首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The boreal larch forest of Eurasia is a widespread forest ecosystem and plays an important role in the carbon budget of boreal forests. However, few carbon budgets exist for these forests, and the effects of wildfire, the dominant natural disturbance in this region, on carbon budgets are poorly understood. The objective of this study was to quantify the effects of wildfire on carbon distribution and net primary production (NPP) for three major Dahurian larch (Larix gmelinii Rupr.) forest ecosystems in Tahe, Daxing'anling, north‐eastern China: Larix gmelinii–Ledum palustre, Larix gmelinii–grass and Larix gmelinii–Rhododendron dahurica forests. The experimental design included mature forests (unburned), and lightly and heavily burned forests from the 1.3‐million‐ha 1987 wildfire. We measured carbon distribution and above‐ground NPP, and estimated fine root production from literature values. Total ecosystem carbon content for the mature forests was greatest for Larix–Ledum forests (251.4 t C ha?1) and smallest for Larix–grass forests (123.8 t C ha?1). Larix–Ledum forests contained the smallest vegetation carbon (13.5%), while Larix–Rhododendron contained the largest vegetation carbon (63.1%). Fires tended to transfer carbon from vegetation to detritus and soil. Total NPP did not differ significantly between the lightly burned and unburned stands, and averaged 1.58, 1.29 and 1.01 t C ha?1 year?1 for Larix–grass, Larix–Rhododendron and Larix–Ledum lightly burned stands, respectively. Above‐ground net primary production (ANPP) of heavily burned stands was 92–95% less than unburned and lightly burned stands. The estimated carbon loss during the 1987 fire showed substantial variability among forest types and fire severity levels. Depending upon the assumptions made about the fraction of the landscape occupied by the three larch forest types, the 1987 conflagration in north‐east China released 2.5 × 107?4.9 × 107 t C to the atmosphere. This study illustrates the need to distinguish between the different larch forests for developing general carbon budgets.  相似文献   

2.
A number of remote sensing studies have evaluated the temporal trends of the normalized difference vegetation index (NDVI or vegetation greenness) in the North American boreal forest during the last two decades, often getting quite different results. To examine the effect that the use of different datasets might be having on the estimated trends, we compared the temporal trends of recently burned and unburned sites of boreal forest in central Canada calculated from two datasets: the Global Inventory, Monitoring, and Modeling Studies (GIMMS), which is the most commonly used 8 km dataset, and a new 1 km dataset developed by the Canadian Centre for Remote Sensing (CCRS). We compared the NDVI trends of both datasets along a fire severity gradient in order to evaluate the variance in regeneration rates. Temporal trends were calculated using the seasonal Mann–Kendall trend test, a rank‐based, nonparametric test, which is robust against seasonality, nonnormality, heteroscedasticity, missing values, and serial dependence. The results showed contrasting NDVI trends between the CCRS and the GIMMS datasets. The CCRS dataset showed NDVI increases in all recently burned sites and in 50% of the unburned sites. Surprisingly, the GIMMS dataset did not capture the NDVI recovery in most burned sites and even showed NDVI declines in some burned sites one decade after fire. Between 50% and 75% of GIMMS pixels showed NDVI decreases in the unburned forest compared with <1% of CCRS pixels. Being the most broadly used dataset for monitoring ecosystem and carbon balance changes, the bias towards negative trends in the GIMMS dataset in the North American boreal forest has broad implications for the evaluation of vegetation and carbon dynamics in this region and globally.  相似文献   

