首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
This study examined the role of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and Ras-GTPase in the development of abnormal reactivity to vasoactive agents in the renal artery of diabetic rats. The vasoconstrictor response induced by norepinephrine (NE), endothelin-1 (ET-1) or angiotensin II (Ang II) was significantly increased whereas vasodilator response to carbachol, histamine or sodium nitroprusside (SNP) was not altered in the renal artery segments of the streptozotocin (STZ)-diabetic rats. Chronic intraperitoneal administration of KN-93 (5 mg/kg/ alt diem), an inhibitor of CaMKII or FPTIII (1.5 mg/kg/ alt diem), an inhibitor of Ras-GTPase, produced significant normalization of the altered agonist-induced vasoconstrictor responses without affecting blood glucose levels. All the inhibitors were administered for four weeks starting from day one of diabetes induction. Inhibition of Ras-GTPase or CaMKII did not affect the agonist-induced vasoconstrictor and vasodilator responses in the non-diabetic control animals. These data suggest that inhibition of signal transduction involving CaMKII and Ras-GTPase can prevent development of diabetes-induced abnormal vascular reactivity in the renal artery.  相似文献   

2.
The present study investigated the action of des-aspartate-angiotensin I (DAA-I) on the pressor action of angiotensin II in the renal and mesenteric vasculature of WKY, SHR and streptozotocin (STZ)-induced diabetic rats. Angiotensin II-induced a dose-dependent pressor response in the renal vasculature. Compared to the WKY, the pressor response was enhanced in the SHR and reduced in the STZ-induced diabetic rat. DAA-I attenuated the angiotensin II pressor action in renal vasculature of WKY and SHR. The attenuation was observed for DAA-I concentration as low as 10(-18) M and was more prominent in SHR. However, the ability of DAA-I to reduce angiotensin II response was lost in the STZ-induced diabetic kidney. Instead, enhancement of angiotensin II pressor response was seen at the lower doses of the octapeptide. The effect of DAA-I was not inhibited by PD123319, an AT2 receptor antagonist, and indomethacin, a cyclo-oxygenase inhibitor in both WKY and SHR, indicating that its action was not mediated by angiotensin AT2 receptor and prostaglandins. The pressor responses to angiotensin II in mesenteric vascular bed were also dose-dependent but smaller in magnitude compared to the renal vasculature. The responses were significantly smaller in SHR but no significant difference was observed between STZ-induced diabetic and WKY rat. Similarly, PD123319 and indomethacin had no effect on the action of DAA-I. The findings reiterate a regulatory role for DAA-I in vascular bed of the kidney and mesentery. By being active at circulating level, DAA-I subserves a physiological role. This function appears to be present in animals with diseased state of hypertension and diabetes. It is likely that DAA-I functions are modified to accommodate the ongoing vascular remodeling.  相似文献   

3.
We reported that one of the isoquinolinesulfonamide derivatives, KN-62, is a potent and specific inhibitor of Ca2+/calmodulin-dependent protein kinase II (CaMKII) (Tokumitsu, H., Chijiwa, T., Hagiwara, M., Mizutani, A., Terasawa, M. and Hidaka, H. (1990) J. Biol. Chem. 265, 4315-4320). We have now investigated the inhibitory property of a newly synthesized methoxybenzenesulfonamide, KN-93, on CaMKII activity in situ and in vitro. KN-93 elicited potent inhibitory effects on CaMKII phosphorylating activity with an inhibition constant of 0.37 microM but this compound had no significant effects on the catalytic activity of cAMP-dependent protein kinase, Ca2+/phospholipid dependent protein kinase, myosin light chain kinase and Ca(2+)-phosphodiesterase. KN-93 also inhibited the autophosphorylation of both the alpha- and beta-subunits of CaMKII. Kinetic analysis indicated that KN-93 inhibits CaMKII, in a competitive fashion against calmodulin. To evaluate the regulatory role of CaMKII on catecholamine metabolism, we examined the effect of KN-93 on dopamine (DA) levels in PC12h cells. The DA levels decreased in the presence of KN-93. Further, the tyrosine hydroxylase (TH) phosphorylation induced by KCl or acetylcholine was significantly suppressed by KN-93 in PC12h cells while events induced by forskolin or 8-Br-cAMP were not affected. These results suggest that KN-93 inhibits DA formation by modulating the reaction rate of TH to reduce the Ca(2+)-mediated phosphorylation levels of the TH molecule.  相似文献   

