首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Summary Seven independent transpositions of the w + gene have been recovered as derivatives of two separate direct tandem duplications of the white locus. The transpositions map to discrete sites on both major autosomes. Five transpositions were employed to study the role of w + gene dos-age on zeste (z) gene expression. Each transposition generates a unique zeste phenotype; one transposition is not predictive for another. A functional allele of zeste, z 77h, responds to w + gene dosage contrary to the z response.Supported by NIH grant GM22221  相似文献   

2.
Summary From a zeste mutant stock with a mutable white locus a new mutant (z w w ) was isolated. It has a white-eyed phenotype and a short X-chromosome inversion (In(1)w w ) which extends from salivary chromosome bands 3B2-C1 to 4B4-C1. In giant chromosomes of heterozygotes the inversion is unusually tightly paired. Probably because of this intimate pairing the recombination frequencies for regions near the inversion are not decreased in comparison to those for structurally normal chromosomes. The inversion chromosome is mutable. The mutations which arise have pigmented eyes and can be subdivided into two groups. One group is characterized by a re-inversion to normal chromosome structure. The mutability of the white locus appears to be independent of the inversion and reinversion. The process of reinversion is discussed.  相似文献   

3.
Chromosomes and phenotypes of four different sex-linkedwhite-mottled mutants of the position-effect variogation type were studied. Three mutants (w m1,w m2,w m3) are X-chromosomal rearrangements which shift the w+ locus into a position close to heterochromatin, but which have different ouchromatic and heterochromatic breaks. The fourth, a spontaneous derivative ofw m1, is an insertional duplication of part of the X chromosome, including thew + andN +loci. The duplicated segment is inserted into the distal part of the long arm of the heterochromatic Y chromosome. It is designated,w m CoY, orXw m Co when transferred to the X chromosome.Three chromosomal types (w m1,w m CoY) and (Xw m Co) having the same cuchromatic break near thew + locus, cause large-spotted eyes whereas two others (w m2,w m3) produce a popper-and-salt type of mottling. From the position of the various eu- and heterochromatic breaks, it appears that the distance of thew + locus to the point of reunion with heterochromatin, rather than the amount or type of adjoining heterochromatin, dietates the phenotypic action of the displacedw + locus, in the sense of a spreading effect on two proposed functional subunits within thew + locus.The pigmentation background against which the mottling effect is produced, i.e., a givenw-allele with its characteristic colour, or other eye colour mutations, does not seem to affect the type of mottling. Drosopterins and ommochromes react in the same way to modifing factors like temperature and supernumerary Y chromosomes. Two mutants (w m2 andw m CoY) while reacting in the same manner to Y chromosomes showed an opposite temperature response.By exchange between the heterochromatin of the Y and X chromosome inw/w m CoY males thew m Co duplication was transferred between the sex chromosomes with a certain regularity. It is not yet known wether the exchanges are mitotic or meiotic in origin but their heterochromatic nature has been demonstrated cytologically.  相似文献   

4.
The behavior of an unstable allele of the singed-bristle locus on the X chromosome was studied in connection with the occurrence of lethal mutations on that same chromosome. The unstable allele, weak singed (snw), is under the control of the P-M system of hybrid dysgenesis and, in the M cytotype, mutates secondarily to extreme singed (sne) and to wild type (sn+) at high rates. Chromosomes whose snw allele had mutated in this fashion sustained lethal mutations at a rate of 3%; whereas, those whose snw allele had apparently remained unchanged, acquired lethals at a lower rate, 1.3%. The significant difference between these values indicates a statistical coincidence between the phenomena of snw instability and X-linked lethal mutation induction. This coincidence can be explained by postulating that mutations at the singed locus sometimes release a genetic element capable of reinserting elsewhere in the chromosome. Alternately, snw instability and lethal induction might be associated because they are the effects of a common cause, perhaps some mutation-inducing substance present in various amounts in the germ cells of dysgenic flies.—The lethals that occurred on chromosomes whose snw allele had mutated to sne mapped preferentially close to singed. The lethals on the snw and sn+ chromosomes did not show this concentration on the map. Cytological analysis of samples of all three types of lethal chromosomes indicated that, with one exception, there was no detectable breakage at the singed locus itself. The single instance of breakage at singed was not associated with any change in the singed phenotype. Thus, the instability of snw apparently does not involve detectable breakage of the singed locus, or if it does, this breakage is not a common event.  相似文献   

