首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To quantify the effects of water table drawdown and soil warming on CH4 fluxes, we used a static chamber technique during the growing seasons (May–October) of 2011–2013 at hollow and hummock microforms at three sites of a continental bog near the town of Wandering River, Alberta, Canada: (1) Control, (2) Experimental drained, and (3) old Drained. To simulate climatic warming, we used open top chambers to passively warm half of the hollows and half of the hummocks at each of the water level treatment sites. Water table drawdown significantly reduced CH4 flux by 50% in 3 years and 76% in 13 years of drainage. The hollows showed greater reduction of efflux as compared to hummocks. A persistent functional relationship of CH4 flux with water level was found across all sites in all years. The relationship revealed that the contribution of change in vegetation type at hollows and hummocks to CH4 production and emission was relatively less important than that of the water level. Hummocks and hollows responded to warming differently. At the control, experimental and drained sites, warming increased flux at hollows by 16, 21 and 26%, and reduced flux at hummocks by 4, 37, and 56%, respectively. The combined effect of lowered water table and warming on CH4 emission was overall negative, although the interaction between the two contributing factors was not significant. Therefore, whereas climatic warming and subsequent lowering of water table are expected to reduce CH4 efflux from dry ombrotrophic bogs of Alberta, different microforms at these bogs may respond differently with accelerated emissions at warmed, wetter (hollows) and reduced emissions at warmed, drier (hummocks) microforms. Overall, CH4 efflux from Alberta’s dry continental bogs that are not underlain by permafrost might be affected only slightly by the direct effect of predicted climate warming, although initial water table position will be an important control on the overall response.  相似文献   

2.
Partial root drying (PRD) has been shown to stimulate stomatal-closure response and improve water-use efficiency and thus biomass production and grain yield under water deficiency. While most studies focus on above-ground responses to PRD, we examined how root responses contributed to effects of partial root drying. In particular, in two experiments with oilseed rape (Brassica napus L.) we investigated whether roots were able to forage for patchily distributed water, and how this affected plant growth compared with uniform watering and alternate watering (in which different parts of the roots receive water alternately). The first pot experiment was carried out in the greenhouse and the second outside under a rain-shelter in which also the watering amount was varied. The results indicate that B. napus roots were able to forage for fixed water patches by selective root placement. In the first experiment with small plants, root foraging was equally effective as enhanced water-use efficiency under alternate watering. Both treatments resulted in about 10% higher shoot biomass compared with uniform watering. Alternate watering generally outperformed uniform watering in the second experiment, but the success depended on the time of harvest and the water supply level. Measurements indicated that only the alternate watering regime effectively reduced stomatal conductance, but lead to a higher shoot biomass only under more severe (50%) rather than under milder water deficiency (70% of a well watered control). Water deficiency strongly reduced leaf initiation rates and leaf sizes in B. napus, but for a given level of water supply the supply pattern (uniform control, fixed patchy or alternate watering) hardly influenced these growth parameters. Although also in the second experiment, the plants selectively placed their roots in the wet parts of the pot, root foraging was not as effective as in the first experiment. Possible reasons for these discrepancies are discussed as well as their implications for the application of PRD effects for crop growth.  相似文献   

3.
Permafrost thaw resulting from climate warming may dramatically change the succession and carbon dynamics of northern ecosystems. To examine the joint effects of regional temperature and local species changes on peat accumulation following thaw, we studied peat accumulation across a regional gradient of mean annual temperature (MAT). We measured aboveground net primary production (AGNPP) and decomposition over 2 years for major functional groups and used these data to calculate a simple index of net annual aboveground peat accumulation. In addition, we collected cores from six adjacent frozen and thawed bog sites to document peat accumulation changes following thaw over the past 200 years. Aboveground biomass and decomposition were more strongly controlled by local succession than regional climate. AGNPP for some species differed between collapse scars and associated permafrost plateaus and was influenced by regional MAT. A few species, such as Picea mariana trees on frozen bogs and Sphagnum mosses in thawed bogs, sequestered a disproportionate amount of peat; in addition, changes in their abundance following thaw changed peat accumulation. 210Pb-dated cores indicated that peat accumulation doubles following thaw and that the accumulation rate is affected by historical changes in species during succession. Peat accumulation in boreal peatlands following thaw was controlled by a complex mix of local vegetation changes, regional climate, and history. These results suggest that northern ecosystems may show responses more complex than large releases of carbon during transient warming. Received 8 August 2000; accepted 12 January 2001.  相似文献   

