首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method was developed to label epidermal growth factor (EGF) receptors with 125I-EGF in whole cells using chemical cross-linking reagents. Polyacrylamide gel electrophoresis resolved an Mr approximately 180,000 EGF-receptor complex and larger Mr greater than or equal to 360,000 aggregates. The formation of the larger complexes was time and temperature dependent and appeared to represent the initial events of EGF receptor clustering. Alteration of the ratio of 125I-EGF-labeled high- (Kd approximately 0.16 nM) and low- (Kd approximately 1.5 nM) affinity complexes by competition with unlabeled EGF or by induction of additional high-affinity sites with dexamethasone suggested that both sites were represented by the Mr approximately 180,000 125I-EGF-receptor complexes. Digestion of cells before cross-linking detected a small population of trypsin-resistant Mr approximately 180,000 receptors, which could represent previously described cryptic and/or high-affinity receptors. Few of the Mr approximately 360,000 receptors were trypsin resistant. Glucocorticoid induction of high-affinity EGF receptors failed to induce detectable changes in the microclustering of EGF receptors but did result in a 50% increase in EGF-induced receptor phosphorylation in HeLa S3 cell membranes at 4 degrees C. Thus, glucocorticoids increase high-affinity EGF binding sites, EGF-induced receptor phosphorylation, and cell growth.  相似文献   

2.
We have developed a novel Western blot procedure for the detection of epidermal growth factor (EGF) receptors within a complex mixture of membrane proteins. Purified cell membranes from either human placenta or cultured A431 cells were solubilized, resolved by electrophoresis, and electroblotted onto nitrocellulose paper. With 5-15% gradient gels, electroblotting was completed in 2 h and both the high- and low-molecular-weight proteins were transferred evenly onto the nitrocellulose, as indicated by the radiolabeled protein markers. Upon hybridization with 125I-EGF, the membrane receptor was identified as two adjoining bands on the nitrocellulose of 150 and 170 kDa. Binding of 125I-EGF to the immobilized membrane receptor was specific and was displaced by excess unlabeled EGF. The receptor signal on the autoradiogram was optimized when 1% hemoglobin and 0.05% Tween 20 were present during the hybridization. The ligand-binding activity of the immobilized receptor was not affected by sodium dodecyl sulfate detergent or ethylene glycol bis(beta-aminoethyl ether) N,N,N',N'-tetraacetic acid, but was drastically reduced by either heat denaturation or the addition of dithiothreitol to the membrane samples. Using this method, we were able to demonstrate that no noticeable difference was observed between the pre- and postphosphorylated EGF receptors in their ability to bind to 125I-EGF. Because it allows both identification and purification of a receptor from a mixture of proteins, this protocol should have general application in characterizing various receptor-ligand systems.  相似文献   

3.
The binding of 125I-cholecystokinin-33 (125I-CCK-33) to its receptors on rat pancreatic membranes was decreased by modification of membrane protein sulfhydryl groups. Sulfhydryl modifying reagents also caused an accelerated release of bound 125I-CCK-33 from its receptor. Because of the presence of an essential sulfhydryl group(s) in CCK receptor binding we studied the application of the heterobifunctional (SH,NH2) cross-linker, m-maleimidobenzoyl N-hydroxysuccinimide ester (MBS), to affinity label 125I-CCK-33 binding proteins on rat pancreatic plasma membranes. Analysis of the cross-linked products by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography revealed that this heterobifunctional cross-linker affinity labeled a major Mr = 80,000-95,000 protein previously identified as part of the CCK receptor on the basis of affinity labeling using homobifunctional and heterobifunctional photoreactive cross-linkers. Additional proteins of Mr greater than 200,000, and Mr = 130,000-140,000 were affinity labeled using MBS. The efficiency of the cross-linking reaction between 125I-CCK-33 and its membrane binding proteins with MBS was significantly greater than that obtained with NH2-directed homobifunctional reagents such as disuccinimidyl suberate. The efficiency of cross-linking could be dramatically improved by reduction of membrane proteins with low-molecular weight thiols prior to binding and cross-linking. The differential labeling patterns of the CCK binding proteins obtained with chemical cross-linkers of similar length but different chemical reactivity underscores the need for caution in predicting native receptor structure from affinity labeling data alone. Using the same pancreatic plasma membrane preparation and 125I-insulin, the Mr = 125,000 alpha-subunit of the insulin receptor was affinity labeled using MBS as cross-linker, demonstrating its utility in identifying other peptide hormone receptors.  相似文献   