3.
Climate warming and drying are modifying the fire dynamics of many boreal forests, moving them towards a regime with a higher frequency of extreme fire years characterized by large burns of high severity. Plot‐scale studies indicate that increased burn severity favors the recruitment of deciduous trees in the initial years following fire. Consequently, a set of biophysical effects of burn severity on postfire boreal successional trajectories at decadal timescales have been hypothesized. Prominent among these are a greater cover of deciduous tree species in intermediately aged stands after more severe burning, with associated implications for carbon and energy balances. Here we investigate whether the current vegetation composition of interior Alaska supports this hypothesis. A chronosequence of six decades of vegetation regrowth following fire was created using a database of burn scars, an existing forest biomass map, and maps of albedo and the deciduous fraction of vegetation that we derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery. The deciduous fraction map depicted the proportion of aboveground biomass in deciduous vegetation, derived using a RandomForest algorithm trained with field data sets (n=69, 71% variance explained). Analysis of the difference Normalized Burn Ratio, a remotely sensed index commonly used as an indicator of burn severity, indicated that burn size and ignition date can provide a proxy of burn severity for historical fires. LIDAR remote sensing and a bioclimatic model of evergreen forest distribution were used to further refine the stratification of the current landscape by burn severity. Our results show that since the 1950s, more severely burned areas in interior Alaska have produced a vegetation cohort that is characterized by greater deciduous biomass. We discuss the importance of this shift in vegetation composition due to climate‐induced changes in fire severity for carbon sequestration in forest biomass and surface reflectance (albedo), among other feedbacks to climate.  相似文献   

4.
As climate rapidly warms at high-latitudes, the boreal forest faces the simultaneous threats of increasing invasive plant abundances and increasing area burned by wildfire. Highly flammable and widespread black spruce (Picea mariana) forest represents a boreal habitat that may be increasingly susceptible to non-native plant invasion. This study assess the role of burn severity, site moisture and time elapsed since burning in determining the invisibility of black spruce forests. We conducted field surveys for presence of non-native plants at 99 burned black spruce forest sites burned in 2004 in three regions of interior Alaska that spanned a gradient of burn severities and site moisture levels, and a chronosequence of sites in a single region that had burned in 1987, 1994, and 1999. We also conducted a greenhouse experiment where we grew invasive plants in vegetation and soil cores taken from a subset of these sites. In both our field survey and the greenhouse experiment, regional differences in soils and vegetation between burn complexes outweighed local burn severity or site moisture in determining the invasibility of burned black spruce sites. In the greenhouse experiments using cores from the 2004 burns, we found that the invasive focal species grew better in cores with soil and vegetation properties characteristic of low severity burns. Invasive plant growth in the greenhouse was greater in cores from the chronosequence burns with higher soil water holding capacity or lower native vascular biomass. We concluded that there are differences in susceptibility to non-native plant invasions between different regions of boreal Alaska based on native species regeneration. Re-establishment of native ground cover vegetation, including rapidly colonizing bryophytes, appear to offer burned areas a level of resistance to invasive plant establishment.  相似文献   

5.
Fire is a common disturbance in the North American boreal forest that influences ecosystem structure and function. The temporal and spatial dynamics of fire are likely to be altered as climate continues to change. In this study, we ask the question: how will area burned in boreal North America by wildfire respond to future changes in climate? To evaluate this question, we developed temporally and spatially explicit relationships between air temperature and fuel moisture codes derived from the Canadian Fire Weather Index System to estimate annual area burned at 2.5° (latitude × longitude) resolution using a Multivariate Adaptive Regression Spline (MARS) approach across Alaska and Canada. Burned area was substantially more predictable in the western portion of boreal North America than in eastern Canada. Burned area was also not very predictable in areas of substantial topographic relief and in areas along the transition between boreal forest and tundra. At the scale of Alaska and western Canada, the empirical fire models explain on the order of 82% of the variation in annual area burned for the period 1960–2002. July temperature was the most frequently occurring predictor across all models, but the fuel moisture codes for the months June through August (as a group) entered the models as the most important predictors of annual area burned. To predict changes in the temporal and spatial dynamics of fire under future climate, the empirical fire models used output from the Canadian Climate Center CGCM2 global climate model to predict annual area burned through the year 2100 across Alaska and western Canada. Relative to 1991–2000, the results suggest that average area burned per decade will double by 2041–2050 and will increase on the order of 3.5–5.5 times by the last decade of the 21st century. To improve the ability to better predict wildfire across Alaska and Canada, future research should focus on incorporating additional effects of long‐term and successional vegetation changes on area burned to account more fully for interactions among fire, climate, and vegetation dynamics.  相似文献   

