首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 161 毫秒
1.
The non-enzymatic reaction between reducing sugars and long-lived proteins in vivo results in the formation of glycation and advanced glycation end products, which alter the properties of proteins including charge, helicity, and their tendency to aggregate. Such protein modifications are linked with various pathologies associated with the general aging process such as Alzheimer disease and the long-term complications of diabetes. Although it has been suggested that glycation and advanced glycation end products altered protein structure and helicity, little structural data and information currently exist on whether or not glycation does indeed influence or change local protein secondary structure. We have addressed this problem using a model helical peptide system containing a di-lysine motif derived from human serum albumin. We have shown that, in the presence of 50 mm glucose and at 37 degrees C, one of the lysine residues in the di-lysine motif within this peptide is preferentially glycated. Using NMR analysis, we have confirmed that the synthetic peptide constituting this helix does indeed form a alpha-helix in solution in the presence of 30% trifluoroethanol. Glycation of the model peptide resulted in the distortion of the alpha-helix, forcing the region of the helix around the site of glycation to adopt a 3(10) helical structure. This is the first reported evidence that glycation can influence or change local protein secondary structure. The implications and biological significance of such structural changes on protein function are discussed.  相似文献   

2.
3.
Wang H  Varady J  Ng L  Sung SS 《Proteins》1999,37(3):325-333
Molecular dynamics simulations of beta-hairpin folding have been carried out with a solvent-referenced potential at 274 K. The model peptide V4DPGV4 formed stable beta-hairpin conformations and the beta-hairpin ratio calculated by the DSSP algorithm was about 56% in the 50-ns simulation. Folding into beta-hairpin conformations is independent of the initial conformations. The simulations provided insights into the folding mechanism. The hydrogen bond often formed in a beta-turn first, and then propagated by forming more hydrogen bonds along the strands. Unfolding and refolding occurred repeatedly during the simulations. Both the hydrogen bonding and the hydrophobic interaction played important roles in forming the ordered structure. Without the hydrophobic effect, stable beta-hairpin conformations did not form in the simulations. With the same energy functions, the alanine-based peptide (AAQAA)3Y folded into helical conformations, in agreement with experiments. Folding into an alpha-helix or a beta-hairpin is amino acid sequence-dependent.  相似文献   

4.
The aggregation of alpha-helix-rich proteins into beta-sheet-rich amyloid fibrils is associated with fatal diseases, such as Alzheimer's disease and prion disease. During an aggregation process, protein secondary structure elements-alpha-helices-undergo conformational changes to beta-sheets. The fact that proteins with different sequences and structures undergo a similar transition on aggregation suggests that the sequence nonspecific hydrogen bond interaction among protein backbones is an important factor. We perform molecular dynamics simulations of a polyalanine model, which is an alpha-helix in its native state and observe a metastable beta-hairpin intermediate. Although a beta-hairpin has larger potential energy than an alpha-helix, the entropy of a beta-hairpin is larger because of fewer constraints imposed by the hydrogen bonds. In the vicinity of the transition temperature, we observe the interconversion of the alpha-helix and beta-sheet states via a random coil state. We also study the effect of the environment by varying the relative strength of side-chain interactions for a designed peptide-an alpha-helix in its native state. For a certain range of side-chain interaction strengths, we find that the intermediate beta-hairpin state is destabilized and even disappears, suggesting an important role of the environment in the aggregation propensity of a peptide.  相似文献   