4.
Ecosystem respiration (ER) is an important but poorly understood part of the carbon (C) budget of peatlands and is controlled primarily by the thermal and hydrologic regimes. To establish the relative importance of these two controls for a large ombrotrophic bog near Ottawa, Canada, we analyzed ER from measurements of nighttime net ecosystem exchange of carbon dioxide (CO2) determined by eddy covariance technique. Measurements were made from May to October over five years, 1998 to 2002. Ecosystem respiration ranged from less than 1 μmol CO2 m−2 s−1 in spring (May) and fall (late October) to 2–4 μmol CO2 m−2 s−1 during mid-summer (July-August). As anticipated, there was a strong relationship between ER and peat temperatures (r2 = 0.62). Q10 between 5° to 15°C varied from 2.2 to 4.2 depending upon the choice of depth where temperature was measured and location within a hummock or hollow. There was only a weak relationship between ER and water-table depth (r2 = 0.11). A laboratory incubation of peat cores at different moisture contents showed that CO2 production was reduced by drying in the surface samples, but there was little decrease in production due to drying from below a depth of 30 cm. We postulate that the weak correlation between ER and water table position in this peatland is primarily a function of the bog being relatively dry, with water table varying between 30 and 75 cm below the hummock tops. The dryness gives rise to a complex ER response to water table involving i) compensations between production of CO2 in the upper and lower peat profile as the water table falls and ii) the importance of autotrophic respiration, which is relatively independent of water-table position.  相似文献   

5.
The abstraction of groundwater is a global phenomenon that directly threatens groundwater ecosystems. Despite the global significance of this issue, the impact of groundwater abstraction and the lowering of groundwater tables on biota is poorly known. The aim of this study is to determine the impacts of groundwater drawdown in unconfined aquifers on the distribution of fauna close to the water table, and the tolerance of groundwater fauna to sediment drying once water levels have declined. A series of column experiments were conducted to investigate the depth distribution of different stygofauna (Syncarida and Copepoda) under saturated conditions and after fast and slow water table declines. Further, the survival of stygofauna under conditions of reduced sediment water content was tested. The distribution and response of stygofauna to water drawdown was taxon specific, but with the common response of some fauna being stranded by water level decline. So too, the survival of stygofauna under different levels of sediment saturation was variable. Syncarida were better able to tolerate drying conditions than the Copepoda, but mortality of all groups increased with decreasing sediment water content. The results of this work provide new understanding of the response of fauna to water table drawdown. Such improved understanding is necessary for sustainable use of groundwater, and allows for targeted strategies to better manage groundwater abstraction and maintain groundwater biodiversity.  相似文献   

6.
Soil nutrients are commonly heterogeneously distributed and earthworms are one of the most common soil organisms. While effects of both soil nutrient heterogeneity and earthworms have been well studied, their interactive effect on plant community productivity has rarely been tested. In a greenhouse experiment, we constructed experimental plant communities by sowing seed mixtures of four grasses, two legumes and two forbs in either a heterogeneous soil consisting of low and high nutrient soil patches or a homogeneous soil where the low and high nutrient soil patches were evenly mixed. The earthworm Eisenia fetida was either added to these soils or not. Aboveground biomass of the whole communities, grasses and legumes did not differ between the homogeneous and heterogeneous soils or between the soils with and without earthworms. However, soil nutrient heterogeneity reduced aboveground biomass of forbs, and such an effect did not interact with earthworms. In response to soil heterogeneity and earthworms, biomass ratio of the three functional groups showed similar patterns as that of their biomass. At the patch level, aboveground biomass of the whole community, grasses and legumes were greater in the high than in the low nutrient soil patches within the heterogeneous soil. A similar pattern was found for the forbs, but this was only true in the absence of earthworms. Our results suggest that soil nutrient heterogeneity and earthworms may not influence aboveground biomass of plant communities, despite the fact that they may modify the growth of certain plant functional groups within the community.  相似文献   

