首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Androgenesis-based methods of doubled haploid (DH) production show considerable variation in efficiency in different barley genotypes. Arabinogalactan proteins (AGPs) have been shown to play a key role in several developmental processes, including embryogenesis, in different plant species. In this study we investigated the effect of exogenous AGPs from gum arabic on androgenesis and the regeneration efficiency in barley anther culture. Supplementation of the induction medium with 10 mg l?1 gum arabic increased the total plant regeneration rate up to 2.8 times; when exposure to GA was extended to also include the pretreatment step, the regeneration rate was up to 6.6-times higher than in control. The effect of gum arabic was reversed by the Yariv reagent, an AGPs antagonist. This suggests a direct involvement of AGPs in androgenic development from barely microspores. Addition of gum arabic reduced cell mortality, increased the frequency of mitotic divisions of microspores and the number of multicellular structures (MCSs) when compared to control. The positive effect of gum arabic also included reduction in time required for the androgenic induction and substantially improved the quality of formed embryos. Observations made in this study imply a complex role of AGPs during androgenic development and confirmed the usefulness of gum arabic in production of barley androgenic plants.  相似文献   

2.
In plants, complete embryos can develop not only from the zygote, but also from somatic cells in tissue culture. How somatic cells undergo the change in fate to become embryogenic is largely unknown. Proteins, secreted into the culture medium such as endochitinases and arabinogalactan proteins (AGPs) are required for somatic embryogenesis. Here we show that carrot (Daucus carota) AGPs can contain glucosamine and N-acetyl-D-glucosaminyl and are sensitive to endochitinase cleavage. To determine the relevance of this observation for embryogenesis, an assay was developed based on the enzymatic removal of the cell wall from cultured cells. The resulting protoplasts had a reduced capacity for somatic embryogenesis, which could be partially restored by adding endochitinases to the protoplasts. AGPs from culture medium or from immature seeds could fully restore or even increase embryogenesis. AGPs pretreated with chitinases were more active than untreated molecules and required an intact carbohydrate constituent for activity. AGPs were only capable of promoting embryogenesis from protoplasts in a short period preceding cell wall reformation. Apart from the increase in embryogenesis, AGPs can reinitiate cell division in a subpopulation of otherwise non-dividing protoplasts. These results show that chitinase-modified AGPs are extracellular matrix molecules able to control or maintain plant cell fate.  相似文献   

3.
Daucus carota L. cell lines secrete a characteristic set of arabinogalactan proteins (AGPs) into the medium. The composition of this set of AGPs changes with the age of the culture, as can be determined by crossed electrophoresis with the specific AGP-binding agent, β-glucosyl Yariv reagent. Addition of AGPs isolated from the medium of a non-embryogenic cell line to an expiant culture initiated the development of the culture to a non-embryogenic cell line. Without addition of AGPs or with addition of carrot-seed AGPs an embryogenic cell line was established. Three-month-old embryogenic cell lines usually contain less than 30% of dense, highly cytoplasmic cells, i.e. the embryogenic cells, but when carrot-seed AGPs were added this percentage increased to 80%. Addition of carrot-seed AGPs to a two-year-old, non-embryogenic cell line resulted in the re-induction of embryogenic potential. These results show that specific AGPs are essential in somatic embryogenesis and are able to direct development of cells.  相似文献   

4.
The hydroxyproline content of developing Zea mays (maize) pollen was determined. The level of hydroxyproline in uninucleate microspores early in pollen development was low (0.004% of dry weight). In contrast, mature pollen is enriched for this amino acid (0.1% of dry weight). In mature pollen, 90% of the hydroxyproline is in the soluble fraction. Upon in vitro pollen germination, hydroxyproline associated with the insoluble fraction increased from 10% to 26% of the total hydroxyproline. Antibodies specific to extensins and arabinogalactan proteins (AGPs), two major classes of hydroxyproline-containing proteins, recognized two distinct groups of proteins in maize pollen by Western analysis. The two types of pollen hydroxyproline-containing proteins could also be distinguished based on their behavior upon anion exchange chromatography.  相似文献   

