首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The aim of this work was to design a fast, cheap and easy to use analytical system for dioxins. Piezoelectric sensors coupled with the pentapeptides as biomimetic traps (the receptors), selective for the dioxins, were used for the realisation of this analytical system. A methodology to select specific receptors among all possible pentapeptides randomly generated was represented by the use of molecular modelling software. Three peptides called later on A, B and C (A:[N]Asn-Phe-Gln-Gly-Ile[C]; B:[N]Asn-Phe-Gln-Gly-Gln[C]; C:[N]Asn-Phe-Gln-Gly-Phe[C]), were selected and evaluated for their potential usage as artificial receptors in solid-gas analysis by using a quartz crystal microbalance (QCM) sensors array. The peptide sequences were functionalised by two terminal cysteine residues in order to achieve a covalent interaction with the QCM gold surface. A manganese-porphyrin complex and two other pentapeptides, a pentaglutamine (pentapeptide D) and a pentalysine (pentapeptide E), were used as negative control sensors. The QCM sensors (A, B and C) gave a good linearity against different sample concentrations of the 2,3,7,8-tetrachlorinated dibenzo-p-dioxin (TCDD) and a mixture of dioxins. In particular, the selectivity against 2,3,7,8-TCDD was nicely correlated to the estimated binding energy of the receptors calculated by computational modelling. The cross-reactivity of the system was quantified using commercial polychlorinated biphenyls (PCBs) mixtures (dioxin-like compounds).  相似文献   

2.
Artificial olfactory systems have been studied for the last two decades mainly from the point of view of the features of olfactory neuron receptor fields. Other fundamental olfaction properties have only been episodically considered in artificial systems. As a result, current artificial olfactory systems are mostly intended as instruments and are of poor benefit for biologists who may need tools to model and test olfactory models. Herewith, we show how a simple experimental approach can be used to account for several phenomena observed in olfaction. An artificial epithelium is formed as a disordered distributed layer of broadly selective color indicators dispersed in a transparent polymer layer. The whole epithelium is probed with colored light, imaged with a digital camera and the olfactory response upon exposure to an odor is the change of the multispectral image. The pixels are treated as olfactory receptor neurons, whose optical properties are used to build a convergence classifier into a number of mathematically defined artificial glomeruli. A non-homogenous exposure of the test structure to the odours gives rise to a time and spatial dependence of the response of the different glomeruli strikingly similar to patterns observed in the olfactory bulb. The model seems to mimic both the formation of glomeruli, the zonal nature of olfactory epithelium, and the spatio-temporal signal patterns at the glomeruli level. This platform is able to provide a readily available test vehicle for chemists developing optical indicators for chemical sensing purposes and for biologists to test models of olfactory system organization.  相似文献   

3.
In this paper, we introduce the analytical framework of the modeling dynamic characteristics of a soft artificial muscle actuator for aquatic propulsor applications. The artificial muscle used for this underwater application is an ionic polymer-metal composite (IPMC) which can generate bending motion in aquatic environments. The inputs of the model are the voltages applied to multiple IPMCs, and the output can be either the shape of the actuators or the thrust force generated from the interaction between dynamic actuator motions and surrounding water. In order to determine the relationship between the input voltages and the bending moments, the simplified RC model is used, and the mechanical beam theory is used for the bending motion of IPMC actuators. Also, the hydrodynamic forces exerted on an actuator as it moves relative to the surrounding medium or water are added to the equations of motion to study the effect of actuator bending on the thrust force generation. The proposed method can be used for modeling the general bending type artificial muscle actuator in a single or segmented form operating in the water. The segmented design has more flexibility in controlling the shape of the actuator when compared with the single form, especially in generating undulatory waves. Considering an inherent nature of large deformations in the IPMC actuator, a large deflection beam model has been developed and integrated with the electrical RC model and hydrodynamic forces to develop the state space model of the actuator system. The model was validated against existing experimental data.  相似文献   

4.
Imprinting is a straightforward, yet a reliable technique to develop dynamic artificial recognition materials—so called as synthetic antibodies. Surface imprinting strategies such as soft lithography allow biological stereotyping of polymers and sol–gel phases to prepare extremely selective receptor layers, which can be combined with suitable transducer systems to develop high performance biomimetic sensors. This article presents an overview of the remarkable technical advancements in the field of surface bioimprinting with particular emphasis on surface imprinted bioanalyte detection systems and their applications in rapid bioanalysis and biotechnology. Herein, we discuss a variety of surface imprinting strategies including soft lithography, template immobilization, grafting, emulsion polymerization, and others along with their biomimetic sensor applications, merits and demerits. The pioneering research works on surface patterned biosensors are described with selected examples of detecting biological agents ranging from small biomolecules and proteins to living cells and microorganisms.  相似文献   