5.
Araki M  Tamura A 《Proteins》2007,66(4):860-868
Intrinsic rules of determining the tertiary structure of a protein have been unknown partly because physicochemical factors that contribute to stabilization of a protein structure cannot be represented as a linear combination of local interactions. To clarify the rules on the nonlinear term caused by nonlocal interaction in a protein, we tried to transform a peptide that has a fully helical structure (Target Peptide or TP) into a peptide that has a beta-hairpin structure (Designed Peptide or DP) by adding seven residues to the C terminus of TP. According to analyses of nuclear magnetic resonance measurements, while the beta-hairpin structure is stabilized in some DPs, it is evident that the helical structure observed in TP is also persistent and even extended throughout the length of the molecule. As a result, we have produced a peptide molecule that contains both the alpha-helix and beta-hairpin conformation at an almost equally populated level. The helical structures contained in these DPs were more stable than the helix in TP, suggesting that stabilizing one conformation does not result in destabilizing the other conformation. These DPs can thus be regarded as an isolated peptide version of the chameleon sequence, which has the capability of changing the secondary structure depending on the context of the surrounding environment in a protein structure. The fact that the transformation of one secondary structure caused stabilization of both the original and the induced structure would shed light on the mechanism of protein folding.  相似文献   

6.
The energy landscape of a peptide [Ace-Lys-Gln-Cys-Arg-Glu-Arg-Ala-Nme] in explicit water was studied with a multicanonical molecular dynamics simulation, and the AMBER parm96 force field was used for the energy calculation. The peptide was taken from the recognition helix of the DNA-binding protein, c-MYB: A rugged energy landscape was obtained, in which the random-coil conformations were dominant at room temperature. The CD spectra of the synthesized peptide revealed that it is in the random state at room temperature. However, the 300 K canonical ensemble, Q(300K), contained alpha-helix, 3(10)-helix, beta-turn, and beta-hairpin structures with small but notable probabilities of existence. The complete alpha-helix, imperfect alpha-helix, and random-coil conformations were separated from one another in the conformational space. This means that the peptide must overcome energy barriers to form the alpha-helix. The overcoming process may correspond to the hydrogen-bond rearrangements from peptide-water to peptide-peptide interactions. The beta-turn, imperfect 3(10)-helix, and beta-hairpin structures, among which there are no energy barriers at 300 K, were embedded in the ensemble of the random-coil conformations. Two types of beta-hairpin with different beta-turn regions were observed in Q(300K). The two beta-hairpin structures may have different mechanisms for the beta-hairpin formation. The current study proposes a scheme that the random state of this peptide consists of both ordered and disordered conformations. In contrast, the energy landscape obtained from the parm94 force field was funnel like, in which the peptide formed the helical conformation at room temperature and random coil at high temperature.  相似文献   

7.
This article describes a strategy to develop, starting from a de novo design, bivalent peptides containing two different (alpha-helix and beta-hairpin) and independent secondary-structure elements. The design was based on the use of conformationally restricted peptide libraries. Structural characterization by NMR revealed that the peptides were stable and did not show any long-range NOE interactions between the N-terminal beta-hairpin and the C-terminal alpha-helix. These results suggest that the two elements of secondary structure are stable and well folded.  相似文献   

8.
The peptide TGAAKAVALVL from glyceraldehyde-3-phosphate dehydrogenase adopts a helical conformation in the crystal structure and is a site for two hydrated helical segments, which are thought to be helical folding intermediates. Overlapping sequences of four to five residues from the peptide, sample both helical and strand conformations in known protein structures, which are dissimilar to glyceraldehyde-3-phosphate dehydrogenase suggesting that the peptide may have a structural ambivalence. Molecular dynamics simulations of the peptide sequence performed for a total simulation time of 1.2 micros, starting from the various initial conformations using GROMOS96 force field under NVT conditions, show that the peptide samples a large number of conformational forms with transitions from alpha-helix to beta-hairpin and vice versa. The peptide, therefore, displays a structural ambivalence. The mechanism from alpha-helix to beta-hairpin transition and vice versa reveals that the compact bends and turns conformational forms mediate such conformational transitions. These compact structures including helices and hairpins have similar hydrophobic radius of gyration (Rgh) values suggesting that similar hydrophobic interactions govern these conformational forms. The distribution of conformational energies is Gaussian with helix sampling lowest energy followed by the hairpins and coil. The lowest potential energy of the full helix may enable the peptide to take up helical conformation in the crystal structure of the glyceraldehyde-3-phosphate dehydrogenase, even though the peptide has a preference for hairpin too. The relevance of folding and unfolding events observed in our simulations to hydrophobic collapse model of protein folding are discussed.  相似文献   

