首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了研究籼粳亚种基因调控序列的总体特性,我们利用籼粳稻以及拟南芥基因组和全长mRNA序列获取了大量高可信度的调控序列,通过这些序列,分析了水稻基因调控序列顺式作用元件(信号)的数量、分布以及与GC含量的关系等.研究结果表明:一些信号在水稻基因调控序列中发生显著的数量变化,同时一些信号数量在水稻与拟南芥基因间存在明显差异, 这说明这两种单双子叶植物间信号的使用上存在偏好,同时水稻不同类型基因以及特有与非特有基因间在信号的使用上也存在差异.这些差异信号的分布直接导致了调控序列GC含量的波动.本研究没有发现水稻籼粳两个亚种间在调控序列方面(顺式调节因子和GC含量等)存在明显差异.  相似文献   

2.
3.
4.
5.
Oryza rufipogon Griff. is a wild progenitor of the Asian cultivated rice Oryza sativa. To better understand the genomic diversity of the wild rice, high-quality reference genomes of O. rufipogon populations are needed, which also facilitate utilization of the wild genetic resources in rice breeding. In this study, we generated a chromosome-level genome assembly of O. rufipogon using a combination of short-read sequencing, single-molecule sequencing, BioNano and Hi-C platforms. The genome sequence(399.8 Mb) was assembled into 46 scaffolds on the 12 chromosomes, with contig N50 and scaffold N50 of 13.2 Mb and 20.3 Mb,respectively. The genome contains 36,520 protein-coding genes, and 49.37% of the genome consists of repetitive elements. The genome has strong synteny with those of the O. sativa subspecies indica and japonica, but containing some large structural variations. Evolutionary analysis unveiled the polyphyletic origins of O. sativa, in which the japonica and indica genome formations involved different divergent O. rufipogon(including O. nivara) lineages, accompanied by introgression of genomic regions between japonica and indica. This high-quality reference genome provides insight on the genome evolution of the wild rice and the origins of the O. sativa subspecies, and valuable information for basic research and rice breeding.  相似文献   

6.
7.
8.
9.
Many studies have shown genotypic differences in Cadmium (Cd) accumulation among rice cultivars, and concentrations in shoots and grains are generally higher in indica rice cultivars than in japonica rice cultivars, but the mechanism remains unknown. The main objective of this study was to investigate differences in heavy metal accumulation between rice subspecies through the analysis of 46 indica cultivars and 30 japonica cultivars. At the seedling stage, the mean Cd concentrations in the shoots of indica subspecies were significantly higher than those in japonica subspecies (1.22-fold), but this pattern was not observed in the roots. At the filling stage, the mean Cd concentrations in the shoots and spikes of indica subspecies were 1.66- and 2.14-fold higher than the respective concentrations in japonica subspecies. At the harvest stage, the mean Cd concentrations in the shoots and brown rice of indica subspecies were 1.61- and 2.27-fold higher than the respective concentrations in japonica subspecies. These results indicate that root-to-shoot and shoot-to-grain translocation, rather than Cd absorption in the roots, may be the key processes that determine the differences in Cd accumulation among rice subspecies. Gene expression analysis revealed that overall, the expression levels of the Cd transporter gene OsNramp1 notably increased (22.46-fold), but the expression levels of OsHMA2, OsHMA3 and OsNRAMP5 were not significantly changed at the seedling stage in the 76 cultivars exposed to Cd; the expression levels of OsNramp1 were positively correlated with the Cd concentrations in spikes at the filling stage. In addition, a significant difference was observed in the expression levels of OsNramp1 between the indica and japonica subspecies, which may explain the higher Cd concentrations in roots but lower Cd concentrations in spikes and brown rice for the japonica subspecies. Together, these results demonstrate that OsNramp1 may be the most important gene among the four selected genes in the promotion of Cd uptake by roots and transfer of Cd into spikes and eventually into brown rice.  相似文献   

10.
挖掘与稻米蒸煮品质相关的数量性状基因座(quantitative trait locus, QTL),分析候选基因,并通过遗传育种手段改良稻米蒸煮品质相关性状,可有效提升稻米的口感。以籼稻华占(Huazhan, HZ)、粳稻热研2号(Nekken2)及由其构建的120个重组自交系(recombinant inbred lines, RILs)群体为实验材料,测定成熟期稻米的糊化温度(gelatinization temperature, GT)、胶稠度(gel consistency, GC)和直链淀粉含量(amylose content, AC)。结合高密度分子遗传图谱进行QTL定位,共检测到26个与稻米蒸煮品质相关的QTLs (糊化温度相关位点1个、胶稠度相关位点13个、直链淀粉含量相关位点12个),其中最高奇数的可能性(likelihood of odd, LOD)值达30.24。通过实时荧光定量PCR (quantitative real-time polymerase chain reaction, qRT-PCR)分析定位区间内候选基因的表达量,发现6个基因在双亲间的表达量差异显著,推测LOC_Os04g20270LOC_Os11g40100的高表达可能会极大地提高稻米的胶稠度,而LOC_Os01g04920LOC_Os02g17500的高表达以及LOC_Os03g02650LOC_Os05g25840的低表达有助于降低直链淀粉含量。这些结果为培育优质水稻新品种奠定了分子基础,并为揭示稻米蒸煮品质的分子调控机制提供了重要的遗传资源。  相似文献   