4.
125I-labeled vasoactive intestinal polypeptide (125I-VIP) was covalently cross-linked with its binding sites on intact cultured human lymphoblasts by each of three bifunctional reagents: disuccinimidyl suberate (DSS), ethylene glycol bis(succinimidyl succinate) (EGS), and N-succinimidyl 6-(4'-azido-2'-nitrophenylamino) hexanoate (SANAH). A fourth cross-linking agent with a shorter chain length, N-hydroxysuccinimidyl 4-azidobenzoate (HSAB), was much less effective in cross-linking 125I-VIP to the site. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography demonstrated a band of Mr approximately equal to 50,000 +/- 3,000, regardless of which cross-linker was used. The labeling of this band was specific in that it was prevented by 10(-6) M unlabeled VIP and was partially blocked by the homologous hormones secretin and glucagon. The relative potencies of these peptides in blocking the cross-linking of 125I-VIP to the Mr approximately equal to 50,000 band of the lymphoblasts (VIP greater than secretin greater than or equal to glucagon) were similar to those previously found for competitive inhibition of 125I-VIP binding to its putative high-affinity receptor on these cells. The covalent cross-linking required a bifunctional reagent; it was dependent on both the number of Molt cells and the concentration of 125I-VIP. The apparent molecular weight of the cross-linked species was unchanged by treatment with dithiothreitol. These observations suggest that the Mr = 50,000 species represents 125I-VIP cross-linked to a specific plasma membrane receptor and that the receptor does not contain interchain disulfide bonds.  相似文献   

5.
Swiss 3T3 cells respond to picomolar concentrations of type beta transforming growth factor (TGF-beta) with a dose-dependent increase in the formation of colonies in soft agar, a decrease in the growth of cells in monolayer culture, and changes in morphology. This indicates that these cells have functional TGF-beta receptors able to mediate a biological response. Binding analysis revealed a single class of TGF-beta binding sites (80 000 per cell) with a Kd approximately 50 pM. Receptors were affinity-labeled by covalent attachment to 125I-TGF-beta with bis(sulfosuccinimidyl) suberate (BS3). The complexes formed were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence of 100 mM dithiothreitol and migrated as Mr approximately 180 000 complexes in 3-10% linear gradient gels. The apparent size of these complexes was larger in gels with a higher percentage of acrylamide. The labeling of the 125I-TGF-beta-receptor complexes was inhibited by the presence of excess unlabeled TGF-beta but was unaffected by other growth factors. These complexes could be formed by cross-linking whole cells, intact membranes, or solubilized membranes, demonstrating that the TGF-beta receptor is located on the plasma membrane and can be solubilized without destruction of its ability to bind TGF-beta. A larger Mr approximately 360 000 complex was present in 3-10% linear gradient gels without reduction or after extensive cross-linking, suggesting that the receptor consists of two subunits of similar size attached by disulfide bonds. Since BS3 is membrane-impermeable, at least a portion of both subunits is located on the outer surface of the plasma membrane.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Photoaffinity labeling of dopamine D1 receptors   总被引:5,自引:0,他引:5  
A high-affinity radioiodinated D1 receptor photoaffinity probe, (+/-)-7-[125I]iodo-8-hydroxy-3-methyl-1-(4-azidophenyl)-2,3,4,5-tetra hyd ro- 1H-3-benzazepine ([125I]IMAB), has been synthesized and characterized. In the absence of light, [125I]IMAB bound in a saturable and reversible manner to sites in canine brain striatal membranes with high affinity (KD approximately equal to 220 pM). The binding of [125I]IMAB was stereoselectively and competitively inhibited by dopaminergic agonists and antagonists with an appropriate pharmacological specificity for D1 receptors. The ligand binding subunit of the dopamine D1 receptor was visualized by autoradiography following photoaffinity labeling with [125I]IMAB and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Upon photolysis, [125I]IMAB incorporated into a protein of apparent agents in a stereoselective manner with a potency order typical of dopamine D1 receptors. In addition, smaller subunits of apparent Mr 62,000 and 51,000 were also specifically labeled by [125I]IMAB in these species. Photoaffinity labeling in the absence or presence of multiple protease inhibitors did not alter the migration pattern of [125I]IMAB-labeled subunits upon denaturing electrophoresis in both the absence or presence of urea or thiol reducing/oxidizing reagents. [125I]IMAB should prove to be a useful tool for the subsequent molecular characterization of the D1 receptor from various sources and under differing pathophysiological states.  相似文献   