9.
The conversion from an alpha-helix to a beta-strand has received extensive attention since this structural change may induce many amyloidogenic proteins to self-assemble into fibrils and cause fatal diseases. Here we report the conversion of a peptide segment from a beta-strand to an alpha-helix by a single-site mutation as observed in the crystal structure of Fis mutant Pro26Ala determined at 2.0 A resolution. Pro26 in Fis occurs at the point where a flexible extended beta-hairpin arm leaves the core structure. Thus it can be classified as a "hinge proline" located at the C-terminal end of the beta2-strand and the N-terminal cap of the A alpha-helix. The replacement of Pro26 to alanine extends the A alpha-helix for two additional turns in one of the dimeric subunits; therefore, the structure of the peptide from residues 22 to 26 is converted from a beta-strand to an alpha-helix. This result confirms the structural importance of the proline residue located at the hinge region and may explain the mutant''s reduced ability to activate Hin-catalyzed DNA inversion. The peptide (residues 20 to 26) in the second monomer subunit presumably retains its beta-strand conformation in the crystal; therefore, this peptide shows a "chameleon-like" character since it can adopt either an alpha-helix or a beta-strand structure in different environments. The structure of Pro26Ala provides an additional example where not only the protein sequence, but also non-local interactions determine the secondary structure of proteins.  相似文献   

10.
We have investigated the folding of polyalanine by combining discontinuous molecular dynamics simulation with our newly developed off-lattice intermediate-resolution protein model. The thermodynamics of a system containing a single Ac-KA(14)K-NH(2) molecule has been explored by using the replica exchange simulation method to map out the conformational transitions as a function of temperature. We have also explored the influence of solvent type on the folding process by varying the relative strength of the side-chain's hydrophobic interactions and backbone hydrogen bonding interactions. The peptide in our simulations tends to mimic real polyalanine in that it can exist in three distinct structural states: alpha-helix, beta-structures (including beta-hairpin and beta-sheet-like structures), and random coil, depending upon the solvent conditions. At low values of the hydrophobic interaction strength between nonpolar side-chains, the polyalanine peptide undergoes a relatively sharp transition between an alpha-helical conformation at low temperatures and a random-coil conformation at high temperatures. As the hydrophobic interaction strength increases, this transition shifts to higher temperatures. Increasing the hydrophobic interaction strength even further induces a second transition to a beta-hairpin, resulting in an alpha-helical conformation at low temperatures, a beta-hairpin at intermediate temperatures, and a random coil at high temperatures. At very high values of the hydrophobic interaction strength, polyalanines become beta-hairpins and beta-sheet-like structures at low temperatures and random coils at high temperatures. This study of the folding of a single polyalanine-based peptide sets the stage for a study of polyalanine aggregation in a forthcoming paper.  相似文献   

11.
Jarymowycz VA  Krupinska E  Stone MJ 《Biochemistry》2006,45(37):11179-11189
To investigate the relationship between backbone motions and the structural environment of a peptide sequence, we have used (15)N NMR relaxation data to characterize the backbone motions of the "chameleon-alpha" (Chm-alpha) and "chameleon-beta" (Chm-beta) proteins designed previously by Minor and Kim [Minor, D. L., Jr., and Kim, P. S. (1996) Nature 380, 730-734]. These two proteins contain an identical 11-amino acid sequence (dubbed the "chameleon" peptide sequence) in alpha-helix and beta-hairpin conformations, respectively, within the B1 domain of protein G. When placed in an alpha-helical context, the chameleon peptide shows very limited backbone motions, but some remote regions of the protein are induced to undergo conformational exchange motions, apparently due to modification of packing interactions with the chameleon peptide. In contrast, within a beta-hairpin context, the chameleon peptide displays substantial motions on both picosecond and microsecond-to-millisecond time scales, suggesting that it cannot be readily accommodated within the native reverse turn structure. These observations are consistent with the relatively low stability of the Chm-beta protein and can be rationalized in terms of native turn-stabilizing interactions that may be disrupted in the Chm-beta protein.  相似文献   