7.
Ecosystems - Climate change and the related increases in evapotranspiration threaten to make northern peatlands drier. The carbon sink function in peatlands is based on the delicate balance between...  相似文献   

8.
Prescribed burning in prairies influences soil nitrogen (N), which is the primary nutrient that limits plant growth and is an important factor in plant competition and diversity. The primary objective of the experiment described here was to better understand the changes in net N mineralization that occur after a fire. We compared soil properties after a fire with those following vegetation removal by mowing and raking in a restored prairie in southeastern Minnesota. The treatments occurred in the spring of two consecutive years. Calcium oxide, burnt lime, was added to some of the raked plots in the first year to mimic the deposition of basic cations during a fire, which cause an increase in soil pH. Aboveground biomass removal by raking or by burning had similar effects on soil moisture, temperature, and inorganic N. The removal treatments caused warmer and drier soil than in the untreated plots. The change in net N mineralization after raking was unaffected by the addition of lime. In the first year, with low rainfall, removal caused net N mineralization rates similar to those in the untreated controls, but during the second year, with heavy rainfall, net N mineralization rates were significantly higher after removal. We predict that if water is sufficient, increased soil temperature after biomass removal will increase soil microbial activity and net N mineralization, but during drought, water will limit microbial activity. Furthermore, depending on soil N concentrations, which are very high at this study site, altered soil microbial activity will have variable effects on net N mineralization.  相似文献   

9.
Peatlands and forested wetlands can cover a large fraction of the land area and contain a majority of the regional carbon pool in wet northern temperate landscapes. We used the LANDIS-II forest landscape succession model coupled with a model of plant community and soil carbon responses to water table changes to explore the impacts of declining water table on regional carbon pools in a peatland- and wetland-rich landscape in northern Wisconsin, USA. Simulations indicated that both biomass accumulation and soil decomposition would increase as a consequence of drying. In peatlands, simulated water table declines of 100 cm led to large increases in biomass as well as short-term increases in soil carbon, whereas declines of 40 cm led to continuous declines in soil carbon and smaller increases in biomass, with the net result being a loss of total carbon. In non-peat wetlands, biomass accumulation outweighed soil carbon loss for both scenarios. Long-term carbon cycle responses were not significantly affected by the time scale of water table decline. In general, peatland carbon storage over the first 50–150 years following drainage was neutral or increasing due to increased plant growth, whereas carbon storage over longer time scales decreased due to soil carbon loss. Although the simplicity of the model limits quantitative interpretation, the results show that plant community responses are essential to understanding the full impact of hydrological change on carbon storage in peatland-rich landscapes, and that measurements over long time scales are necessary to adequately constrain landscape carbon pool responses to declining water table.  相似文献   

10.
Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha−1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y−1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y−1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y−1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests.  相似文献   

11.
Ecosystems - We quantified the role of spatially varying vegetation composition in seasonal and interannual changes in a boreal bog’s CO2 uptake. We divided the spatially heterogeneous site...  相似文献   

12.
Wildfire and clearcutting are two main disturbances in North American forests, but whether root systems may respond differently to such disturbances is unknown. Here, we studied how the dynamics of fine roots (<2 mm in diameter) varied with stand origins in a boreal forest in northern Ontario, Canada. Fine root biomass increased with stand age, but did not differ between stands originating from fire and clearcutting. By contrast, fine root production, mortality and turnover rates were lower in 3- and 11-year-old clearcut-origin than fire-origin stands, but did not differ in 29-year-old stands of different stand origins. The lower rates of production, mortality, and turnover rates in 3- and 11-year-old clearcut-origin than fire-origin stands are attributable to a lower density of shrubs and herbs and larger nutrient pools after clearcutting than fire. The similarities among 29-year-old stands indicate that the effects of stand origin on fine root processes tend to converge at this time scale. Our results illustrate that time scale is critical for assessing ecosystem responses to disturbances.  相似文献   

