. The molecular mechanism involved in TPEN-triggered apoptosis remains unknown, except that it is a Ca2+-independent process. In the present study, we show that TPEN is unable to induce DNA fragmentation when added to isolated thymocyte nuclei, indicating that activation of a cytoplasmic component is essential for TPEN-induced apoptosis. Since cytosolic proteases related to interleukin-1beta-converting enzyme (ICE) are implicated as key activators of apoptosis in many different systems, we investigated the possible involvement of such proteases in TPEN-induced apoptosis. We found that treatment of thymocytes with TPEN caused an early degradation of nuclear poly(ADP-ribose) polymerase (PARP) and lamin prior to DNA cleavage. This could be inhibited by Z-Val-Ala-Asp-chloromethylketone (VADcmk), an inhibitor of ICE-like proteases, but not by an inhibitor of Ca2+-regulated serine protease. Jurkat T cells also underwent extensive DNA fragmentation when incubated with TPEN. A cytosolic fraction, prepared from TPEN-treated Jurkat cells, produced extensive DNA fragmentation when applied to isolated thymocyte nuclei, whereas the cytoplasmic extract from untreated cells was ineffective either alone or together with TPEN. The apoptosis-inducing activity in cytosolic fraction from TPEN-treated Jurkat cells was blocked by incubating cells in the presence of VADcmk or another inhibitor of ICE-like proteases, Ac - Asp - Glu - Val - Asp-aldehyde (DEVD-CHO), which has been found to competitively inhibit CPP32/apopain. An increase in enzyme activity that cleaves Ac-Asp-Glu-Val-Asp-7-amino-4-methylcoumarin (DEVD-AMC), a fluorogenic substrate of CPP32/apopain and Mch3alpha, was detected in TPEN-treated thymocytes and Jurkat cells. In addition, the proteolytic cleavage of CPP32 resulting in the formation of two active fragments (p17 and p12) was observed in cytosolic extracts from TPEN-treated Jurkat cells, but not in extracts which were prepared from cells treated with TPEN in the presence of VADcmk or DEVD-CHO. Our results suggest that activation of cytosolic ICE-like proteases is an essential step in TPEN-induced apoptosis, and that CPP32/apopain is critically involved in this process.  相似文献   

18.
Permeablization of human K562 leukemia cells was measured in the presence and absence of extracellular ionic calcium to examine the relationship of ionic calcium to increased membrane permeability and the inhibition of cell proliferation by this lymphokine. In the absence of extracellular calcium, the ability of leukoregulin to permeabilize the cell membrane is diminished but is fully restored by addition of 1 mM extracellular Ca++ as shown flow cytometrically by loss of intracellular fluorescein. Membrane permeability is also increased by calcium ionophore A23187 but permeablization is completely blocked in calcium-free medium despite the intramembrane presence of the calcium ionophore. Membrane permeablization by the lectin phytohemagglutinin, in contrast, is independent of extracellular calcium. A similar divergence in cell proliferation activity of the three modulators of calcium flux and membrane permeability occurs in the absence of extracellular calcium. Leukoregulin inhibition of cell proliferation is abolished, inhibition by calcium ionophore A23817 is greatly reduced, and inhibition by phytohemagglutinin is unchanged. Leukoregulin permeabilized K562 cells isolated by fluorescence activated cell sorting resume proliferation after 72 h. In contrast cells permeablized by calcium ionophore A23187 or phytohemagglutinin fail to resume proliferation by 7 days. The membrane permeablizing action of leukoregulin is, therefore, partially dependent upon extracellular calcium. It is also effected through a mechanism other than calcium ionophore transport or lectin type transmembrane signaling, and is accompanied by a reversible inhibition of cell proliferation.  相似文献   

19.
Phorbol ester–induced reorganization of the actin cytoskeleton was investigated in C6 rat glioma cells. Observations by fluorescence microscopy and photoelectron microscopy indicated that pretreatment with the transition metal chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) for 1–2 h at 50 μM reduced the sensitivity of the actin cytoskeleton to disruption by the subsequent addition of 200 nM phorbol myristate acetate (PMA). The protective effect of TPEN was eliminated by adding back Zn2+ prior to PMA addition, implicating chelation of metal ions as the mechanism of action of TPEN. C6 cells exposed to PMA experience potent activation of protein kinase C (PKC) and substantial redistribution of the kinase from a soluble to a particulate cellular fraction (translocation). TPEN pretreatment did not block PKC translocation in PMA-exposed cells. By two-dimensional gel analysis, TPEN also did not reduce, but rather slightly increased, the PMA-stimulated phosphorylation of the acidic 80 kDa endogenous PKC substrate, as well as two other proteins at 18 kDa and 50 kDa. In contrast, TPEN significantly suppressed phosphorylation of a 20 kDa protein, both in cells treated with TPEN only and in TPEN-pretreated PMA-exposed cells. The results indicate that the ability of TPEN to protect against PKC-mediated actin cytoskeletal disruption is not due to either a block of PKC translocation or to general inhibition of PKC activity. Rather, the action of TPEN is more selective and probably involves chelation of Zn2+ at a critical Zn2+ -dependent phosphorylation step downstream from the initial tumor promoter–-induced effects on PKC. © 1994 Wiley-Liss, Inc.  相似文献   

20.
The role of calcium in epidermal ornithine decarboxylase (ODC) induction by 12-O-tetradecanoylphorbol-13-acetate (TPA) was determined in adult mouse skin pieces incubated in serum-free minimal essential medium (MEM). Addition of TPA to skin pieces incubated in serum-free MEM, which contains 1.82 mM Ca2+ and 0.83 mM Mg2+, resulted in about a 200-fold increase in epidermal ODC activity at about 8 h after TPA treatment. TPA failed to induce epidermal ODC in skin pieces incubated in calcium-free medium. Similarly, chelation of extracellular calcium by ethyleneglycol bis(beta-aminoethyl ether) N,N'-tetraacetic acid (EGTA) prevented ODC induction by TPA, which could be resumed upon calcium restoration in the medium. Furthermore, calcium ionophore A23187, which facilitates efflux of Ca2+ across cellular membranes, induced ODC activity in incubated skin pieces. Epidermal ODC activity increased by TPA appears to be the result of an increase in both the amount of ODC protein and the level of hybridizable ODC messenger. Inhibition of the induction of ODC activity by EGTA was the result of the inhibition of the amount of active ODC protein and the level of ODC mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号