6.
Mountain watersheds are primary sources of freshwater, carbon sequestration, and other ecosystem services. There is significant interest in the effects of climate change and variability on these processes over short to long time scales. Much of the impact of hydroclimate variability in forest ecosystems is manifested in vegetation dynamics in space and time. In steep terrain, leaf phenology responds to topoclimate in complex ways, and can produce specific and measurable shifts in landscape forest patterns. The onset of spring is usually delayed at a specific rate with increasing elevation (often called Hopkins' Law; Hopkins, 1918), reflecting the dominant controls of temperature on greenup timing. Contrary with greenup, leaf senescence shows inconsistent trends along elevation gradients. Here, we present mechanisms and an explanation for this variability and its significance for ecosystem patterns and services in response to climate. We use moderate‐resolution imaging spectro‐radiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data to derive landscape‐induced phenological patterns over topoclimate gradients in a humid temperate broadleaf forest in southern Appalachians. These phenological patterns are validated with different sets of field observations. Our data demonstrate that divergent behavior of leaf senescence with elevation is closely related to late growing season hydroclimate variability in temperature and water balance patterns. Specifically, a drier late growing season is associated with earlier leaf senescence at low elevation than at middle elevation. The effect of drought stress on vegetation senescence timing also leads to tighter coupling between growing season length and ecosystem water use estimated from observed precipitation and runoff generation. This study indicates increased late growing season drought may be leading to divergent ecosystem response between high and low elevation forests. Landscape‐induced phenological patterns are easily observed over wide areas and may be used as a unique diagnostic for sources of ecosystem vulnerability and sensitivity to hydroclimate change.  相似文献   

7.
森林生态系统立地指数的遥感分析   总被引:5,自引:0,他引:5  
森林生态系统立地指数分析和立地质量的评估是森林生态系统经营管理和造林营林的重要理论基础与规划方法,也是研究森林生态系统生产力的重要内容.由于技术的限制,迄今为止,还没有实现森林生态系统立地空间分布格局的分析和开展立地条件随时间动态变化的研究.卫星遥感为大面积研究森林生态系统的生产力及其空间分布格局和动态提供了一条重要的途径.以云杉为对象,利用卫星遥感为研究手段,在岷江上游的四川西北部松潘镇江关流域研究森林生态系统立地指数的空间分布特点,探索有关遥感反演模型的建立,并通过有关精度的评估分析这种高技术应用的价值和潜力.研究结果表明,遥感植被指数NDVI和TNDVI与野外实测云杉立地指数(SI)基本为线性相关.通过对模型模拟结果和实际测定结果的比较研究,发现在1:1比例的分析图中,NDVI和TNDVI的遥感反演模型都有很好的拟合效果与较高的精度,说明通过遥感植被指数的方法测定森林立地指数具有较高的实用价值.  相似文献   

8.
North American fire‐adapted forests are experiencing changes in fire frequency and climate. These novel conditions may alter postwildfire responses of fire‐adapted trees that survive fires, a topic that has received little attention. Historical, frequent, low‐intensity wildfire in many fire‐adapted forests is generally thought to have a positive effect on the growth and vigor of trees that survive fires. Whether such positive effects can persist under current and future climate conditions is not known. Here, we evaluate long‐term responses to recurrent 20th‐century fires in ponderosa pine, a fire‐adapted tree species, in unlogged forests in north central Idaho. We also examine short‐term responses to individual 20th‐century fires and evaluate whether these responses have changed over time and whether potential variability relates to climate variables and time since last fire. Growth responses were assessed by comparing tree‐ring measurements from trees in stands burned repeatedly during the 20th century at roughly the historical fire frequency with trees in paired control stands that had not burned for at least 70 years. Contrary to expectations, only one site showed significant increases in long‐term growth responses in burned stands compared with control stands. Short‐term responses showed a trend of increasing negative effects of wildfire (reduced diameter growth in the burned stand compared with the control stand) in recent years that had drier winters and springs. There was no effect of time since the previous fire on growth responses to fire. The possible relationships of novel climate conditions with negative tree growth responses in trees that survive fire are discussed. A trend of negative growth responses to wildfire in old‐growth forests could have important ramifications for forest productivity and carbon balance under future climate scenarios.  相似文献   