5.
Arabinogalactan proteins (AGPs), present in cell walls, plasma membranes and extracellular secretions, are massively glycosylated hydroxyproline-rich proteins that play a key role in several plant developmental processes. After stress treatment, microspores cultured in vitro can reprogramme and change their gametophytic developmental pathways towards embryogenesis, thereby producing embryos which can further give rise to haploid and double haploid plants, important biotechnological tools in plant breeding. Microspore embryogenesis constitutes a convenient system for studying the mechanisms underlying cell reprogramming and embryo formation. In this work, the dynamics of both AGP presence and distribution were studied during pollen development and microspore embryogenesis in Brassica napus, by employing a multidisciplinary approach using monoclonal antibodies for AGPs (LM2, LM6, JIM13, JIM14, MAC207) and analysing the expression pattern of the BnAGP Sta 39–4 gene. Results showed the developmental regulation and defined localization of the studied AGP epitopes during the two microspore developmental pathways, revealing different distribution patterns for AGPs with different antigenic reactivity. AGPs recognized by JIM13, JIM14 and MAC207 antibodies were related to pollen maturation, whereas AGPs labelled by LM2 and LM6 were associated with embryo development. Interestingly, the AGPs labelled by JIM13 and JIM14 were induced with the change of microspore fate. Increases in the expression of the Sta 39–4 gene, JIM13 and JIM14 epitopes found specifically in 2–4 cell stage embryo cell walls, suggested that AGPs are early molecular markers of microspore embryogenesis. Later, LM2 and LM6 antigens increased progressively with embryo development and localized on cell walls and cytoplasmic spots, suggesting an active production and secretion of AGPs during in vitro embryo formation. These results give new insights into the involvement of AGPs as potential regulating/signalling molecules in microspore reprogramming and embryogenesis.  相似文献   

6.
ABSTRACT: BACKGROUND: In dicotyledonous plant, the first asymmetric zygotic division and subsequent several cell divisions are crucial for proembryo pattern formation and later embryo development.. Arabinogalactan proteins (AGPs) are a family of extensively glycosylated cell surface proteins that are thought to have important roles in various aspects of plant growth and development, including embryogenesis. Previous results from our laboratory show that AGPs are concerned with tobacco egg cell fertilization and zygotic division. However, how AGPs interact with other factors involved in zygotic division and proembryo development remains unknown. RESULTS: In this study, we used the tobacco in vitro zygote culture system and series of meticulous cell biology techniques to investigate the roles of AGPs in zygote and proembryo cell division. For the first time, we examined tobacco proembryo division patterns detailed to every cell division. The bright-field images and statistical results both revealed that with the addition of an exogenous AGPs inhibitor, beta-glucosyl Yariv (beta-GlcY) reagent, the frequency of aberrant division increased remarkably in cultured tobacco zygotes and proembryos, and the cell plate specific locations of AGPs were greatly reduced after beta-GlcY treatment. In addition, the accumulations of new cell wall materials were also significantly affected by treating with beta-GlcY. Detection of cellulose components by Calcofluor white stain showed that strong fluorescence was located in the newly formed wall of daughter cells after the zygotic division of in vivo samples and the control samples from in vitro culture without beta-GlcY treatment; while there was only weak fluorescence in the newly formed cell walls with beta-GlcY treatment. Immunocytochemistry examination with JIM5 and JIM7 respectively against the low- and high-esterified pectins displayed that these two pectins located in opposite positions of zygotes and proembryos in vivo and the polarity was not affected by beta-GlcY. Furthermore, FM4-64 staining revealed that endosomes were distributed in the cell plates of proembryos, and the localization pattern was also affected by beta-GlcY treatment. These results were further confirmed by subsequent observation with transmission electron microscopy. Moreover, the changes to proembryo cell-organelles induced by beta-GlcY reagent were also observed using fluorescent dye staining technique. CONCLUSIONS: These results imply that AGPs may not only relate to cell plate position decision, but also to the location of new cell wall components. Correlated with other factors, AGPs further influence the zygotic division and proembryo pattern establishment in tobacco.  相似文献   

7.
Arabinogalactan proteins (AGPs) are highly glycosylated extracellular glycoproteins playing important roles in plant growth and development. We have previously reported the possibility that AGPs are involved in the induction of alpha-amylase by gibberellin (GA) in barley aleurone layers by using the beta-glucosyl Yariv reagent (beta-GlcY), which has been presumed to specifically bind AGPs. In this present study, we isolated beta-GlcY-reactive proteins from rice bran rich in aleurone cells. The N-terminal sequences of classical AGP and AG peptides were determined from hydrophilic fractions obtained by reversed phase HPLC. Interestingly, a novel non-specific lipid transfer protein-like protein (OsLTPL1) and a novel early nodulin-like protein (OsENODL1) were also identified in the more hydrophobic fractions from HPLC as beta-GlcY-reactive proteins. Expression analysis of the genes coding for these proteins was performed. While classical AGP, AG peptides and OsLTPL1 were expressed in various parts of rice, OsENODL1 showed temporally and spatially specific expression in the aleurone layers. This new beta-GlcY-reactive protein is a promising candidate for the extracellular signaling factors of GA action in cereal seeds. Furthermore, the possibility that proteins with the AG glycomodule might react with beta-GlcY may broaden the definition of AGPs.  相似文献   