7.
The cholecystokinin (CCK) receptor in purified plasma membranes prepared from mouse pancreatic acini had a binding affinity of 1.8 nM, an acid pH optimum between 6.0 and 6.5, and an analog specificity of CCK8 greater than CCK33 greater than desulphated CCK8 greater than CCK4. Binding of CCK to its receptor was abolished by pretreatment of plasma membranes with trypsin. When [125I]CCK was cross-linked to its receptors with disuccinimidyl suberate, and the preparation solubilized and subjected to gel electrophoresis and autoradiography, the hormone was associated with Mr 80 000 protein in both the presence and absence of the reducing agent dithiothreitol.  相似文献   

8.
The brush border membrane of the proximal tubule contains two efflux pathways for organic cations from the cell to the tubular fluid: a P-glycoprotein and an organic cation/H+ exchanger. There is evidence that they transport many of the same substrates. Their structural relatedness is unknown and is the subject of this report. The experimental approach was to identify the exchanger with photoaffinity labeling reagents. The rationale was that if the P-glycoprotein and the organic cation/H+ exchanger transport many of the same substrates, then they might be photoaffinity labeled by the same reagents. [125I]Iodoarylazidoprazosin and [3H]azidopine are two reagents, which have been used, to photoaffinity label the P-glycoprotein. We found that several polypeptides were photolabeled in a time- and concentration-dependent manner. The photoincorporation into only two of these polypeptides (41 and 28 kDa) was blocked extensively by the presence of known substrates for the exchanger. The photoaffinity labeling of only the 41-kDa polypeptide was affected by treatment with the chemical reagents, N-ethylmaleimide and dithiothreitol, which are known to affect the exchanger reaction. The findings are consistent with the interpretation that a 41-kDa polypeptide is, or is a component of, the exchanger.  相似文献   

9.
The structures of cell-associated heparan sulfate (HS) proteoglycans and their interaction with the plasma membrane was studied using rat ovarian granulosa cell culture. HS proteoglycans were either metabolically labeled by incubating cell cultures with [3H] leucine and [35S]sulfate or labeled in plasma membrane preparations with a photoactivatable reagent, 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine (TID), a compound which has been shown to selectively label the hydrophobic membrane-binding domains of several proteins. After purification of HS proteoglycans from the labeled cell cultures or from the labeled membrane preparations by repeated Q-Sepharose ion exchange chromatography in 8 M urea, they were analyzed by Superose 6 gel filtration and octyl-Sepharose chromatography both in 4 M guanidine HCl. The results indicated that the HS proteoglycans were labeled with 125I and therefore have an intramembranous domain. Phospholipase C (Bacillus thuringiensis), which specifically cleaves phosphatidylinositol membrane anchors, released approximately 25% of the 35S-labeled HS proteoglycans from the cell surface as well as 20-30% of the 125I-label from the 125I-TID-labeled HS proteoglycans. These data indicate that a subpopulation of HS proteoglycans are intercalated into the plasma membrane through a linkage structure involving phosphatidylinositol. Phospholipase C-resistant, 125I-labeled HS proteoglycans represent those species inserted into membrane through an intercalated peptide sequence. Core protein size of phosphatidylinositol-anchored species estimated by polyacrylamide gel electrophoresis after heparitinase digestion was approximately 80 kDa, and it was significantly larger than that of the directly intercalated species (approximately 70 kDa).  相似文献   