4.
Induction of hemeoxygenase-1 (HO-1) lowers blood pressure and reduces organ damage in hypertensive animal models; however, a potential protective role for HO-1 induction against diabetic-induced glomerular injury remains unclear. We hypothesize that HO-1 induction will protect against diabetes-induced glomerular injury by maintaining glomerular integrity and inhibiting renal apoptosis, inflammation, and oxidative stress. Diabetes was induced with streptozotocin in spontaneously hypertensive rats (SHR) as a model where the coexistence of hypertension and diabetes aggravates the progression of diabetic renal injury. Control and diabetic SHR were randomized to receive vehicle or the HO-1 inducer cobalt protoporphyrin (CoPP). Glomerular albumin permeability was significantly greater in diabetic SHR compared with control, consistent with an increase in apoptosis and decreased glomerular nephrin and α(3)β(1)-integrin protein expression in diabetic SHR. CoPP significantly reduced albumin permeability and apoptosis and restored nephrin and α(3)β(1)-integrin protein expression levels in diabetic SHR. Glomerular injury in diabetic SHR was also associated with increases in NF-κB-induced inflammation and oxidative stress relative to vehicle-treated SHR, and CoPP significantly blunted diabetes-induced increases in glomerular inflammation and oxidative stress in diabetic SHR. These effects were specific to exogenous stimulation of HO-1, since incubation with the HO inhibitor stannous mesoporphyrin alone did not alter glomerular inflammatory markers or oxidative stress yet was able to prevent CoPP-mediated decreases in these parameters. These data suggest that induction of HO-1 reduces diabetic induced-glomerular injury and apoptosis and these effects are associated with decreased NF-κB-induced inflammation and oxidative stress.  相似文献   

5.
Although Ca(2+)/calmodulin-dependent protein kinase II delta (CaMKIIδ) has been implicated in development of different phenotypes of myocardial ischaemia-reperfusion injury, its involvement in arrhythmogenesis and cardiac stunning is not sufficiently elucidated. Moreover, the mechanisms by which CaMKIIδ mediates disturbances in excitation-contraction coupling, are not exactly known. To investigate this, KN-93 (0.5 μmol/L), a CaMKII inhibitor, was administered before induction of global ischaemia and reperfusion in isolated Langendorff-perfused rat hearts. Expression of CaMKIIδ and the sarcollemal Ca(2+)-cycling proteins, known to be activated during reperfusion, was analyzed using immunoblotting. KN-93 reduced reperfusion-induced ectopic activity and the incidence of ventricular fibrillation. Likewise, the severity of arrhythmias was lower in KN-treated hearts. During the pre-ischaemia phase, neither inotropic nor chronotropic effects were elicited by KN-93, whereas post-ischaemic contractile recovery was significantly improved. Ischaemia-reperfusion increased the expression of CaMKIIδ and sodium-calcium exchanger (NCX1) proteins without any influence on the protein content of alpha 1c, a pore-forming subunit of L-type calcium channels (LTCCs). On the other hand, inhibition of CaMKII normalized changes in the expression of CaMKIIδ and NCX1. Taken together, CaMKIIδ seems to regulate its own turnover and to be an important component of cascade integrating NCX1, rather than LTCCs that promote ischaemia-reperfusion-induced contractile dysfunction and arrhythmias.  相似文献   

6.
Streptozotocin (STZ)-induced diabetes (8 weeks) produced a marked depressor effect in the spontaneously hypertensive rat (SHR), confirming earlier studies, but had no effect on arterial pressure of normotensive controls (WKY). We investigated the phenomenon further by examining the effects of diabetes on the activities of aortic prolyl hydroxylase (PH) and lysyl oxidase (LO), marker enzymes for collagen biosynthesis, and on the reactivity of isolated mesenteric arteries to vasoactive agents. PH and LO activities of nondiabetic SHR were greater than those of the WKY controls. Diabetes markedly reduced PH and LO activities of SHR aortae, but had no significant effect on PH and LO activities of the WKY strain. The effects of diabetes on vascular collagen biosynthetic enzymes of SHR were not associated with reductions in mesenteric arterial responsiveness or sensitivity to norepinephrine, methoxamine, serotonin or KC1. These results suggest that the depressor effect of diabetes in SHR is associated with a reduction in vascular collagen biosynthesis but not a reduction in vascular reactivity.  相似文献   