11.
mPing是水稻中第一个被鉴定出的有活性的MITE类转座子,为了探索mPing在水稻粳稻品种日本晴和籼稻品种93-11基因组中的分布差异,本研究首先运用Southern杂交的方法初步检测m Ping在两个亚种中拷贝数的差异,然后通过同源性探寻方法发现,m Ping在水稻亚种日本晴和93-11基因组中拷贝数分别为52和14,并且日本晴基因组中的m Ping均为m Ping-1,93-11中m Ping-1的拷贝数为3,m Ping-2的拷贝数为11。通过分析m Ping上下游5 kb侧翼序列发现m Ping在日本晴和93-11中分别与23和3个已知基因相关联。本研究为阐明以m Ping的分布多样性为主要原因的粳稻和籼稻之间的遗传差异提供初步理论基础。  相似文献   

12.
Repetitive DNA sequences are useful molecular markers for studying plant genome evolution and species diversity. The authors report the isolation and characterization of repetitive DNA sequences (pOs139) from Oryza sativa cuhivars "Zhaiyeqing". By Southern blot analysis, the authors discovered that pOs139 sequences were organized not only tandemly, but also highly specifc for the AA genome of Oryza genus. Sequence analysis revealed that the clone pOs139 contains a 355 bp repetitive unit. The genomic DNA of 29 Chinese common wild accessions, and 43 cultivated rice accessions, were analyzed by Southern blot with pOs139 as a probe. The results illustrated that there was significant difference in hybridization patterns between japonica and indica subspecies. Hybridization bands of indica subspecies were much more than those of japonica, and the Chinese common wild rice was similar to indica in hybridization patterns. The copy number estimated by dot blot hybridization analysis indicated that a considerable degree of variation existed among different accessions of O. sativa and the Chinese common wild rice. It is interesting to note that japonica subspecies contains relatively low copy numbers of pOs139-related repetitive DNA sequences, while the indica and Chinese common wild rice contain relatively high copy numbers.  相似文献   

13.
In this study we describe a 239-kb region on the long arm of rice chromosome 10 that contains a high density (71%) of locally duplicated genes, including 24 copies of a glutathione S-transferase gene. Intriguingly, embedded within this cluster is a large insertion (approximately 33 kb) of rice (Oryza sativa) chloroplast DNA that is derived from two separate regions of the chloroplast genome. We used DNA fiber-based fluorescence in situ hybridization (fiber-FISH) analyses of O. sativa spp. japonica nuclei to confirm that the insertion of organellar DNA was not a cloning artifact. The sequence of the chloroplast insertion is nearly identical (99.7% identity) to the corresponding regions in the published rice chloroplast genome sequence, suggesting that the transfer event occurred recently. PCR amplification and sequence analysis in two subspecies of rice, O. sativa spp. japonica and spp. indica, indicates that the transfer event predated the divergence of these two subspecies. The chloroplast insertion is flanked by a 2.1-kb perfect direct repeat that is unique to this location in the rice genome.  相似文献   

14.
亚洲栽培稻的祖先是普通野生稻,已成为世界公认的观点,然而亚洲栽培稻的2个亚种:粳稻和籼稻是一次起源还是二次起源仍存在很大争议,其起源地是国内还是国外依然是国际学者间争论的焦点。本文通过对184份亚洲栽培稻和203份普通野生稻3段基因序列cox3、cox1、orf 224和2段基因间序列ssv-39/178、rps2-trnfM的多样性研究,验证了以下观点:1)粳稻起源于中国,籼稻起源于中国和国外;2)亚洲栽培稻的起源为二次起源,即普通野生稻存在偏籼和偏粳2种类型,亚洲栽培稻的2个亚种籼稻和粳稻在进化过程中分别由偏籼型的普通野生稻和偏粳型的普通野生稻进化而来。  相似文献   