9.
Aim To examine the trends of 1982–2003 satellite‐derived normalized difference vegetation index (NDVI) values at several spatial scales within tundra and boreal forest areas of Alaska. Location Arctic and subarctic Alaska. Methods Annual maximum NDVI data from the twice monthly Global Inventory Modelling and Mapping Studies (GIMMS) NDVI 1982–2003 data set with 64‐km2 pixels were extracted from a spatial hierarchy including three large regions: ecoregion polygons within regions, ecozone polygons within boreal ecoregions and 100‐km climate station buffers. The 1982–2003 trends of mean annual maximum NDVI values within each area, and within individual pixels, were computed using simple linear regression. The relationship between NDVI and temperature and precipitation was investigated within climate station buffers. Results At the largest spatial scale of polar, boreal and maritime regions, the strongest trend was a negative trend in NDVI within the boreal region. At a finer scale of ecoregion polygons, there was a strong positive NDVI trend in cold arctic tundra areas, and a strong negative trend in interior boreal forest areas. Within boreal ecozone polygons, the weakest negative trends were from areas with a maritime climate or colder mountainous ecozones, while the strongest negative trends were from warmer basin ecozones. The trends from climate station buffers were similar to ecoregion trends, with no significant trends from Bering tundra buffers, significant increasing trends among arctic tundra buffers and significant decreasing trends among interior boreal forest buffers. The interannual variability of NDVI among the arctic tundra buffers was related to the previous summer warmth index. The spatial pattern of increasing tundra NDVI at the pixel level was related to the west‐to‐east spatial pattern in changing climate across arctic Alaska. There was no significant relationship between interannual NDVI and precipitation or temperature among the boreal forest buffers. The decreasing NDVI trend in interior boreal forests may be due to several factors including increased insect/disease infestations, reduced photosynthesis and a change in root/leaf carbon allocation in response to warmer and drier growing season climate. Main conclusions There was a contrast in trends of 1982–2003 annual maximum NDVI, with cold arctic tundra significantly increasing in NDVI and relatively warm and dry interior boreal forest areas consistently decreasing in NDVI. The annual maximum NDVI from arctic tundra areas was strongly related to a summer warmth index, while there were no significant relationships in boreal areas between annual maximum NDVI and precipitation or temperature. Annual maximum NDVI was not related to spring NDVI in either arctic tundra or boreal buffers.  相似文献   

10.
The rate of vegetation recovery from boreal wildfire influences terrestrial carbon cycle processes and climate feedbacks by affecting the surface energy budget and land‐atmosphere carbon exchange. Previous forest recovery assessments using satellite optical‐infrared normalized difference vegetation index (NDVI) and tower CO2 eddy covariance techniques indicate rapid vegetation recovery within 5–10 years, but these techniques are not directly sensitive to changes in vegetation biomass. Alternatively, the vegetation optical depth (VOD) parameter from satellite passive microwave remote sensing can detect changes in canopy biomass structure and may provide a useful metric of post‐fire vegetation response to inform regional recovery assessments. We analyzed a multi‐year (2003–2010) satellite VOD record from the NASA AMSR‐E (Advanced Microwave Scanning Radiometer for EOS) sensor to estimate forest recovery trajectories for 14 large boreal fires from 2004 in Alaska and Canada. The VOD record indicated initial post‐fire canopy biomass recovery within 3–7 years, lagging NDVI recovery by 1–5 years. The VOD lag was attributed to slower non‐photosynthetic (woody) and photosynthetic (foliar) canopy biomass recovery, relative to the faster canopy greenness response indicated from the NDVI. The duration of VOD recovery to pre‐burn conditions was also directly proportional (P < 0.01) to satellite (moderate resolution imaging spectroradiometer) estimated tree cover loss used as a metric of fire severity. Our results indicate that vegetation biomass recovery from boreal fire disturbance is generally slower than reported from previous assessments based solely on satellite optical‐infrared remote sensing, while the VOD parameter enables more comprehensive assessments of boreal forest recovery.  相似文献   