5.
Summary The gene clw can be integrated into another site in the X chromosome to form the mutable two gene transposon system sn::Tn-clw. When brought under the common control of the transposon, sn and clw can concomitantly mutate and manifest themselves. Tn-clw was found to move from the sn region to a position of±52 m.u. This transposition was associated with changes in sn::Tn-clw:(1) loss of the instability property by the sn + allele; (2) appearance of a new lethal allele, clw 9, designated as a transposon allele. Based on analysis of the direction and frequency of the sn-clw mutations, the unstable genes of the sn locus were grouped in three pleiades. Interallelic mutations occurred regularly at frequencies of 0.1%–5.6% with changes in the manifestation of the clw mutation specific to each pleiade. Transition from one pleiade to another was rare (5×10–4), and it was associated with a new phenotypic expression of the sn and clw alleles. The mutational differences between the pleiades are presumably related to differences in the localization of Tn-clw within the sn locus.It was shown that the presence of Tn promotes recombination events in the rightmost portions of the sn-oc interval.  相似文献   

6.
The phenotypic effects of different doses of the dominant, sex-linked mutant Notch (N) and its wildtype allele (N +) were studied in Drosophila hydei, N being lethal in homozygous or hemizygous condition. Various dosage combinations were made by using N + N and N + N + attached-X chromosomes as well as X and Y N +-duplication chromosomes (w mCoY, XwmCo,and DpCo Nt). The N mutant used, N 68, is associated with a small inversion: In (I) N 68.The wing phenotype was found to depend solely on the number of functional (N +) alleles present, irrespective of the dose of N. Females with a single dose of N + are phenotypically Notch, females with three or four doses of N + show a Confluens wing phenotype. The latter occurs in varying degrees of expression which seem to be correlated with the relative amounts of sex-chromosomal heterochromatin present. In males the N + locus behaves as a dosage compensated locus either on the X or the Y chromosome.In the w mCo (w+N+) duplication, the w + locus shows variegation when placed over white, whereas N + placed over N 68 does not. The former being situated closer to the heterochromatin in this aberration, this is consistent with the idea of gene inhibition by heterochromatin but at the same time would imply a very limited spreading effect.  相似文献   

7.
The level of hidden variation in populations of Drosophila melanogaster at the Gpdh + locus was determined by thermal stability studies of the protein. The results indicate a lack of variation using these methods both in and between the two common electrophoretic variants. It is suggested that -GPDH is conserved in primary structure, which may be related to its critical role in flight muscle metabolism.This investigation was supported by NIH Research Grants No. GM-11546 and GM-23617. Paper No. 5262 of the Journal Series of the North Carolina Agricultural Experiment Station, Raleigh, North Carolina 27607.  相似文献   

8.
A ring-Y chromosome, R(Y)w m, of D. hydei is described which carries a complete set of fertility genes, a NOR region and a small X-chromosomal insertion (w m), which may be used as a marker. The ring has been characterized by various staining techniques. It was derived from a w mCo Y chromosome by X-ray treatment of spermatocytes. Its mode of origin allows to fix the gene order in the distal region of the long arm of the w mCoY chromosome. The white + gene included in the ring shows a new type of position-effect variegation which is described and discussed in the context of an earlier hypothesis on a dual function of the white locus.  相似文献   

9.
Summary Plants of the w4-mutable line of soybean [Glycine max (L.) Merr.] are chimeral for anthocyanin pigmentation. Mutable plants produce both near-white and purple flowers, as well as flowers of mutable phenotype with purple sectors on near-white petals. It is established here that the mutable trait is conditioned by an unstable recessive allele of the w4 locus that conditions anthocyanin biosynthesis. The gene symbol w4-m is assigned to the mutable allele. Allele w4-m was derived from a stable, wild-type W4 progenitor allele and reverts at high frequency to a stable, wild-type W4 allele. Reversion occurs both early and late during the development of the germ line. Several experiments give estimates of germinal reversion frequency, indicating that approximately 6% of mutable alleles revert to wild-type from one generation to the next. Allele w4-m exhibits many features typical of an allele controlled by a transposable element.  相似文献   