7.
Ca(+)-calmodulin (Ca(2+)-CaM)-dependent protein kinase II (Ca(2+)/CaMKII) is an important regulator of cardiac ion channels, and its inhibition may be an approach for treatment of ventricular arrhythmias. Using the two-electrode voltage-clamp technique, we investigated the role of W-7, an inhibitor of Ca(2+)-occupied CaM, and KN-93, an inhibitor of Ca(2+)/CaMKII, on the K(v)4.3 channel in Xenopus laevis oocytes. W-7 caused a voltage- and concentration-dependent decrease in peak current, with IC(50) of 92.4 muM. The block was voltage dependent, with an effective electrical distance of 0.18 +/- 0.05, and use dependence was observed, suggesting that a component of W-7 inhibition of K(v)4.3 current was due to open-channel block. W-7 made recovery from open-state inactivation a biexponential process, also suggesting open-channel block. We compared the effects of W-7 with those of KN-93 after washout of 500 muM BAPTA-AM. KN-93 reduced peak current without evidence of voltage or use dependence. Both W-7 and KN-93 accelerated all components of inactivation. We used wild-type and mutated K(v)4.3 channels with mutant CaMKII consensus phosphorylation sites to examine the effects of W-7 and KN-93. In contrast to W-7, KN-93 at 35 muM selectively accelerated open-state inactivation in the wild-type vs. the mutant channel. W-7 had a significantly greater effect on recovery from inactivation in wild-type than in mutant channels. We conclude that, at certain concentrations, KN-93 selectively inhibits Ca(2+)/CaMKII activity in Xenopus oocytes and that the effects of W-7 are mediated by direct interaction with the channel pore and inhibition of Ca(2+)-CaM, as well as a change in activity of Ca(2+)-CaM-dependent enzymes, including Ca(2+)/CaMKII.  相似文献   

8.
The present study was undertaken to investigate the redox status in the retina of an experimental model that combines hypertension and diabetes. Spontaneously hypertensive rats (SHR) and their control Wystar Kyoto (WKY) rats were rendered diabetic and, after 20 days, the rats were sacrificed and the retinas collected. The superoxide production was higher in diabetic than in control WKY (p < 0.03) and SHR rats showed elevated superoxide production compared with WKY groups (p < 0.009). The glutathione antioxidant system was diminished only in diabetic SHR (p < 0.04). Tirosyne nitration was higher in diabetic WKY and control SHR compared with control WKY (p < 0.03), and further increment was observed in diabetic SHR (p < 0.02). The DNA damage estimated by immunohystochemistry for 8-OHdG was higher in control SHR than in WKY, mainly in diabetic SHR (p < 0.0001). Hypertension aggravates oxidative-induced cytotoxicity in diabetic retina due to increasing of superoxide production and impairment of antioxidative system.  相似文献   

9.
GluA1 (formerly GluR1) AMPA receptor subunit phosphorylation at Ser-831 is an early biochemical marker for long-term potentiation and learning. This site is a substrate for Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) and protein kinase C (PKC). By directing PKC to GluA1, A-kinase anchoring protein 79 (AKAP79) facilitates Ser-831 phosphorylation and makes PKC a more potent regulator of GluA1 than CaMKII. PKC and CaM bind to residues 31-52 of AKAP79 in a competitive manner. Here, we demonstrate that common CaMKII inhibitors alter PKC and CaM interactions with AKAP79(31-52). Most notably, the classical CaMKII inhibitors KN-93 and KN-62 potently enhanced the association of CaM to AKAP79(31-52) in the absence (apoCaM) but not the presence of Ca(2+). In contrast, apoCaM association to AKAP79(31-52) was unaffected by the control compound KN-92 or a mechanistically distinct CaMKII inhibitor (CaMKIINtide). In vitro studies demonstrated that KN-62 and KN-93, but not the other compounds, led to apoCaM-dependent displacement of PKC from AKAP79(31-52). In the absence of CaMKII activation, complementary cellular studies revealed that KN-62 and KN-93, but not KN-92 or CaMKIINtide, inhibited PKC-mediated phosphorylation of GluA1 in hippocampal neurons as well as AKAP79-dependent PKC-mediated augmentation of recombinant GluA1 currents. Buffering cellular CaM attenuated the ability of KN-62 and KN-93 to inhibit AKAP79-anchored PKC regulation of GluA1. Therefore, by favoring apoCaM binding to AKAP79, KN-62 and KN-93 derail the ability of AKAP79 to efficiently recruit PKC for regulation of GluA1. Thus, AKAP79 endows PKC with a pharmacological profile that overlaps with CaMKII.  相似文献   