12.
We have determined the NMR structure in aqueous solution of a disulphide-cyclised 11-residue peptide that forms a stable beta-hairpin, incorporating a type VIb beta-turn. The structure is found to be extremely well ordered for a short peptide, with the 30 lowest energy simulated annealing structures having an average pairwise r.m.s. deviation of only 0.36 A over the backbone. All but three side-chains adopt distinct conformations, allowing a detailed analysis of their involvement in cross-strand interactions. The peptide sequence analysed originates from a previously reported study, which identified potent inhibitors of human leukocyte elastase from screening a combinatorial peptide library based on the short protein beta-sheet segment that forms the reactive site loop of Bowman-Birk inhibitors. A detailed comparison of the peptide's solution structure with the corresponding region in the whole protein structure reveals a very good correspondence not only for the backbone (r.m.s. deviation approximately 0.7 A) but also for the side-chains. This isolated beta-hairpin retains the biologically active "canonical conformation" typical of small serine proteinase inhibitor proteins, which explains why it retains inhibitory activity. Since the structural integrity is sequence-inherent and does not depend upon the presence of the remaining protein, this beta-hairpin represents an independent structural motif and so provides a useful model of this type of protein architecture and its relation to biological function. The relationship between the conformation of this beta-hairpin and its biological activity is discussed.  相似文献   

13.
Li W  Zhang J  Wang W 《Proteins》2007,67(2):338-349
Full sequence design protein FSD-1 is a designed protein based on the motif of zinc finger protein. In this work, its folding mechanism and thermal stability are investigated using the replica exchange molecular dynamics model with the water molecules being treated explicitly. The results show that the folding of the FSD-1 is initiated by the hydrophobic collapse, which is accompanied with the formation of the C-terminal alpha-helix. Then the folding proceeds with the formation of the beta-hairpin and the further package of the hydrophobic core. Compared with the beta-hairpin, the alpha-helix has much higher stability. It is also found that the N-capping motif adopted by the FSD-1 contributes to the stability of the alpha-helix dramatically. The hydrophobic contacts made by the side chain of Tyr3 in the native state are essential for the stabilization of the beta-hairpin. It is also found that the folding of the N-terminal beta-hairpin and the C-terminal alpha-helix exhibits weak cooperativity, which is consistent with the experimental data. Meanwhile, the folding pathway is compared between the FSD-1 and the target zinc finger peptide, and the possible role of the zinc ion on the folding pathway of zinc finger is proposed. Proteins 2007. (c) 2007 Wiley-Liss, Inc.  相似文献   

14.
Daidone I  Amadei A  Di Nola A 《Proteins》2005,59(3):510-518
The folding of the amyloidogenic H1 peptide MKHMAGAAAAGAVV taken from the syrian hamster prion protein is explored in explicit aqueous solution at 300 K using long time scale all-atom molecular dynamics simulations for a total simulation time of 1.1 mus. The system, initially modeled as an alpha-helix, preferentially adopts a beta-hairpin structure and several unfolding/refolding events are observed, yielding a very short average beta-hairpin folding time of approximately 200 ns. The long time scale accessed by our simulations and the reversibility of the folding allow to properly explore the configurational space of the peptide in solution. The free energy profile, as a function of the principal components (essential eigenvectors) of motion, describing the main conformational transitions, shows the characteristic features of a funneled landscape, with a downhill surface toward the beta-hairpin folded basin. However, the analysis of the peptide thermodynamic stability, reveals that the beta-hairpin in solution is rather unstable. These results are in good agreement with several experimental evidences, according to which the isolated H1 peptide adopts very rapidly in water beta-sheet structure, leading to amyloid fibril precipitates [Nguyen et al., Biochemistry 1995;34:4186-4192; Inouye et al., J Struct Biol 1998;122:247-255]. Moreover, in this article we also characterize the diffusion behavior in conformational space, investigating its relations with folding/unfolding conditions.  相似文献   