13.
Prescribed spring burning often contributes to a predominance of C4 grasses and low forb abundance and is impractical at many sites, especially near development. We tested raking after mowing as an alternative to prescribed burning in a reconstructed Minnesota prairie. We also tested mowing without raking as a possible means of maintaining prairie communities. Frequency, flowering stem abundance, and cover were measured for all plant species and native functional groups (C4 grasses, C3 graminoids, forbs, legumes, and annual or biennial forbs). Mowing alone did not differ from the control in its effect on any functional groups of plants. Round‐headed bush clover (Lespedeza capitata), a legume, and Black‐eyed Susan (Rudbeckia hirta), a biennial, increased in frequency with treatments that removed biomass (i.e., fire or raking), but they did not have significantly more flowering stems. Thus, new plants established well from seed, whereas the vitality of mature plants did not change. Raking had similar effects to burning on most functional groups, although flowering stems of C4 grasses were significantly more abundant after fire than after raking. Burning reduced some C3 forbs and grasses and favored the dominance of C4 grasses. Therefore, raking after mowing in the spring provides an alternative to prescribed burning that has many of the same positive aspects as fire but does not promote aggressive C4 grasses to the same extent.  相似文献   

14.
The environmental and biotic factors affecting spatial variation in canopy three-dimensional (3-D) structure and aboveground tree biomass (AGB) are poorly understood in tropical rain forests. We combined field measurements and airborne light detection and ranging (lidar) to quantify 3-D structure and AGB across a 5,016 ha rain forest reserve on the northeastern flank of Mauna Kea volcano, Hawaii Island. We compared AGB among native stands dominated by Metrosideros polymorpha found along a 600–1800 m elevation/climate gradient, and on three substrate-age classes of 5, 20, and 65 kyr. We also analyzed how alien tree invasion, canopy species dominance and topographic relief influence AGB levels. Canopy vertical profiles derived from lidar measurements were strong predictors (r 2 = 0.78) of AGB across sites and species. Mean AGB ranged from 48 to 363 Mg ha−1 in native forest stands. Increasing elevation corresponded to a 53–84% decrease in AGB levels, depending upon substrate age. Holding climate constant, changes in substrate age from 5 to 65 kyr corresponded to a 23–53% decline in biomass. Invasion by Psidium cattleianum and Ficus rubiginosa trees resulted in a 19–38% decrease in AGB, with these carbon losses mediated by substrate age. In contrast, the spread of former plantation tree species Fraxinus uhdei corresponded to a 7- to 10-fold increase in biomass. The effects of topographic relief at both local and regional scales were evident in the AGB maps, with poorly drained terrain harboring 76% lower biomass than forests on well-drained relief. Our results quantify the absolute and relative importance of environmental factors controlling spatial variation in tree biomass across a rain forest landscape, and highlight the rapid changes in carbon storage incurred following biological invasion. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Author Contributions  GPA and RFH conceived of or designed the study. GPA, RFH, TAV, DEK, and TKB performed research and analyzed data. GPA, RFH, DEK, and TKB contributed new methods or models. GPA wrote the article.  相似文献   

15.
A large portion of the global carbon pool is stored in peatlands, which are sensitive to a changing environment conditions. The hydrological loss of dissolved organic carbon (DOC) is believed to play a key role in determining the carbon balance in peatlands. Zoige peatland, the largest peat store in China, is experiencing climatic warming and drying as well as experiencing severe artificial drainage. Using a fully crossed factorial design, we experimentally manipulated temperature and controlled the water tables in large mesocosms containing intact peat monoliths. Specifically, we determined the impact of warming and water table position on the hydrological loss of DOC, the exported amounts, concentrations and qualities of DOC, and the discharge volume in Zoige peatland. Our results revealed that of the water table position had a greater impact on DOC export than the warming treatment, which showed no interactive effects with the water table treatment. Both DOC concentration and discharge volume were significantly increased when water table drawdown, while only the DOC concentration was significantly promoted by warming treatment. Annual DOC export was increased by 69% and 102% when the water table, controlled at 0 cm, was experimentally lowered by −10 cm and −20 cm. Increases in colored and aromatic constituents of DOC (measured by Abs254 nm, SUVA254 nm, Abs400 nm, and SUVA400 nm) were observed under the lower water tables and at the higher peat temperature. Our results provide an indication of the potential impacts of climatic change and anthropogenic drainage on the carbon cycle and/or water storage in a peatland and simultaneously imply the likelihood of potential damage to downstream ecosystems. Furthermore, our results highlight the need for local protection and sustainable development, as well as suggest that more research is required to better understand the impacts of climatic change and artificial disturbances on peatland degradation.  相似文献   