11.
Prior work shows western US forest wildfire activity increased abruptly in the mid-1980s. Large forest wildfires and areas burned in them have continued to increase over recent decades, with most of the increase in lightning-ignited fires. Northern US Rockies forests dominated early increases in wildfire activity, and still contributed 50% of the increase in large fires over the last decade. However, the percentage growth in wildfire activity in Pacific northwestern and southwestern US forests has rapidly increased over the last two decades. Wildfire numbers and burned area are also increasing in non-forest vegetation types. Wildfire activity appears strongly associated with warming and earlier spring snowmelt. Analysis of the drivers of forest wildfire sensitivity to changes in the timing of spring demonstrates that forests at elevations where the historical mean snow-free season ranged between two and four months, with relatively high cumulative warm-season actual evapotranspiration, have been most affected. Increases in large wildfires associated with earlier spring snowmelt scale exponentially with changes in moisture deficit, and moisture deficit changes can explain most of the spatial variability in forest wildfire regime response to the timing of spring.This article is part of the themed issue ‘The interaction of fire and mankind’.  相似文献   

12.
Remotely-sensed vegetation indices, which indicate the density and photosynthetic capacity of vegetation, have been widely used to monitor vegetation dynamics over broad areas. In this paper, we reviewed satellite-based studies on vegetation cover changes, biomass and productivity variations, phenological dynamics, desertification, and grassland degradation in China that occurred over the past 2–3 decades. Our review shows that the satellite-derived index (Normalized Difference Vegetation Index, NDVI) during growing season and the vegetation net primary productivity in major terrestrial ecosystems (for example forests, grasslands, shrubs, and croplands) have significantly increased, while the number of fresh lakes and vegetation coverage in urban regions have experienced a substantial decline. The start of the growing season continually advanced in China's temperate regions until the 1990s, with a large spatial heterogeneity. We also found that the coverage of sparsely-vegetated areas declined, and the NDVI per unit in vegetated areas increased in arid and semi-arid regions because of increased vegetation activity in grassland and oasis areas. However, these results depend strongly not only on the periods chosen for investigation, but also on factors such as data sources, changes in detection methods, and geospatial heterogeneity. Therefore, we should be cautious when applying remote sensing techniques to monitor vegetation structures, functions, and changes.  相似文献   

13.
The impacts of climate change on high-latitude forest ecosystems are still uncertain. Divergent forest productivity trends have recently been reported both at the local and regional level challenging the projections of boreal tree growth dynamics. The present study investigated (i) the responses of different forest productivity proxies to monthly climate (temperature and precipitation) through space and time; and (ii) the local coherency between these proxies through time at four high-latitude boreal Scots pine sites (coastal and inland) in Norway. Forest productivity proxies consisted of two proxies representing stem growth dynamics (radial and height growth) and one proxy representing canopy dynamics (cumulative May-to-September Normalized Difference Vegetation Index (NDVI)). Between-proxy and climate-proxy correlations were computed over the 1982–2011 period and over two 15-yr sub-periods. Over the entire period, radial growth significantly correlated with current year July temperature, and height growth and cumulative NDVI significantly correlated with previous and current growing season temperatures. Significant climate responses were quite similar across sites, despite some higher sensitivity to non-growing season climate at inland sites. Significant climate-proxy correlations identified over the entire period were temporarily unstable. Local coherency between proxies was generally insignificant. The spatiotemporal instability in climate-proxy correlations observed for all proxies underlines evolving responses to climate and challenges the modelling of forest productivity. The general lack of local coherency between proxies at our four study sites suggests that forest productivity estimations based on a single proxy should be considered with great caution. The combined use of different forest growth metrics may help circumvent uncertainties in capturing responses of forest productivity to climate variability and improve estimations of carbon sequestration by forest ecosystems.  相似文献   