10.
The aim of this study was to test the hypothesis that treatment with angiotensin-(1-7) [ANG-(1-7)] or ANG-(1-7) nonpeptide analog AVE-0991 can produce protection against diabetes-induced cardiovascular dysfunction. We examined the influence of chronic treatment (4 wk) with ANG-(1-7) (576 microg.kg(-1).day(-1) ip) or AVE-0991 (576 microg.kg(-1).day(-1) ip) on proteinuria, vascular responsiveness of isolated carotid and renal artery ring segments and mesenteric bed to vasoactive agonists, and cardiac recovery from ischemia-reperfusion in streptozotocin-treated rats (diabetes). Animals were killed 4 wk after induction of diabetes and/or treatment with ANG-(1-7) or AVE-0991. There was a significant increase in urine protein (231 +/- 2 mg/24 h) in diabetic animals compared with controls (88 +/- 6 mg/24 h). Treatment of diabetic animals with ANG-(1-7) or AVE-0991 resulted in a significant reduction in urine protein compared with vehicle-treated diabetic animals (183 +/- 16 and 149 +/- 15 mg/24 h, respectively). Treatment with ANG-(1-7) or AVE-0991 also prevented the diabetes-induced abnormal vascular responsiveness to norepinephrine, endothelin-1, angiotensin II, carbachol, and histamine in the perfused mesenteric bed and isolated carotid and renal arteries. In isolated perfused hearts, recovery of left ventricular function from 40 min of global ischemia was significantly better in ANG-(1-7)- or AVE-0991-treated animals. These results suggest that activation of ANG-(1-7)-mediated signal transduction could be an important therapeutic strategy to reduce cardiovascular events in diabetic patients.  相似文献   

11.
We have shown earlier a requirement for Ca2+ and calmodulin (CaM) in the H2O2-induced activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and protein kinase B (PKB), key mediators of growth-promoting, proliferative, and hypertrophic responses in vascular smooth muscle cells (VSMC). Because the effect of CaM is mediated through CaM-dependent protein kinase II (CaMKII), we have investigated here the potential role of CaMKII in H2O2-induced ERK1/2 and PKB phosphorylation by using pharmacological inhibitors of CaM and CaMKII, a CaMKII inhibitor peptide, and siRNA knockdown strategies for CaMKIIα. Calmidazolium and W-7, antagonists of CaM, as well as KN-93, a specific inhibitor of CaMKII, attenuated H2O2-induced responses of ERK1/2 and PKB phosphorylation in a dose-dependent fashion. Similar to H2O2, calmidazolium and KN-93 also exhibited an inhibitory effect on glucose/glucose oxidase-induced phosphorylation of ERK1/2 and PKB in these cells. Transfection of VSMC with CaMKII autoinhibitory peptide corresponding to the autoinhibitory domain (aa 281–309) of CaMKII and with siRNA of CaMKIIα attenuated the H2O2-induced phosphorylation of ERK1/2 and PKB. In addition, calmidazolium and KN-93 blocked H2O2-induced Pyk2 and insulin-like growth factor-1 receptor (IGF-1R) phosphorylation. Moreover, treatment of VSMC with CaMKIIα siRNA abolished the H2O2-induced IGF-1R phosphorylation. H2O2 treatment also induced Thr286 phosphorylation of CaMKII, which was inhibited by both calmidazolium and KN-93. These results demonstrate that CaMKII plays a critical upstream role in mediating the effects of H2O2 on ERK1/2, PKB, and IGF-1R phosphorylation.  相似文献   