10.
The regulation of growth hormone gene expression by thyroid hormone in cultured GH1 cells is mediated by a chromatin-associated receptor. We have previously described a photoaffinity label derivative of 3,5,3'-triiodo-L-thyronine (L-T3) in which the alanine side chain was modified to form N-2-diazo-3,3,3-trifluoropropionyl-L-T3 (L-[125I]T3-PAL). On exposure to 254 nm UV light, L-[125I]T3-PAL generates a carbene which covalently modifies two thyroid hormone receptor forms in intact GH1 cells; an abundant 47,000 Mr species and a less abundant 57,000 Mr form. We have now synthesized similar photoaffinity label derivatives of 3,5,3',5'-tetraiodo-L-thyronine (L-T4) and 3,3',5'-triiodo-L-thyronine (L-rT3). Both compounds identify the same receptor forms in intact cells and in nuclear extracts in vitro as L-[125I]T3-PAL. Labeling by L-[125I]rT3-PAL was low and consistent with the very low occupancy of receptor by L-rT3. Underivatized L-[125I]T3 and L-[125I]T4 labeled the same receptor forms at 254 nm but at a markedly lower efficiency than their PAL derivatives. In contrast, N-bromoacetyl-L-[125I]T3, a chemical affinity labeling agent, did not derivatize either receptor form in vitro. The relative efficiency of coupling to receptor at 254 nm was L-[125I]T4-PAL greater than L-[125I]T3-PAL greater than L-[125I]T4 greater than L-[125I]T3. Although L-[125I]T4-PAL has a lower affinity for receptor than L-[125I]T3-PAL, its coupling efficiency was 5-10-fold higher. This suggests that the alanine side chain of L-[125I]T4-PAL is positioned in the ligand binding region near a residue which is efficiently modified by photoactivation. With L-[125I]T4-PAL we were able to identify three different molecular weight receptor species in human fibroblast nuclei.  相似文献   

11.
Platelet-derived growth factor (PDGF) is one of the major mitogens in serum to stimulate replication of human smooth muscle cells (SMCs) in culture. Previous studies using human fibroblasts failed to demonstrate changes in the receptor systems for growth factors during cellular senescence. We investigated the kinetics of 125I-PDGF(-BB) binding and down-regulation of the PDGF receptor in three human arterial SMC strains during cellular aging. The number of specific 125I-PDGF binding sites per cell increased slightly at a population doubling level (PDL) of 60%–80% of life span and then decreased at the PDL above 90%. The number of receptors per cell-surface area decreased with increasing in vitro age. The apparent Kd for the 125I-PDGF binding decreased with in vitro senescence. The internalization and degradation of 125I-PDGF per receptor were significantly reduced in senescent SMCs than young cells. Furthermore, down-regulation of the PDGF receptor was significantly greater in sensescent SMCs than young cells. Immunoblot studies demonstrated that changes in b?-subunit of the PDGF receptor accounted for those in the studies using 125I-PDGF and that tyrosine phosphorylation of the PDGF receptor was significantly greater in young SMCs than aged cells. Our results suggest that age-related changes in the receptor systems for PDGF may be important contributors to the failure of DNA synthesis in senescent SMCs. © 1995 Wiley-Liss, Inc.  相似文献   