15.
Conformational properties of a peptide model for unfolded alpha-helices   总被引:1,自引:0,他引:1  
Models of protein folding often hypothesize that the first step is local secondary structure formation. The assumption is that unfolded polypeptide chains possess an intrinsic propensity to form these local secondary structures. On the basis of this idea, it is tempting to model the local conformational properties of unfolded proteins using well-established residue secondary structure propensities, in particular, alpha-helix forming propensities. We have used spectroscopic methods to investigate the conformational behavior of a host-guest series of peptides designed to model unfolded alpha-helices. A suitable peptide model for unfolded alpha-helices was determined from studies of the length dependence of the conformational properties of alanine-based peptides. The chosen host peptide possessed a small, detectable, alpha-helix content. Substituting various representative guest residues into the central position of the host peptide at times changed the conformational behavior dramatically, and often in ways that could not be predicted from known alpha-helix forming propensities. The data presented can be used to rationalize some of these propensities. However, it is clear that secondary structure propensities cannot be used to predict the local conformational properties of unfolded proteins.  相似文献   

16.
Dwyer DS 《Biopolymers》1999,49(7):635-645
The effects of alcohols on local protein structure have been simulated using computational approaches and model peptides. Molecular simulations were carried out on a 7-residue peptide created in both an extended conformation and an alpha-helix to explore alcohol-induced changes in peptide structure. It was assumed that alcohols hydrogen bond at peptide carbonyl groups with an optimum geometry and compete with water molecules at these site. Energy minimization of the peptide/alcohol assemblies revealed that alcohols induced a twist in the peptide backbone as a function of (1) the methylene chain length, (2) the hydrogen-bond geometry, (3) halogenation of the molecule, (4) concentration, and (5) the dielectric constant. The rank ordering of the potencies of the alcohols was hexafluoroisopropanol > trifluoroethanol approximately pentanol > butanol > ethanol > methanol. Helix destabilization by cosolvent was measured by examining the hydrogen-bond lengths in peptide structures that resulted from a combination of energy minimization and molecular dynamics simulations. Destabilization was also found to be dependent upon the chemical nature of the alcohol and the hydrogen-bond geometry. The data suggest that alcohols at low concentrations affect protein structure mainly through a combination of hydrogen-bonding and hydrophobic interactions that are influenced by the properties of the solvent.  相似文献   

17.
Wu X  Brooks BR 《Biophysical journal》2004,86(4):1946-1958
The beta-hairpin fold mechanism of a nine-residue peptide, which is modified from the beta-hairpin of alpha-amylase inhibitor tendamistat (residues 15-23), is studied through direct folding simulations in explicit water at native folding conditions. Three 300-nanosecond self-guided molecular dynamics (SGMD) simulations have revealed a series of beta-hairpin folding events. During these simulations, the peptide folds repeatedly into a major cluster of beta-hairpin structures, which agree well with nuclear magnetic resonance experimental observations. This major cluster is found to have the minimum conformational free energy among all sampled conformations. This peptide also folds into many other beta-hairpin structures, which represent some local free energy minimum states. In the unfolded state, the N-terminal residues of the peptide, Tyr-1, Gln-2, and Asn-3, have a confined conformational distribution. This confinement makes beta-hairpin the only energetically favored structure to fold. The unfolded state of this peptide is populated with conformations with non-native intrapeptide interactions. This peptide goes through fully hydrated conformations to eliminate non-native interactions before folding into a beta-hairpin. The folding of a beta-hairpin starts with side-chain interactions, which bring two strands together to form interstrand hydrogen bonds. The unfolding of the beta-hairpin is not simply the reverse of the folding process. Comparing unfolding simulations using MD and SGMD methods demonstrate that SGMD simulations can qualitatively reproduce the kinetics of the peptide system.  相似文献   