12.
Calmodulin-dependent protein kinase II (CaMKII) is transiently activated in mouse eggs by the increase in calcium that occurs upon activation with ethanol. This study investigated the biological and biochemical effects of KN-93, a reported selective inhibitor of CaMKII, to explore the potential role of this kinase in the initial events of egg activation. Mouse eggs were incubated for 30 min in the presence of different concentrations of KN-93 and induced to activate by 7% ethanol. KN-93 elicited a dose-dependent inhibition of polar body emission that resulted from the failure of the eggs to undergo meiosis resumption and inactivation of maturation-promoting factor (MPF). Furthermore, 15 mumol KN-93 l-1 produced a marked reduction in ethanol-induced loss of cortical granules. In vivo biochemical analysis revealed that 15 mumol KN-93 l-1 was responsible for significant inhibition of ethanol-stimulated CaMKII. The activity of the enzyme remained at a resting value, in spite of the presence of a calcium signal similar to that measured in control activated eggs. The inhibitory effects of KN-93 on the parameters tested in this study could not be mimicked by the inactive analogue KN-92. These results show that in mouse eggs, when ethanol-induced CaMKII activation was prevented, cortical granule exocytosis and meiosis resumption were inhibited. This suggests that CaMKII acts as a switch in the transduction of the calcium signal triggering mammalian egg activation.  相似文献   

13.
Ca2+-influx and membrane hyperpolarization by sperm-activating and -attracting factor (SAAF) released from the unfertilized egg of the ascidians Ciona cause a transient increase in cAMP, which triggers activation of sperm motility. We demonstrated here the presence of Ca2+-binding protein, calmodulin (CaM), and CaM-dependent kinase II (CaMKII) in the sperm. CaM antagonist, W-7, and CaMKII inhibitor, KN-93, suppressed SAAF-induced membrane hyperpolarization, increase in cAMP, and activation of sperm motility, but inactive analogues of W-7 and KN-93, namely W-5 and KN-92, respectively, did not. Subsequent addition of K+ ionophore, valinomycin, hyperpolarized the plasma membrane, increased cAMP, and conferred motility to the immotile sperm even in the presence of W-7 and KN-93. Addition of IBMX activated motility of sperm, which has been immobilized by W-7 and KN-93. These suggest that increased [Ca2+]i through influx of Ca2+ by SAAF binds to CaM to activate CaMKII. The activated CaMKII may cause membrane hyperpolarization to increase cAMP, which triggers the activation of sperm motility in Ciona.  相似文献   

14.
《Journal of molecular biology》2019,431(7):1440-1459
Calcium/calmodulin-dependent protein kinase II (CaMKII) is a multifunctional serine/threonine protein kinase that transmits calcium signals in various cellular processes. CaMKII is activated by calcium-bound calmodulin (Ca2+/CaM) through a direct binding mechanism involving a regulatory C-terminal α-helix in CaMKII. The Ca2+/CaM binding triggers transphosphorylation of critical threonine residues proximal to the CaM-binding site leading to the autoactivated state of CaMKII. The demonstration of its critical roles in pathophysiological processes has elevated CaMKII to a key target in the management of numerous diseases. The molecule KN-93 is the most widely used inhibitor for studying the cellular and in vivo functions of CaMKII. It is widely believed that KN-93 binds directly to CaMKII, thus preventing kinase activation by competing with Ca2+/CaM. Herein, we employed surface plasmon resonance, NMR, and isothermal titration calorimetry to characterize this presumed interaction. Our results revealed that KN-93 binds directly to Ca2+/CaM and not to CaMKII. This binding would disrupt the ability of Ca2+/CaM to interact with CaMKII, effectively inhibiting CaMKII activation. Our findings also indicated that KN-93 can specifically compete with a CaMKIIδ-derived peptide for binding to Ca2+/CaM. As indicated by the surface plasmon resonance and isothermal titration calorimetry data, apparently at least two KN-93 molecules can bind to Ca2+/CaM. Our findings provide new insight into how in vitro and in vivo data obtained with KN-93 should be interpreted. They further suggest that other Ca2+/CaM-dependent, non-CaMKII activities should be considered in KN-93–based mechanism-of-action studies and drug discovery efforts.  相似文献   