8.
Maize zygotes formed in planta were isolated and co-cultured with barley microspores. Evidence suggests that culture with microspores and/or conditioned media in barley promoted zygotic embryo formation. In order to characterise active substances present in the conditioned media, we collected medium at various times after the initiation of culture. We showed that proteins appeared over time and that their quantity increased during the course of the culture. Some proteins were glycosylated as revealed by the ConA peroxidase test. The use of the antigen -glucosyl Yariv reagent has shown that arabinogalactan-proteins (AGPs) were present. In addition, conditioned medium samples were analysed for their oligosaccharide content. New oligosaccharides appear in the course of the culture but they do not seem to affect development. We discuss in details the results in the context of understanding cell-cell interactions between embryo and nurse cells and the possible parallel with that occurs in ovulo between endosperm and embryo.  相似文献   

9.
Arabinogalactan proteins (AGPs) are glycoproteins present at cell surfaces. Although exact functions of AGPs remain elusive, they are implicated in plant growth and development. The aim of this study was to evaluate the role of AGPs in the process of cell aggregation of Beta vulgaris L. suspension cultures. It was observed that B. vulgaris suspension cultures accumulated AGPs in parallel form to its cell growth. The AGPs maximum content in the stationary phase was 0.330 mg g−1 dry weight (DW) in the cell wall (CW) and 1.534 mg g−1 DW in the culture medium (CM), generating cell aggregates >500 μm (93.21% DW). The addition of tunicamycin (TM) caused a reduction of AGPs content in CW and CM of 46 and 64%, respectively. These changes were associated with inhibition of growth and the reduction of the cell aggregates >500 μm (50.0% DW). When TM was removed from the CM, cell growth, aggregation, and AGPs content on CW and CM were recovered. Precipitation of AGPs with Yariv reagent generated a reduction of 61.14% of AGPs content in CW and a total inhibition of AGPs secretion in CM. This Yariv treatment generated a reduction in the cell aggregates >500 μm of 51.31% of DW. When the Yariv reagent was removed from the culture, cells did not recover their AGPs accumulation. In addition, cell cultures did not recover their ability to grow and aggregate. These results indicate that AGPs are molecules required in the cellular aggregation process of B. vulgaris L. suspension cultures.  相似文献   

10.
Oxidative cross-linking of plasma membrane arabinogalactan proteins   总被引:4,自引:1,他引:3  
Monoclonal antibodies which recognize carbohydrate in arabinogalactan proteins (AGPs) have revealed that certain carbohydrate epitopes at the outer plasma membrane surface are demonstratively regulated. Some epitomes are expressed according to cell position, and AGES are thought to play a role in cell—cell interaction during development. This study demonstrates that sugar beet plasma membranes contain two subagencies of AGES, with apparent molecular masses of 82 and 97 kDa, and that each subfamily consists of a small number of acidic AGP isoforms. Excision of leaves generates three additional AGP complexes with apparent molecular masses of 120, 170 and 210 kDa, with the 170 kDa complex being the major form induced by excision. The addition of millimolar concentrations of H2O2 to a partially purified fraction of the 82 and 97 kDa AGPs also generates AGP complexes, with the 170 kDa complex as the major form. These results indicate that the plasma membrane AGPs are a target for endogenous H2O2.  相似文献   

11.
Arabinogalactan proteins (AGPs) have been implicated in a variety of plant development processes including sexual plant reproduction. As a crucial developmental event, plant sexual reproduction generally occurs inside an ovule embedded in an ovary. The inaccessibility of the egg cells, zygotes, and embryos has hindered our understanding of the importance of AGPs in the early events involving fertilization, zygotic division, and early embryogenesis. In this study, the well-established in vitro zygote and ovary culture systems, together with immunofluorescence and immunogold labelling techniques, were employed to investigate the role of AGPs in the early events of sexual reproduction in Nicotiana tabacum. Dramatic changes in AGP content during ovule development were evidenced by western blotting. Subcellular localization revealed that AGPs are localized in the plasma membrane, cell wall, and cytoplasm of pre- and post-fertilized egg cells, and cytoplasm and vacuoles of two-celled proembryos. Abundant AGPs were detected in unfertilized egg cells; however, the level of AGPs substantially decreased in fertilized egg cells. Polar distribution of AGPs in elongated zygotes was observed. The early two-celled proembryos just from zygote division displayed accumulation of AGPs at a low level, while in the elongated two-celled proembryos at the late stage, the AGP content clearly increased. Provision of betaGlcY, a synthetic phenylglycoside that specifically binds AGPs, to the in vitro cultures of isolated zygote and fertilized ovaries increased abnormal symmetrical division of zygotes. In the culture of pollinated but unfertilized ovaries, addition of betaGlcY resulted in arrest of fertilization of the egg cells, but had no effect on fertilization of the central cells. The possible roles of AGPs in fertilization, zygotic division, and proembryo development are discussed.  相似文献   