12.
We have investigated the potential for the steroid affinity-labeled human glucocorticoid receptor to form both intramolecular and intermolecular disulfide bonds. Glucocorticoid receptors labeled in intact HeLa S3 cells with the covalent affinity label [3H]dexamethasone mesylate ([3H]DM) were analyzed on denaturing 5-12% polyacrylamide gels under both nonreducing and reducing conditions. Under nonreducing conditions the affinity-labeled receptor migrated as a heterogeneous species having an average molecular mass of approximately 96 kDa whereas, under reducing conditions, the receptor migrated as a more discrete form. These data suggest that a reducing environment can influence the structure of the glucocorticoid receptor monomer and further imply that sulfhydryl groups within the affinity-labeled receptor are available for modification. To pursue this observation in greater detail, we tested the effect of oxidizing conditions on the structure of the glucocorticoid receptor. The presence of low concentrations (0.125-0.5 mM) of three oxidizing reagents (sodium tetrathionate, disulfiram, and iodosobenzoate) altered the migration of the affinity-labeled receptor resulting in forms of apparent lower molecular mass (as low as 78 kDa). This altered migration, not seen with most other cytosolic proteins, is consistent with the formation of intramolecular disulfide bonds within the receptor which presumably cause it to assume a folded conformation and migrate faster through the gel. At higher concentrations of these reagents (up to 5.0 mM), we also detect a saturably labeled [3H]DM band which has a higher molecular mass (approximately 140 kDa), indicating the formation of intermolecular disulfide bonds between the [3H]DM-labeled receptor and another closely associated protein(s) having a molecular mass of approximately 40 kDa. The effects which these oxidizing reagents have on glucocorticoid receptor structure are completely reversed upon the addition of dithiothreitol, indicating that the observed changes in migration do not reflect receptor proteolysis but rather a folding and unfolding within the receptor monomeric protein. We have also analyzed the effect of this oxidation/reduction on the function of the glucocorticoid receptor. Oxidation of the [3H]DM-labeled receptor complex with 0.5 mM sodium tetrathionate inhibited activation of receptor to a form capable of binding to DNA-cellulose. This inhibition can be reversed with dithiothreitol at 25 degrees C but not at 0 degrees C, suggesting that these oxidizing reagents are inhibitory at the transformation and/or activation steps.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
NSILA-s (nonsuppressible insulin-like activity, soluble in acid ethanol) is a serum peptide that has insulin-like and growth-promoting activities. We have demonstrated previously that liver plasma membranes possess separate receptors for NSILA-s and insulin and have characterized the insulin receptor in detail. In the present study we have characterized the properties and specificity of the NSILA-s receptor and compared them to those of the insulin receptor in the same tissue. Both 125I-NSILA-s and 125I-insulin bind rapidly and reversibly to their receptors in liver membranes; maximal NSILA-s binding occurs at 20 degrees while maximal insulin binding is seen at 1-4 degrees. The pH optimum for NSILA-s binding is broad (6.0 to 8.0), in contrast to the very sharp pH optimum (7.5 to 8.0) for insulin binding. Both receptors exhibit a high degree of specificity. With the insulin receptor, NSILA-s and insulin analogues compete for binding in proportion to their insulin-like potency: insulin greater than proinsulin greater than NSILA-s. With the NSILA-s receptor, NSILA-s is most potent and the order is reversed: NSILA-s greater than proinsulin greater than insulin. Furthermore, six preparations of NSILA-s which varied 70-fold in biological activity competed for 125I-NSILA-s binding in order of their potencies. NSILA-s which had been inactivated biologically by reduction and aminoethylation and growth hormone were less than 1/100,000 as potent as the most purified NSILA-s preparation. Purified preparations of fibroblast growth factor, epidermal growth factor, nerve growth factor, and somatomedins B and C were less than 1% as effective as NSILA-s in competing for the 125I-NSILA-s suggesting that these factors act through other receptors. In contrast, somatomedin A was 10% as active as NSILA-s and multiplication-stimulating activity was fully as active as NSILA-s in competing for the NSILA-s receptor. Analysis of the data suggests that there are approximately 50 times more insulin receptors than NSILA-s receptors per liver cell, while the apparent affinity of NSILA-s receptors is somewhat higher than that of the insulin receptor.  相似文献   

14.
The potentiation of mouse liver derived heparin binding growth factors 1 and 2 (HBGF-1, HBGF-2) activity has been investigated. It was found that both heparin and various sulfhydryl reagents (such as dithiothreitol, DTT) markedly potentiated HBGF-1 activity, but not HBGF-2 activity. Further studies with HBGF-1 indicated that the growth factor would interact with a plasma factor, in a temperature-dependent manner, to become inactive, and that sulfhydryl reagents would reverse this inactivation. Inactivation would not occur either in the presence of heparin or DTT, indicating that heparin and DTT can protect the growth factor from plasma inactivation. When assayed in the absence of plasma, both heparin and DTT were required to reactivate plasma inactivated HBGF-1-ML. A model is presented to explain these data. This model predicts that either DTT or heparin can block the plasma induced inactivation process, but that once inactivation has occurred only sulfhydryl reagents can restore activity. Furthermore, heparin is thought to activate growth factor activity in the absence of plasma by blocking non-productive growth factor binding to the extracellular matrix. The identification of a plasma inactivating factor for mouse liver derived HBGF-1 has important implications for understanding the regulation of extracellular growth factor activity.  相似文献   