10.
Males carrying, inserted on their Y chromosome, a small fragment of X including the w + (and N +) locus (white-mottled Confluens, w m Co), were crossed with the purpose of scoring exceptional progeny. Some of the male and female exceptions were progeny tested and further analysed. Among the various mechanisms which may lead to exceptional offspring, X-Y exchanges proved to occur with a not negligible frequency. The rate was 3%. Nondisjunction accounts for the bulk of the remaining exceptions and appears to be increased considerably in the presence of rearrangements on one or the other of the sex chromosomes.The w m Co fragment after having been switched from Y to X by some mechanism other than regular crossing over, may become retransferred to a normal Y chromosome, but at a rate below 3%.  相似文献   

11.
Summary An unstable long tandem duplication which includes the white locus twice, marked with w sp in the left and w 17G in the right locus, when kept in males has been found to produce red-eyed sons which have lost the long duplication and with it the w sp and w 17G mutants. Such exceptions were produced also when w 17G had been exchanged for w a.Stocks originating from these exceptions are unstable, producing: 1) zeste males, also unstable, 2) w - deletions, stable, 3) transpositions of the white locus to sites in other chromosomes.The instability is interpreted as the effect of an IS element, within or adjacent to the white locus, which is supposed to retain a duplication of the proximal zeste interacting part of this locus. According to the orientation of the IS element the duplicated part can be active or inactive, giving a zeste or red eye phenotype.The frequency of exceptional offspring after X-ray treatment of the red and zeste unstable stocks have been compared to stable stocks with corresponding genotypes.  相似文献   

12.
A member of Ising's family of large transposing elements (TEs) has inserted into, or very near, the crinkled (ck, 2–50) locus. This TE (TE36) carries functional alleles of both the white and roughest loci, and causes a hypomorphic mutation of ck. The TE is visible in polytene chromosomes as a two-banded insertion between 35B9 and 35C1. These bands show homology to foldback (FB) elements by in situ hybridization. All spontaneous losses of TE36 remain mutant for ck and retain sequences homologous to FB at the site of TE's insertion. TE36 carries only one functional copy of w +, by the criterion that z w, TE36/ + flies are wild-type for eye color but z w; TE36/TE36 flies are zeste. This white+ gene is dosage compensated since w/Y; TE36/+ males have twice as much eye pigment as w/w; TE36/ + females. A form of the TE that has four polytene chromosome bands and expresses twice as much pigment as TE36 has been recovered. However, its white genes are not suppressed by zeste.  相似文献   

13.
14.
Age-dependent allozymic variation in a natural population of lizards   总被引:4,自引:0,他引:4  
An analysis of allozymic variation at 17 loci in a population of the sagebrush lizard (Sceloporus graciosus) in southern Utah yielded an estimate of genic heterozygosity of 0.028. Seven of the loci were variable, but only one, Est-1, was strongly polymorphic. The observation that the frequency of the common genotype (MM) at the Est-1 locus declined monotonically in successive age classes from 0.74 in hatchlings to 0.58 in adults 4 years old or older suggests that allele frequencies at this locus are not independent of selective influences.This research was supported by NSF grant GB-29141 to D.W.T. and NIH grant GM-15769 to R.K.S.  相似文献   

15.
In the Belgian Blue Cattle breed, coat color variation is mainly under the influence of a single autosomal locus, the roan locus, characterized by a pair of codominant alleles: r + (black) and R (white). Heterozygous r + R animals have intermingled black and white hairs, yielding the ``blue' phenotype typical of the breed. Major interest for the roan locus stems from its pleiotropic effect on fertility, owing to the critical role of the R allele in the determinism of White Heifer Disease. We describe the linkage mapping of the roan locus to bovine Chromosome (Chr) 5, in the interval between microsatellite markers BPI and AGLA293, with an associated lodscore of 11.2. Moreover, we map a candidate gene, the Steel locus coding for the mast cell growth factor, to bovine Chr 5. Received: 30 May 1995 / Accepted: 6 September 1995  相似文献   

16.
R. Robinson 《Genetica》1989,79(2):143-145
The predominant colour of the Anatolian Shepherd dog varies from a dark fawn to light red, with a variable black muzzle and face (mask). Evidence is presented that the colour is due to the dominant yellow allele (A y) of the agouti locus. Two other frequent colours are white spotting, due to the piebald allele (s p), and the chinchilla allele (ch). Two rarer colours are the agouti wolf-grey wild type (A +) and a light fawn with a blue facial mask, due to the dilution allele (d).  相似文献   