16.
Fine root length production, biomass production, and turnover in forest floor and mineral soil (0–30 cm) layers were studied in relation to irrigated (I) and irrigated-fertilized (IL) treatments in a Norway spruce stand in northern Sweden over a 2-year period. Fine roots (<1 mm) of both spruce and understory vegetation were studied. Minirhizotrons were used to estimate fine root length production and turnover, and soil cores were used to estimate standing biomass. Turnover was estimated as both the inverse of root longevity (RTL) and the ratio of annual root length production to observed root length (RTR). RTR values of spruce roots in the forest floor in I and IL plots were 0.6 and 0.5 y−1, respectively, whereas the corresponding values for RTL were 0.8 and 0.9 y−1. In mineral soil, corresponding values for I, IL, and control (C) plots were 1.2, 1.2, and 0.9 y−1 (RTR) and 0.9, 1.1, and 1 y−1 (RTL). RTR and RTL values of understory vegetation roots were 1 and 1.1 y−1, respectively. Spruce root length production in both the forest floor and the mineral soil in I plots was higher than in IL plots. The IL-treated plots gave the highest estimates of spruce fine root biomass production in the forest floor, but, for the mineral soil, the estimates obtained for the I plots were the highest. The understory vegetation fine root production in the I and IL plots was similar for both the forest floor and the mineral soil and higher (for both layers) than in C plots. Nitrogen (N) turnover in the forest floor and mineral soil layers (summed) via spruce roots in IL, I, and C plots amounted to 2.4, 2.1, and 1.3 g N m−2 y−1, and the corresponding values for field vegetation roots were 0.6, 0.5, and 0.3 g N m−2 y−1. It was concluded that fertilization increases standing root biomass, root production, and N turnover of spruce roots in both the forest floor and mineral soil. Data on understory vegetation roots are required for estimating carbon budgets in model studies.  相似文献   

17.
Shrub willow biomass crops (SWBC) have been developed as a biomass feedstock for bioenergy, biofuels, and bioproducts in the northeastern and midwestern USA as well as in Europe. A previous life cycle analysis in North America showed that the SWBC production system is a low-carbon fuel source. However, this analysis is potentially inaccurate due to the limited belowground biomass data and the lack of aboveground stool biomass data. This study provides new information on the above- and belowground biomass, the carbon–nitrogen (C/N) ratio, and the root/shoot (R/S) ratio of willow biomass crops (Salix × dasyclados [SV1]), which have been in production from 5 to 19 years. The measured amounts of biomass were: 2.6 to 4.1 odt ha?1 for foliage, 4.9 to 10.9 odt ha?1 for aboveground stool (AGS), 2.9 to 5.7 odt ha?1 for coarse roots (CR), 3.1 to 10.2 odt ha?1 for belowground stool (BGS), and 5.6 to 9.9 odt ha?1 for standing fine root (FR). The stem biomass production ranged from 7.0 to 18.0 odt ha?1?year?1 for the 5- and 19-year-old willows, respectively. C/N ratios ranged from 23 for foliage to 209 for belowground stool. An average R/S ratio of 2.0, calculated as total belowground biomass (BGS, CR, and FR) plus AGS divided by annual stem biomass, can be applied to estimate the total belowground biomass production of a mature SWBC. Based on AGS, BGS, and CR and standing FR biomass data, SWBC showed a net GHG potential of ?42.9 Mg CO2 eq?ha?1 at the end of seven 3-year rotations.  相似文献   