15.
Insulin-like growth factor (IGF) I (greater than or equal to 10(-10)M, insulin-like growth factor II (greater than or equal to 10(-9) M), insulin (greater than or equal to 10(-9) M, and epidermal growth factor (EGF, greater than or equal to 10(-11) M) caused rapid membrane ruffling in KB cells. The morphological change was observed within 1 min after the addition of these growth factors and was accompanied by microfilament reorganization, but not by microtubule reorganization. IGF-I, IGF-II, and insulin induced morphologically very similar or identical membrane ruffles with the order of potency IGF-I greater than IGF-II greater than insulin, whereas EGF-induced membrane ruffles were morphologically different. KB cells possessed EGF receptors, type I IGF receptors, and insulin receptors, but few or no type II IGF receptors. Monoclonal antibody against type I IGF receptors, which completely inhibited the binding of 125I-IGF-I to the cells but did not inhibit the binding of 125I-insulin, caused marked inhibition of IGF-I (10(-8) M)-stimulated membrane ruffling. IGF-II (10(-8) M)-stimulated membrane ruffling was partially inhibited in the presence of this antibody, but insulin (10(-7) M)-stimulated membrane ruffling was only slightly inhibited. In contrast, monoclonal antibody against insulin receptors blocked insulin (10(-7) M) stimulation, but not IGF-I (10(-8) M) stimulation, of membrane ruffling. Thus, this study provides evidence that IGF-I and insulin act mostly through their own (homologous) receptors and that IGF-II acts by cross-reacting with both type I IGF and insulin (heterologous) receptors in causing rapid alterations in cytoskeletal structure.  相似文献   

16.
The ability of transforming growth factor-alpha (TGF-alpha) to interact with the gastric mucosal epidermal growth factor (EGF) receptor was investigated using a mucosal membrane preparation. TGF-alpha inhibited specific binding of [125I]EGF to its receptor, but the IC50 for TGF-alpha was at least 100 fold greater than that observed for unlabeled EGF. Cross-linking studies revealed no attachment of [125I]TGF-alpha to EGF-receptor size components, and the unlabeled TGF-alpha was only weakly effective in inhibiting cross-linking of [125I]EGF to the 170 kDa receptor. However, when the cytosolic fraction was reconstituted with the membrane preparation, an enhancement in binding of [125I]TGF-alpha to the EGF receptor occurred in a manner dependent on the concentration of cytosolic protein. Hence the binding characteristics of TGF-alpha to the EGF receptor in gastric mucosa are different from those for EGF.  相似文献   

17.
We have previously reported that in culture, rabbit serum inhibits the growth of the epithelial cell line from Buffalo rat liver (BRL) lower than that of the tumorigenic one transformed by Rous sarcoma virus (RSV-BRL). Here, the serum was fractionated by several different methods. The findings are: 1) the growth inhibitor present (GI) existed as large complexes with non-inhibitory proteins; 2) the complexes were dissociated by 1 M NaCl plus 6 M urea; 3) the dissociated GI did not pass through membrane filter with Mr cutoff 10k; 4) it was stable in 8.5 M urea and 1 M acetic acid (pH 2.5), but labile against either dithiothreitol and trypsin; 5) it was separable into two species with pI 7.5 and 9.5; 6) both species were more effective on RSV-BRL than on BRL.  相似文献   