14.
黄土高原不同植被覆被类型NDVI对气候变化的响应   总被引:8,自引:0,他引:8  
刘静  温仲明  刚成诚 《生态学报》2020,40(2):678-691
植被与气候是目前研究生态与环境的重要内容。为探究黄土高原地区植被与气候因子之间的响应机制,利用线性趋势分析、Pearson相关分析、多元线性回归模型以及通径分析的方法,对黄土高原2000—2015年全区和不同植被覆被类型区内NDVI与气候因子的变化趋势以及相互作用关系进行分析。植被覆被分类数据和植被指数数据分别来源于ESA CCI-LC(The European Space Agency Climate Change Initiative Land Cover)以及MODND1T/NDVI(Normalized Difference Vegetation Index)。结果表明:(1) 2000—2015年黄土高原全区植被年NDVI_(max)显著增加的区域占总面积的74.25%,不同植被覆被类型年NDVI_(max)分别为常绿阔叶林常绿针叶林落叶阔叶林落叶针叶林镶嵌草地农田镶嵌林地草地灌木,并且都呈显著增加趋势,其中常绿阔叶林和农田增加幅度最大,为0.012/a。(2)黄土高原全区NDVI与气温、日照、降水和相对湿度等气候因子之间没有显著相关性,但在不同植被覆被类型区,气候因子对NDVI存在显著作用,且不同植被覆被类型差异明显。(3)在全区和不同植被覆被类型区NDVI仅对降水的响应比较一致,气温无论在整个区域尺度还是不同植被覆被类型区对植被的影响均不显著。(4)常绿阔叶林、落叶阔叶林、常绿针叶林及镶嵌林地等以乔木为主的植被覆被类型受年均相对湿度和年总日照时数的显著负效应驱动,草地、镶嵌草地等以草本为主的植被覆被类型则受到年总降水量的显著正效应影响。这说明对植被类型进行区分,更有利于揭示气候对植被的作用机制。  相似文献   

15.
Normalized Difference Vegetation Index (NDVI) has been commonly used to estimate terrestrial vegetation distribution and productivity. In this study, we adopted recurrence quantification analysis (RQA) to investigate the spatial patterns of determinism of the vegetation dynamics ecological-geographical transition zones in North China, especially the differences between transition zone and the surrounding areas. The results indicated that there were obvious regional variances in spatial patterns of RQA indices—determinism, laminarity, entropy, and averaged diagonal line length. Remarkable differences of the determinism of NDVI time series also existed between transition zones and the surrounding areas. Moreover, the correlation analysis between the RQA indices and climatic factors suggested that the determinism of the NDVI time series was nonlinearly affected by hydrothermal conditions. Influenced by vegetation patterns, determinism reached the maximum when the annual precipitation is about 400 mm, which is the lower bound of cultivation and forest distribution, and along the 400 mm isohyet is the area where transition zones locate.  相似文献   

16.
浙江省植被NDVI动态及其对气候的响应   总被引:14,自引:0,他引:14  
何月  樊高峰  张小伟  柳苗  高大伟 《生态学报》2012,32(14):4352-4362
利用GIMMS和MODIS两种归一化植被指数(NDVI)资料反演了1982—2010年浙江植被覆盖状况,结合同期研究区63个气象站点的气温、降水和湿润指数等气候指标,分析了该地区植被年际变化、月际变化及其对气候要素的响应特征。结果表明:(1)研究期间,浙江气候总体呈暖干化趋势,植被覆盖缓慢下降,主要是由于森林植被遭破坏,农业生产活动受抑制影响所致,其中NDVI显著减少的地区约占全省陆域面积的29.1%,主要发生在6—11月;(2)降水量及干湿程度对浙江植被NDVI年变化起着决定性作用。植被与气候要素年变化相关分析发现,NDVI与湿润指数关系较降水、气温更为密切,两者相关及偏相关系数均通过0.05水平的置信度检验,这表明在年际尺度上,湿度的增加增大了植被的生长势,有利于植被生长;(3)植被与气候要素月变化分析表明冬季的热量供给是影响浙江植被生长的重要因子,而植被变化对夏季降水和干湿程度的最大响应为滞后两个月;(4)农业生产水平的提高使得农作物种植区NDVI有所增加,人类活动对浙江植被覆盖的影响不可忽视。  相似文献   