18.
A V Kajava 《FEBS letters》1992,302(1):8-10
A novel super-secondary structure common for many non-homological proteins is considered. This folding pattern, consisting of adjacent along the chain alpha-helix and beta-hairpin, has an aligned packing. It is found that one of the two possible 'mirror-symmetrical' topologies is observed in proteins. The alpha-helix + beta-hairpin structures have a similar pattern of hydrophobic residues in their amino acid sequences. The remaining part of a molecule or a domain is almost always located on the same side of the considered folding pattern. These results can be used in the prediction of three-dimensional protein structure and protein design.  相似文献   

19.
H Wang  S S Sung 《Biopolymers》1999,50(7):763-776
Folding of beta-hairpin structures of synthetic peptides has been simulated using the molecular dynamics method with a solvent-referenced potential. Two similar sequences, Ac-MQIFVKS(D)PGKTITLKV-NH(2) and Ac-MQIFVKS(L)PGKTITLKV-NH(2), derived from the N-terminal beta-hairpin of ubiquitin, were used to study the effects of turn residues in beta-hairpin folding. The simulations were carried out for 80 ns at 297 K. With extended initial conformation, the (D)P-containing peptide folded into a stable 2:2 beta-hairpin conformation with a type II' beta-turn at (D)PG. The overall beta-hairpin ratio, calculated by the DSSP algorithm, was 32.6%. With randomly generated initial conformations, the peptide also formed the stable 2:2 beta-hairpin conformation. The interactions among the side chains in the 2:2 beta-hairpin were almost identical to those in the native protein. These interactions reduced the solvation energy upon folding and stabilized the beta-hairpin conformation. Without the solvent effect, the peptide did not fold into stable beta-hairpin structures. The solvent effect is crucial for the formation of the beta-hairpin conformation. The effect of the temperature has also been studied. The (L)P-containing peptide did not fold into a stable beta-hairpin conformation and had a much lower beta-hairpin ratio (16.6%). The( L)P-containing peptide has similar favorable side-chain interactions, but the turn formed by (L)PG does not connect well with the right-handed twist of the beta-strands. For comparison, the isolated N-terminal peptide of ubiquitin, Ac-MQIFVKTLTGKTITLEV-NH(2), was also simulated and its beta-hairpin ratio was low, indicating that the beta-hairpin in the native structure is stabilized by the interaction with the protein environment. These simulation results agreed qualitatively with the available experimental findings.  相似文献   

20.
Glycated human serum albumin (HSA) is known to be involved in the pathogenesis of several diseases, and we have therefore investigated possible alterations in HSA on glycation. HSA was incubated for 5 and 20 weeks independently with constant glucose concentration at 37 degrees C under aerobic conditions. Biochemical, spectral, electrophoretic, circular dichroism spectropolarimetric, and thermodynamic analyses confirmed that the structure and stability of HSA is significantly affected on glucose modification. Glycated HSA-AGE-20w showed appreciable elevation (15.8%) in beta-sheet structure and decrease in alpha-helix (10.4%) and random coil (5.7%) structures. Slight changes have also been observed in turns (3.2%) of HSA-AGE-20w. Quenching studies with antioxidants diethylene triaminepentaacetic acid and superoxide dismutase showed inhibition in glycation to the extent of 50-65 and 30-40%, respectively. The novelty of present study is that glycation of HSA can cause induction of secondary and tertiary structure changes that may generate thermodynamically more stable high molecular weight aggregates having remarkably increased beta-sheet structure than its non-glycated form. This may interfere with the normal function of HSA, thus contributing to diabetic complications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号