15.
The present study was undertaken to investigate the redox status in the retina of an experimental model that combines hypertension and diabetes. Spontaneously hypertensive rats (SHR) and their control Wystar Kyoto (WKY) rats were rendered diabetic and, after 20 days, the rats were sacrificed and the retinas collected. The superoxide production was higher in diabetic than in control WKY (p<0.03) and SHR rats showed elevated superoxide production compared with WKY groups (p<0.009). The glutathione antioxidant system was diminished only in diabetic SHR (p<0.04). Tirosyne nitration was higher in diabetic WKY and control SHR compared with control WKY (p<0.03), and further increment was observed in diabetic SHR (p<0.02). The DNA damage estimated by immunohystochemistry for 8-OHdG was higher in control SHR than in WKY, mainly in diabetic SHR (p<0.0001). Hypertension aggravates oxidative-induced cytotoxicity in diabetic retina due to increasing of superoxide production and impairment of antioxidative system.  相似文献   

16.
The role of endothelin (ET-1) in mediating the development of blood pressure was investigated in the spontaneously hypertensive (SHR) rat using the Wistar-Kyoto (WKY) rat as the normotensive control. The following were characterized in both rat strains: age-dependent changes in mean arterial blood pressure (MAP), tissue (blood, lung, heart, and kidney) levels of immunoreactive ET-1 like related peptides (ET-1RP), aortic ring responses to ET-1, and specific high-affinity tissue (lung, atrium, ventricle, aorta, and kidney) binding sites for 125I-labelled ET-1. Commencing at age 10 weeks through to 12 weeks, SHR rats but not WKY rats developed a significant increase in MAP (from 152 +/- 7 to 189 +/- 3 mmHg) (1 mmHg = 133.32 Pa). However, in both WKY and SHR rats immunoreactive levels of ET-1RP increased (100 and 80%, respectively) throughout the same measurement period. The potency of ET-1 to contract aortic rings from SHR rats was slightly but not significantly greater than that for aortic rings from WKY rats, although aortic rings from SHR rats contracted in the presence of 0.5 nM ET-1, while those from WKY rats did not. The levels of immunoreactive ET-1RP were significantly reduced (32%) in the kidney and unchanged in the heart and lung of SHR rats compared with WKY rats. Specific 125I-labelled ET-1 binding sites displayed an increase and a significant decrease (24%) of density in the atrium and ventricle, respectively, a significant increase (31%) of affinity in the lung, and were unchanged in the kidney and aorta of SHR rats compared with WKY rats following the development of hypertension. The lack of a correlation between circulating levels of immunoreactive ET-1RP and the development of hypertension coupled with a lack of significant differences in vascular reactivity suggest that ET-1 is not the sole mediator of hypertension in this animal model. However, the tissue-specific changes in immunoreactive ET-1RP and 125I-labelled ET-1 binding sites suggest that ET-1 may be a partial mediator of hypertension and is subject to compensatory changes in response to the increased total peripheral resistance in SHR rats.  相似文献   

17.
The relationship between sympathetic innervation and arterial medial development has been examined in normotensive, hypertensive, and diabetic rats. Using the jejunal artery as a model, the number of nerve fibres innervating the artery as determined from fluorescent preparations, and the medial thickness and lumen diameter as measured from resin embedded specimens were correlated from animals prepared in various ways. The rats used were normal Sprague-Dawley (SD), SD with induced hypertension, SD with diabetes induced with streptozotocin, SD sympathectomized with 6-hydroxydopamine, spontaneously hypertensive rats (SHR), SHR treated with capsaicin to prevent hypertension development, Wistar Kyoto rats (WKY), and WKY treated with capsaicin. Examination of the jejunal arteries from these rats at 12 weeks of age following normal development, or 8 weeks of hypertension development, or 8 and 12 weeks of diabetes, showed that increased innervation occurred in the SHR under all conditions, and in the diabetic rats after 8 weeks of diabetes. Medial hypertrophy occurred in the SHR and in the SD hypertensive only. It is concluded that the special relationship which exists between the sympathetic innervation and arterial media in the SHR does not occur during hypertension development in the SD rat, nor is it necessary for normal medial development in the SD rat. The sympathetic innervation does appear to have a trophic influence on vascular smooth muscle of diabetic rats, at least in the early stages of the disease.  相似文献   