5.
6.
Several polyamine derivatives (I-V) conjugated with or without an intercalative moiety were prepared as ribonuclease mimics. Although no DNA-cleaving activity was observed for all compounds tested, mimics I, III, and V bearing an intercalative moiety along with the primary amine and/or imidazole moieties exhibited potent RNA-cleaving activity at near physiological pH. The RNA-cleaving reactions of the compounds show characteristic bell-shaped pH dependency, and the optimal pH values for III and V were well correlated to the pKa values of their active sites, primary amine, and imidazole moieties.  相似文献   

7.
【目的】生物启发的细菌表面仿生矿化人造矿物壳被用于保护活细胞。【方法】将细菌限制在坚固而完整的矿物壳中,有限的物理空间和物质交换使其暂时进行休眠,降低长期保存期间的活力损失以及提高在各种极端环境中的生存能力,并且能够通过酸去除矿物壳而重新激活细菌。【结果】相较于未仿生矿化的细菌(EcN),矿化细菌(EcN@CaCO3)在32 d的储存实验中活力最高提升262倍;在pH 2.5的强酸环境中存活率提高837倍;在pH 12.0的强碱环境中存活率提高171倍;在80 ℃的高温条件下存活率提高59.1倍;甚至在抗生素溶液中,EcN@CaCO3中细菌的存活率是EcN的729.7倍。【结论】本研究利用仿生矿化提高了细菌的保存稳定性,使其能在酸刺激下去除涂层恢复活性,也能在极端环境下保留细菌的活力,为微生物在环境生态、食品制造和生物医药等领域的应用提供研究基础。  相似文献   

8.
This study describes the development of amperometric sensors based on poly(allylamine hydrochloride) (PAH) and lutetium bisphthalocyanine (LuPc(2)) films assembled using the Layer-by-Layer (LbL) technique. The films have been used as modified electrodes for catechol quantification. Electrochemical measurements have been employed to investigate the catalytic properties of the LuPc(2) immobilized in the LbL films. By chronoamperometry, the sensors present excellent sensitivity (20 nA μM(-1)) in a wide linear range (R(2)=0.994) up to 900 μM and limit of detection (s/n=3) of 37.5 × 10(-8)M for catechol. The sensors have good reproducibility and can be used at least for ten times. The work potential is +0.3 V vs. saturated calomel electrode (SCE). In voltammetry measurements, the calibration curve shows a good linearity (R(2)=0.992) in the range of catechol up to 500 μM with a sensitivity of 90 nA μM(-1) and LD of 8 μM.  相似文献   

9.
This paper reports the application of a dehydrogenase enzyme mimic as a biomimetic sensor. The model compound investigated was a beta-cyclodextrin (beta-CD) derivative with a nicotinamide group attached to the secondary face of a beta-CD (Fig. 1g). It was envisaged that the nicotinamide group would act as the electron transfer agent and that the cyclodextrin would provide a suitable hydrophobic cavity for the reaction to take place in. Ethanol, propranalol, dopamine and acetone were used as substrates in backgrounds of hydrophilic and hydrophobic anions. Electrochemical and fluorescence techniques were used to study the catalytic effects in solution. It was found that the size of the analyte and the hydrophobicity of the anion affected the catalytic activity of the dehydrogenase mimic. Catalytic effects were most enhanced with ethanol and dopamine in presence of larger and more strongly solvated anions, SO4(2-) and H2PO4- which are excluded from the cavity. The molecule was also immobilised in a sol-gel matrix and investigated as a sol-gel electrochemical biomimetic sensor. Concentration dependence with increasing aliquots of ethanol was observed. These results indicated that a re-usable biomimetic sensor is indeed feasible.  相似文献   

10.
Detection of food-borne bacteria present in the food products is critical to prevent the spread of infectious diseases. Intelligent quality sensors are being developed for detecting bacterial pathogens such as Salmonella in beef. One of our research thrusts was to develop novel sensing materials sensitive to specific indicator alcohols at low concentrations. Present work focuses on developing olfactory sensors mimicking insect odorant binding protein to detect alcohols in low concentrations at room temperature. A quartz crystal microbalance (QCM) based sensor in conjunction with synthetic peptide was developed to detect volatile organic compounds indicative to Salmonella contamination in packaged beef. The peptide sequence used as sensing materials was derived from the amino acids sequence of Drosophila odorant binding protein, LUSH. The sensors were used to detect alcohols: 3-methyl-1-butanol and 1-hexanol. The sensors were sensitive to alcohols with estimated lower detection limits of <5 ppm. Thus, the LUSH-derived QCM sensors exhibited potential to detect alcohols at low ppm concentrations.  相似文献   

11.
We have designed an approach for modeling olfactory pathways by which one can explore how the properties of individual receptors affect the information coding capacity of an entire system. The effect of receptor tuning breadth on system performance was explored explicitly. We presented model sensory arrays with sets of stimuli randomly and uniformly distributed in an "olfactory space". Arrays of uniformly sized model receptors responding to 25-35% of the stimuli gave the best performance as measured by the ability to capture the most information about the stimulus set. Arrays of variably sized model receptors that were both more broadly and more narrowly tuned than this optimum could, however, perform better than uniform arrays. This method and the results obtained using it suggest a framework for considering the growing body of evidence on the functional properties of individual olfactory receptor and relay neurons from a systems coding perspective.  相似文献   