17.
Summary As a result of a genetic analysis of 63 third chromosome suppressor mutations of position-effect variegation 12 different loci showing dominant suppression have been identified and their map positions determined. A compilcation of the genetic data available for each suppressor locus is given. The strong suppressor effects of the mutations have been quantified by measurements of white variegation inw m4h /w m4h ,w m4h /Y andw m4h /O flies. Mutant alleles of three loci were found in these studies to dominate over the strong enhancer effect of complete loss of the Y chromosome. Most of the identified loci suppressing position-effect variegation represent essential genetic funtions; only three loci represent nonessential functions. Mutations of two loci display recessive butyrate sensitivity and lethal interaction with the heterochromatic Y chromosome suggesting that these genes affect chromosomal condensation. Studies with deficiencies and triploids revealed that most of the loci represent haplo-abnormal suppressor functions. The use of the isolated mutant material for genetic, developmental and molecular studies of processes connected with gene inactivation in position-effect variegation is discussed.Dedicated to Prof. H.J. Becker on the occasion of his 6th birthday  相似文献   

18.
TE146 is a transposing element (TE) consisting of six polytene chromosome bands that has inserted into the no-ocelli (noc 250) locus. This member of Ising's TE family carries two copies of the white and roughest loci. TE146 is lost from noc with a spontaneous frequency of approximately 1 in 22000 chromosomes. All spontaneous losses are accompanied by the reversion of the noc mutation associated with the TE. The TE is associated with fold-back (FB) sequences. The losses of TE146 retain fold-back homology at noc. Of 26 -ray-induced losses of TE146, 16 are gross deletions, removing loci neighboring noc and ten are not. The non-deleted -ray-induced losses are either noc and rst + or noc + and rst . The white+ genes of TE146 are dosage compensated since w/Y; TE146/+ and w/w; TE146/+ flies are sexually dimorphic for eye color. These w + genes are also suppressed by zeste since z w; TE146/+ flies have zeste-colored eyes.  相似文献   

19.
A single formamidase, which is different from the formamidases found in other tissues, occurs in the brains of mice. This enzyme is here called formamidase-5 and the gene symbol is designated For-5. Two alleles are recognized on the basis of their differential heat sensitivity: For-5 b is relatively heat stable and is present in strain C57BL/6J, while For-5 d is relatively heat sensitive and is present in strain DBA/2J. The heat sensitivity of formamidase-5 in 44 other inbred strains and substrains was tested and found to resemble that of C57BL/6J or DBA/2J. Thirty-six recombinant inbred strains derived from progenitors that differed at For-5 were studied to test for single-gene inheritance and linkage with other loci. Complete concordance was found with the esterase-10 locus (Es-10), indicating close linkage. The 99% upper confidence limit of the distance between For-5 and Es-10 is 3.7 centimorgans (cM). Es-10 is located on chromosome 14 about 19 cM from the centromere. An independent demonstration of linkage of For-5 with Es-10 and another chromosome 14 marker, hairless (hr), is provided by the finding that the HRS/J strain, which has been sibmated for 60 generations with forced heterozygosity at the hr locus, is cosegregating at For-5 and Es-10. A survey of 32 inbred strains and substrains revealed that the For-5 d allele is associated with the Es-10 b allele, and that the For-5 b allele is associated with Es-10 a and Es-10 c. Formamidase-5 segregates as expected in the F2 generation of crosses between strains bearing For-5 b and For-5 d alleles. It is possible that this unique formamidase of the brain is involved in the metabolism of a neurotransmitter substance.This research was sponsored in part by the Department of Energy under contract with the Union Carbide Corporation and in part by NIH Research Grant GM-18684 from the National Institute of General Medical Sciences. J. C. F. is a predoctoral Fellow supported by Grant CA 09104 from the National Cancer Institute. The Biology Division of Oak Ridge National Laboratory and the Jackson Laboratory are fully accredited by the American Association for Accreditation of Laboratory Animal Care.  相似文献   

20.
Summary An X chromosome in Drosophila melanogaster is described which is mutationally unstable. Mutational events were identified through phenotypic changes associated with a tandem duplication of the X chromosome in which the white locus is present in duplicate. The left segment of the tandem duplication was marked with the mutant w sp, the right segment with mutant w 17G. Some of the phenotypic changes were identified as deletions involving the w 17G marked segment of the duplication. Other phenotypic changes involved the left segment in which phenotypically w sp mutated to w. Experimental evidence is presented which attributes these latter mutations to insertions of foreign DNA into the w locus equivalent to the insertion mutations of E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号