17.
The availability of long-term time series (TS) derived from remote sensing (RS) images is favorable for the analysis of vegetation variation and dynamics. However, the choice of appropriate methods is a challenging task. This article presented an experimental comparison of four methods widely used for the detection of long-term trend and seasonal changes of TS, with a case study in north-western Tunisia. The four methods are the Ensemble Empirical Mode Decomposition (EEMD), Multi-Resolution Analysis-Wavelet transform (MRA-WT), Breaks for Additive Season and Trend (BFAST), and Detecting Breakpoints and Estimating Segments in Trend (DBEST). Their efficiencies were compared by analysing Normalized Difference Vegetation Index (NDVI) TS from 2001 to 2017 in the study area, obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) observations. The variations of long-term NDVI trends were analysed using non-parametric statistical tests. Results indicated that MRA-WT gave efficient results for both trend and seasonal changes, especially in forest area. Moreover, it exhibited the fastest efficiency in terms of time of execution and thus recommended for detecting detailed features (such as forest fire detection). DBEST also showed a good performance for trend detection in forest area as MRA-WT, however, it was more constrained to a longer computational time of execution. BFAST and EEMD exhibited a better performance in bare soil and cropland areas, and the latter can be taken as an appropriate and fast alternative for a general long-term trend overview with long TS.  相似文献   

18.
Residual patches of forest remaining after natural or anthropogenic disturbance may facilitate regeneration of fragmented forest. However, residual patch function remains unclear, especially after natural wildfire. We investigate the role of residual boreal forest patches as refugia for bryophytes and ask the question, do they house bryophyte communities similar to those encountered in undisturbed forests? Bryophytes were sampled in three habitat types in black spruce boreal forests illustrating a gradient of disturbance severity: undisturbed forests, residual patches and burned matrices. Temporal, disturbance severity, spatial and structural variables of habitats were also recorded. Bryophyte community composition differed among habitat types with residual patches characterized by higher species richness, the loss of forest specialists and the addition of disturbance-prone species. The bryophyte community found in residual patches is at the interface between the communities of undisturbed forests and burned matrices. As residual patches did not conserve all species, particularly forest specialists, they were not refugia. However, we identify temporal, spatial and structural characteristics that can maintain bryophyte communities most similar to undisturbed forests and enhance residual patch “refugia potential”. Residual patches enhance bryophyte diversity of the landscape housing species that cannot survive in the burned matrix. As conclusion we discuss the use of retention patches in harvested stands, together with the preservation of undisturbed stands that house singular bryophyte communities and especially sensitive forest specialists.  相似文献   

19.
Fire has become an increasingly important disturbance event in south-western Amazonia. We conducted the first assessment of the ecological impacts of these wildfires in 2008, sampling forest structure and biodiversity along twelve 500 m transects in the Chico Mendes Extractive Reserve, Acre, Brazil. Six transects were placed in unburned forests and six were in forests that burned during a series of forest fires that occurred from August to October 2005. Normalized Burn Ratio (NBR) calculations, based on Landsat reflectance data, indicate that all transects were similar prior to the fires. We sampled understorey and canopy vegetation, birds using both mist nets and point counts, coprophagous dung beetles and the leaf-litter ant fauna. Fire had limited influence upon either faunal or floral species richness or community structure responses, and stems <10 cm DBH were the only group to show highly significant (p = 0.001) community turnover in burned forests. Mean aboveground live biomass was statistically indistinguishable in the unburned and burned plots, although there was a significant increase in the total abundance of dead stems in burned plots. Comparisons with previous studies suggest that wildfires had much less effect upon forest structure and biodiversity in these south-western Amazonian forests than in central and eastern Amazonia, where most fire research has been undertaken to date. We discuss potential reasons for the apparent greater resilience of our study plots to wildfire, examining the role of fire intensity, bamboo dominance, background rates of disturbance, landscape and soil conditions.  相似文献   

20.
Ecosystems - The boreal forest is a globally critical biome for carbon cycling. Its forests are shaped by wildfire events that affect ecosystem properties and climate feedbacks including greenhouse...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号