18.
The non-ionic detergent n-octyl-beta-D-glucopyranoside was used to solubilize the VIP (vasoactive intestinal peptide) receptor from human colonic adenocarcinoma cell line HT29-D4. The binding of monoiodinated 125I-VIP to the solubilized receptor was specific, time-dependent, and reversible. Scatchard analysis of data obtained from competitive displacement of monoiodinated 125I-VIP by native VIP suggested the presence of two classes of VIP binding sites with Kd values of 0.32 and 46.7 nM. The binding capacities of these two classes were 1.7 x 10(10) and 30.2 x 10(10) sites/mg of proteins, respectively. The solubilized receptor retained the specificity of the human VIP receptor towards the peptides of the VIP/secretin/glucagon family. The order of potency in inhibiting monoiodinated 125I-VIP binding was VIP (IC50 = 1.0 x 10(-9) M) much greater than peptide histidine methionine amide (IC50 = 10(-7) M) greater than growth hormone-releasing factor (IC50 = 3 x 10(-7) M) greater than secretin (IC50 greater than 10(-6) M); glucagon had no effect on VIP binding. The reducing agent dithiothreitol inhibited in a dose-dependent manner the binding of 125I-VIP. Covalent cross-linking experiments between the solubilized receptor and 125I-VIP showed that after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography two major and one minor polypeptides of Mr 67,000, 72,000, and 83,000 were specifically labeled. When analyzed by gel filtration, the n-octyl-beta-D-glucopyranoside-solubilized 125I-VIP-receptor complex was resolved into two major peaks with molecular mass in the range of 60-70 and 270-300 kDa. Thus, the soluble form of the VIP receptor was probably a multimeric complex in which disulfide bonds may play an important role to hold the receptor in an active configuration.  相似文献   

19.
The purpose of this study was to investigate the effects exerted by thiol-modifying reagents on themitochondrial sulfonylurea receptor. The thiol-oxidizing agents (timerosal and 5, 5'-dithio-bis(2-nitrobenzoic acid)) were found to produce a large inhibition (70% to 80%) of specific binding of [(3)H]glibenclamide to the beef heart mitochondrial membrane. Similar effects were observed with membrane permeable (N-ethylmaleimide) and non-permeable (mersalyl) thiol modifying agents. Glibenclamide binding was also decreased by oxidizing agents (hydrogen peroxide) but not by reducing agents (reduced gluthatione, dithiothreitol and the 2,3-dihydroxy-1,4-dithiolbutane). The results suggest that intact thiol groups, facing the mitochondrial matrix, are essential for glibenclamide binding to the mitochondrial sulfonylurea receptor.  相似文献   

20.
The mechanism by which the platelet-derived growth factor (PDGF)-binding protein, alpha 2-macroglobulin (alpha 2M), modulates PDGF bioactivity is unknown, but could involve reversible PDGF-alpha 2M binding. Herein we report that greater than 70% of 125I-PDGF-BB or -AB complexed to alpha 2M was dissociated by SDS-denaturation followed by SDS-polyacrylamide gel electrophoresis, i.e. most of the binding was noncovalent. Reduction of the PDGF.alpha 2M complex following denaturation dissociated the cytokine from alpha 2M by greater than 90%, suggesting covalent disulfide bond formation. Approximately 50% of the growth factor was dissociated by lowering the pH from 7.5 to 4.0. 125I-PDGF-BB bound alpha 2M in a time-dependent manner (t1/2 = approximately 1 h), reaching equilibrium after 4 h. The 125I-PDGF.BB/alpha 2M complex dissociated more slowly (t1/2 = approximately 2.5 h). "Slow" and "fast" alpha 2M bound nearly equal amounts of PDGF-AB or -BB. Trypsin treatment converted PDGF-BB/alpha 2M complex to the fast conformation but did not release bound 125I-PDGF-BB. All PDGF-isoforms (AA, -AB, and -BB) competed for binding with 125I-PDGF-BB binding to slow alpha 2M and fast alpha 2M-methylamine by 65-80%. Other cytokines that bind alpha 2M (transforming growth factor-beta 1 and -beta 2, tumor necrosis factor-alpha, basic fibroblast growth factor, interleukin -1 beta, and -6) did not compete for 125I-PDGF-BB binding slow alpha 2M, but transforming growth factor-beta 1 and basic fibroblast growth factor inhibited 125I-PDGF-BB binding alpha 2M-methylamine by 30-50%. The reversible nature of the PDGF.alpha 2M complex could allow for targeted PDGF release near mesenchymal cells which possess PDGF receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号