18.
Diabetes mellitus leads to vascular complications but the underlying signalling mechanisms are not fully understood. Here, we examined the role of ErbB2 (HER2/Neu), a transmembrane receptor tyrosine kinase of the ErbB/EGFR (epidermal growth factor receptor) family, in mediating diabetes-induced vascular dysfunction in an experimental model of type 1 diabetes. Chronic treatment of streptozotocin-induced diabetic rats (1 mg/kg/alt diem) or acute, ex-vivo (10−6, 10−5 M) administration of AG825, a specific inhibitor of ErbB2, significantly corrected the diabetes-induced hyper-reactivity of the perfused mesenteric vascular bed (MVB) to the vasoconstrictor, norephinephrine (NE) and the attenuated responsiveness to the vasodilator, carbachol. Diabetes led to enhanced phosphorylation of ErbB2 at multiple tyrosine (Y) residues (Y1221/1222, Y1248 and Y877) in the MVB that could be attenuated by chronic AG825 treatment. Diabetes- or high glucose-mediated upregulation of ErbB2 phosphorylation was coupled with activation of Rho kinases (ROCKs) and ERK1/2 in MVB and in cultured vascular smooth muscle cells (VSMC) that were attenuated upon treatment with either chronic or acute AG825 or with anti-ErbB2 siRNA. ErbB2 likley heterodimerizes with EGFR, as evidenced by increased co-association in diabetic MVB, and further supported by our finding that ERK1/2 and ROCKs are common downstream effectors since their activation could also be blocked by AG1478. Our results show for the first time that ErbB2 is an upstream effector of ROCKs and ERK1/2 in mediating diabetes-induced vascular dysfunction. Thus, potential strategies aimed at modifying actions of signal transduction pathways involving ErbB2 pathway may prove to be beneficial in treatment of diabetes-induced vascular complications.  相似文献   

19.
Erectile dysfunction (ED) is another manifestation of vascular disease. We evaluated the natural history of ED in the spontaneously hypertensive rat (SHR) and the respective participation of associated pathophysiological modifications, i.e., endothelial dysfunction and tissue remodeling. SHR and their normotensive counterparts [Wistar-Kyoto rats (WKY)] of 6, 12, and 24 wk of age (n = 12) were used to evaluate erectile function, erectile and aortic tissue reactivity, and remodeling. Erectile responses in SHR are reduced at all ages (P < 0.001). In both aortic and erectile tissues of SHR and WKY, relaxations to ACh are altered progressively with age, although more markedly in SHR. They are decreased at 12 wk of age in erectile tissue of SHR compared with WKY (maximal relaxation: -19.2 +/- 2.8% vs. -28.3 +/- 3.9%, P < 0.001) but only at 24 wk of age in aortas (-47.9 +/- 6.4% vs. -90.5 +/- 2.9%, P < 0.001). Relaxations to sodium nitroprusside are unaltered in aortic rings of both strains but enhanced in erectile tissue of SHR at 12 wk of age. Major modifications in the distribution of collagen I, III, and V in SHR occur in both types of tissue and are detectable sooner in erectile tissue compared with aortic tissue. The onset of ED is detectable before the onset of hypertension in the SHR. Structural and functional alterations, while similar, occur earlier in erectile compared with vascular tissue. If confirmed in humans, ED could be an early warning sign for hypertension, and common therapeutic strategies targeting both ED and hypertension could be investigated.  相似文献   

20.
Recipients of a kidney from spontaneously hypertensive rats (SHR) but not from normotensive Wistar-Kyoto rats (WKY) develop posttransplantation hypertension. To investigate whether renal sodium retention precedes the development of posttransplantation hypertension in recipients of an SHR kidney on a standard sodium diet (0.6% NaCl), we transplanted SHR and WKY kidneys to SHR x WKY F1 hybrids, measured daily sodium balances during the first 12 days after removal of both native kidneys, and recorded mean arterial pressure (MAP) after 8 wk. Recipients of an SHR kidney (n = 12) retained more sodium than recipients of a WKY kidney (n = 12) (7.3 +/- 10 vs. 4.0 +/- 0.7 mmol, P < 0.05). MAP was 144 +/- 6 mmHg in recipients of an SHR kidney and 106 +/- 5 mmHg in recipients of a WKY kidney (P < 0.01). Modest sodium restriction (0.2% NaCl) in a further group of recipients of an SHR kidney (n = 10) did not prevent posttransplantation hypertension (MAP, 142 +/- 4 mmHg). Urinary endothelin and urodilatin excretion rates were similar in recipients of an SHR and a WKY kidney. Transient excess sodium retention after renal transplantation may contribute to posttransplantation hypertension in recipients of an SHR kidney.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号