15.
Tie W  Zhou F  Wang L  Xie W  Chen H  Li X  Lin Y 《Plant molecular biology》2012,78(1-2):1-18
Agrobacterium tumefaciens-mediated genetic transformation has been routinely used in rice for more than a decade. However, the transformation efficiency of the indica rice variety is still unsatisfactory and much lower than that of japonica cultivars. Further improvement on the transformation efficiency lies in the genetic manipulation of the plant itself, which requires a better understanding of the underlying process accounting for the susceptibility of plant cells to Agrobacterium infection as well as the identification of plant genes involved in the transformation process. In this study, transient and stable transformation assays using different japonica and indica cultivars showed that the lower transformation efficiency in indica rice was mainly due to the low efficiency in T-DNA integration into the plant genome. Analyses of the global gene expression patterns across the transformation process in different varieties revealed major differences in the expression of genes responding to Agrobacterium within the first 6 h after infection and more differentially expressed genes were observed in the indica cultivar Zhenshan 97 (ZS), with a number of genes repressed early during infection. Microarray analysis revealed an important effect of plant defense response on Agrobacterium-mediated transformation. It has been shown that some genes which may be necessary for the transformation process were down-regulated in the indica cultivar ZS. This dataset provided a versatile resource for plant genomic research to understand the regulatory network of transformation process, and showed great promise for improving indica rice transformation using genetic manipulation of the rice genome.  相似文献   

16.
17.
Hybrids between the indica and japonica subspecies of rice(Oryza sativa) are usually sterile, which hinders utilization of heterosis in the inter-subspecific hybrid breeding. The complex locus Sa comprises two adjacently located genes, SaF and SaM, which interact to cause abortion of pollen grains carrying the japonica allele in japonica-indica hybrids. Here we showed that silencing of SaF or SaM by RNA interference restored male fertility in indica-japonica hybrids with heterozygous Sa. We further used clustered regularly interspaced short palindromic repeats(CRISPR)/Cas9-based genome editing to knockout the SaF and SaM alleles, respectively, of an indica rice line to create hybrid-compatible lines. The resultant artificial neutral alleles did not affect pollen viability and other agricultural traits, but did break down the reproductive barrier in the hybrids. We found that some rice lines have natural neutral allele Sa-n, which was compatible with the typical japonica or indica Sa alleles in hybrids. Our results demonstrate that SaF and SaM are required for hybrid male sterility, but are not essential for pollen development. This study provides effective approaches for the generation of hybrid-compatible lines by knocking out the Sa locus or using the natural Sa-n allele to overcome hybrid male sterility in rice breeding.  相似文献   

18.
Hybridization between indica and japonica rice combined with utilization of ideal plant type has led to the development of high-yielding japonica rice in northern China. However, the contribution at the genomic level of intersubspecific hybridization to the increased yield of northern Chinese japonica rice is uncertain. In this study, we analyzed the genomic pedigree of descendants of hybridization between indica and japonica rice grown in northeastern China between 1963 and 2008. Simple sequence repeat markers indicated that since 1990 the genetic diversity among northern japonica cultivars was enriched. Genome-wide analysis with subspecies-specific indel and intron length polymorphism markers showed indica-allele frequencies were significantly increased in cultivars bred after 1990, and were significantly positively correlated with spikelet number per panicle and significantly negatively correlated with panicle number per plant. Among eight genes controlling agronomic traits, GN1a and GS3 were partially fixed in the genome of northern japonica cultivars. In contrast, Waxy and qSH1 were eliminated, whereas DEP1 and qSW5 were retained. Indica germplasm is an important contributor to the increased yield of northern japonica rice. Breeding for high yield and grain quality in combination is a complicated process and difficult to achieve when relying on only one or several functional genes, thus the selection expertise of the breeder remains critical.  相似文献   

19.
The molecular evolution of cultivated rice Oryza sativa L. has long been a subject of rice evolutionists. To investigate genetic diversity within and differentiation between the indica and japonica subspecies, 22 accessions of indica and 35 of japonica rice were examined by five microsatellite loci from each chromosome totalling 60 loci. Mean gene diversity value in the indica rice (H=0.678) was 1.18 times larger than in the japonica rice (H=0.574). Taking the sampling effect into consideration, average allele number in the indica rice was 1.40 times higher than that in the japonica rice (14.6 vs 10.4 per variety). Chromosome-based comparisons revealed that nine chromosomes (1, 2, 3, 4, 5, 8, 9, 10 and 11) harboured higher levels of genetic diversity within the indica rice than the japonica rice. An overall estimate of F(ST) was 0.084-0.158, indicating that the differentiation is moderate and 8.4-15.8% of the total genetic variation resided between the indica and japonica groups. Our chromosome-based comparisons further suggested that the extent of the indica-japonica differentiation varied substantially, ranging from 7.62% in chromosome 3 to 28.72% in chromosome 1. Cluster analyses found that most varieties formed merely two clusters for the indica and japonica varieties, in which two japonica varieties and five indica varieties were included in the counterpart clusters, respectively. The 12 chromosome-based trees further showed that 57 rice varieties cannot be clearly clustered together into either the indica or japonica groups, but displayed relatively different clustering patterns. The results suggest that the process of indica japonica differentiation may have proceeded through an extensive contribution by the alleles of the majority in the rice genome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号