12.
Micromachined sensor for lactate monitoring in saliva   总被引:1,自引:0,他引:1  
A miniaturised sensor for continuous lactate measurement in saliva was developed and tested. The sensor was built using silicon microfabrication technologies. The size of the chip is 5.5 mmx6.4 mmx0.7 mm and features a working, a counter and an Iridium reference electrode. The chip has a cavity whose floor is perforated by fine pores. The cavity contains the enzyme lactate oxidase (LOD), which is immobilised in an agarose gel. Prior to the amperometric detection of the reaction product hydrogen peroxide at the working electrode, the analyte lactate has to pass the pores to reach the cavity with the lactate oxidase by diffusion. To test the silicon sensor, capillary blood and saliva samples were obtained during standardised ergometer tests. Salivary lactate concentrations were determined with the sensor and compared to photometrically derived data from a lab-automate. In addition the saliva data were compared to standard capillary blood lactate concentrations measured with a pocket photometer. Lactate concentration versus load graphs were plotted and compared visually showing very similar progressions. The novel approach enables a location independent, permanent real-time measurement of the lactate concentration during exercise.  相似文献   

13.
The lack of sensors for some relevant state variables in fermentation processes can be coped by developing appropriate software sensors. In this work, NARX-ANN, NARMAX-ANN, NARX-SVM and NARMAX-SVM models are compared when acting as software sensors of biomass concentration for a solid substrate cultivation (SSC) process. Results show that NARMAX-SVM outperforms the other models with an SMAPE index under 9 for a 20 % amplitude noise. In addition, NARMAX models perform better than NARX models under the same noise conditions because of their better predictive capabilities as they include prediction errors as inputs. In the case of perturbation of initial conditions of the autoregressive variable, NARX models exhibited better convergence capabilities. This work also confirms that a difficult to measure variable, like biomass concentration, can be estimated on-line from easy to measure variables like CO2 and O2 using an adequate software sensor based on computational intelligence techniques.  相似文献   

14.
The main goals of biomimetic chemistry have been formulated on the basis of the concept of biochemical organization. Biomimetic chemistry is defined as a science which employs the principles of biochemical organization (i. e., the principles of structural organization, functioning and regulation of biological systems at the levels corresponding to biomacromolecules, supramolecular complexes and subcellular structures) for the construction of artificial systems with predetermined properties or for conferring desired properties on natural biochemical systems with the help of artificial elements. The relationships between biomimetics and biochemical modelling are discussed. As examples of biomimetic systems, some enzymes entrapped into hydrated reverse micelles of a surfactant in an organic solvent and conjugates of proteins with polyalkylene oxidases are considered.  相似文献   

15.
Composites represent a class of materials with properties that are obtained by combining the functions of different components. Combining soft and stiff components without losing toughness is typically very difficult with current synthetic tools. There are many natural materials for which this problem has been solved. Examples such as wood and seashells have inspired many scientists to seek tougher, stronger and lighter materials. This review describes how genetic engineering can help in building new composites with better properties. Specifically, we emphasize that functional molecules can be engineered by following the design principles of natural composite materials. This field is emerging but has already shown promising results and much progress in the next few years is expected.  相似文献   

16.
The biogenic origin of the first traces of life is often based on the morphological analysis of microfossils. However life-like forms can also be obtained via chemical synthesis from purely inorganic precursors. Many examples can be found in literature that are mainly based on aqueous solution chemistry. Osmotic growth of gelatinous precipitates is observed during the formation of “chemical gardens”. Point defects in surfactant mesophases lead to mesoporous silica with curved shapes. The oriented attachment of nanocrystals via hydrophilic polymers leads to mesocrystals that exhibit a large variety of unusual shapes.  相似文献   

17.
18.
19.
正Viruses cause numerous acute, chronic and life-threatening infectious diseases, and remain a major public health problem worldwide. The wide-spreading and highly pathogenic viruses, including hepatitis virus, human immune deficiency virus (HIV), Zika virus (ZIKV), influenza and Ebola, bring huge medical burden (Guo et al., 2019; Holmes et al., 2016).  相似文献   

20.
Biomimetic synthesis describes the field of organic chemistry that aims to emulate the natural, biosynthetic processes toward natural products. As well as providing insight into how molecules are formed in nature, the benefits of this approach to total synthesis are numerous and extend beyond the gains typical of traditional synthesis. For example, using biosynthetic proposals to design a synthetic route can highlight alternative methods to the desired target. The pursuit of biomimetic syntheses also promotes the development of new reactions to prove or disprove a biosynthetic proposal or to unravel mechanistic implications of a proposed biosynthesis and can lead to the identification of new natural products. Here we look at some recent compelling examples and examine how biomimetic synthesis has led to the discovery of new procedures and principles that would not have been found by other approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号