18.
Future climate scenarios predict simultaneous changes in environmental conditions, but the impacts of multiple climate change drivers on ecosystem structure and function remain unclear. We used a novel experimental approach to examine the responses of an upland grassland ecosystem to the 2080 climate scenario predicted for the study area (3.5°C temperature increase, 20% reduction in summer precipitation, atmospheric CO2 levels of 600 ppm) over three growing seasons. We also assessed whether patterns of grassland response to a combination of climate change treatments could be forecast by ecosystem responses to single climate change drivers. Effects of climate change on aboveground production showed considerable seasonal and interannual variation; April biomass increased in response to both warming and the simultaneous application of warming, summer drought, and CO2 enrichment, whereas October biomass responses were either non-significant or negative depending on the year. Negative impacts of summer drought on production were only observed in combination with a below-average rainfall regime, and showed lagged effects on spring biomass. Elevated CO2 had no significant effect on aboveground biomass during this study. Both warming and the 2080 climate change scenario were associated with a significant advance in flowering time for the dominant grass species studied. However, flowering phenology showed no significant response to either summer drought or elevated CO2. Species diversity and equitability showed no response to climate change treatments throughout this study. Overall, our data suggest that single-factor warming experiments may provide valuable information for projections of future ecosystem changes in cool temperate grasslands.  相似文献   

19.
The subtropical forest biome occupies about 25% of China, with species diversity only next to tropical forests. Despite the recognized importance of subtropical forest in regional carbon storage and cycling, uncertainties remain regarding the carbon storage of subtropical forests, and few studies have quantified within-site variation of biomass, making it difficult to evaluate the role of these forests in the global and regional carbon cycles. Using data for a 24-ha census plot in east China, we quantify aboveground biomass, characterize its spatial variation among different habitats, and analyse species relative contribution to the total aboveground biomass of different habitats. The average aboveground biomass was 223.0 Mg ha−1 (bootstrapped 95% confidence intervals [217.6, 228.5]) and varied substantially among four topographically defined habitats, from 180.6 Mg ha−1 (bootstrapped 95% CI [167.1, 195.0]) in the upper ridge to 245.9 Mg ha−1 (bootstrapped 95% CI [238.3, 253.8]) in the lower ridge, with upper and lower valley intermediate. In consistent with our expectation, individual species contributed differently to the total aboveground biomass of different habitats, reflecting significant species habitat associations. Different species show differently in habitat preference in terms of biomass contribution. These patterns may be the consequences of ecological strategies difference among different species. Results from this study enhance our ability to evaluate the role of subtropical forests in the regional carbon cycle and provide valuable information to guide the protection and management of subtropical broad-leaved forest for carbon sequestration and carbon storage.  相似文献   

20.
The isotope decay method of estimating belowground net primary production (BNPP) has the potential to overcome the assumptions and biases associated with traditional methods. Isotope loss through in situ decomposition after pulse-labeling is considered the inverse of production, and turnover times are estimated by regression to time of zero remaining isotope. Method development and estimates of production were previously published using 4 years of data, which showed a clear linear loss rate over time. A slow, distinctly different phase in isotope loss developed 5–10 years postlabeling. We assess reasons for the two-phase loss functions and the implications for estimates of BNPP and compare the isotope decay method with standard coring methods over a 13-year period. Reasons for the two-phase dynamics of carbon 14 (14C) loss could include various biological and/or methodological factors. Results suggest that 14C in soil embedded in roots as they grow, a small proportion of roots that live for a much longer time than the majority of roots, and method of separating roots from soil organic matter may influence estimates of BNPP by isotope methods. Remobilization of label in structural tissue or reuptake of label from the soil did not appear to be responsible for the slow, second phase of loss dynamics. Isotope decay produced more reliable estimates than standard coring methods. Estimates using harvest sum of increments were zero in 6 of 13 years. Thirteen years of root biomass data showed no predictable trend over winter or consistent seasonal pattern, although longer-term cycles were evident. Aboveground:belowground ratios were generally smaller during dry periods, but root biomass was not as responsive as aboveground biomass to annual precipitation. Received 31 May 2000; accepted 3 November 2000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号