12.
Protein accumulation and patterns during embryogenesis in the recalcitrant seeds of the gymnosperm species Araucaria angustifolia (Bert.) O. Kuntze were studied. Soluble seed proteins, chitinases, and arabinogalactan proteins (AGPs) were analyzed by means of 2-D gel electrophoresis, mass spectrometry, isoelectric focusing, Western blot, precipitation and staining with β-glucosyl Yariv reagent (β-Glc)3Y, and gas liquid chromatography. Despite the recalcitrant nature of the seeds, the electrophoretic patterns of A . angustifolia seed proteins showed similarities with orthodox seed types. Proteins showing chitinolytic activity were observed in all seed stages analyzed, but the expression of class IV chitinases was restricted to late stages of seed development. AGPs were prominent during stages of seed development characterized by intensive cell division and differentiation, and their decrease during seed maturation might be related to cell wall modifications during the deposition of storage compounds. Gas liquid chromatographic analyzes of AGPs did not show quantitative changes in their carbohydrate moieties during seed development. A low molecular weight protein specifically expressed in mature seeds was precipitated using (β-Glc)3Y. Amino acid sequences obtained from MS/MS analysis revealed peptides rich in valine and acidic amino acids, but devoid in amino acids normally found in AGPs polypeptides, suggesting that these peptides are not related to classical or non-classical AGPs. Possible implications of chitinases and AGPs during seed development in A . angustifolia are discussed.  相似文献   

13.
Elevation of the culture temperature to 32°C for approximately 8 h can irreversibly change the developmental fate of isolatedBrassica napus microspores from pollen development to embryogenesis. This stress treatment was accompanied by de-novo synthesis of a number of heat-shock proteins (HSPs) of the 70-kDa class: HSP68 and HSP70. A detailed biochemical and cytological analysis was performed of the HSP68 and HSP70 isoforms. Eight HSP68 isoforms, one of which was induced three fold by the stress treatment, were detected on two-dimensional immunoblots. Immunocytochemistry revealed a co-distribution of HSP68 with DNA-containing organelles, presumably mitochondria. Six HSP70 isoforms were detected, one of which was induced six fold under embryogenic culture conditions. During normal pollen development, HSP70 was localized in the nucleoplasm during the S phase of the cell cycle, and predominantly in the cytoplasm during the remainder. Induction of embryogenic development in late unicellular microspores was accompanied by an intense anti-HSP70 labeling of the nucleoplasm during an elongated S phase. In early bicellular pollen the nucleus of the vegetative cell, which normally does not divide and never expresses HSP70, showed intense labeling of the nucleoplasm with anti-HSP70 after 8 h of culture under embryogenic conditions. These results demonstrate a strong correlation between the phase of the cell cycle, the nuclear localization of HSP70 and the induction of embryogenesis. As temperature stress alone is responsible for the induction of embryogenic development, and causes an altered pattern of cell division, there might be a direct involvement of HSP70 in this process.Abbreviations HSP heat-shock protein - 2-D two-dimensional - DAPI 4,6-diamidino-2-phenylindole. 1-D = one-dimensional - pI isoelectric point  相似文献   

14.
Two monoclonal antibodies (ZUM 15 and ZUM 18) directed against carrot (Daucus carota L.) seed arabinogalactan proteins (AGPs) were used to isolate specific AGP fractions. For both carrot and tomato (Lycopersicon esculentum Mill.) seed AGPs analyzed by crossedelectrophoresis, the ZUM 15 and ZUM 18 AGP fractions showed one identical peak. However, the Rf values for the two species were different: 0.82 for carrot seed AGPs and 0.52 for tomato seed AGPs. When the fractionated AGPs (carrot or tomato) were added to carrot cell lines they had a dramatic effect on the culture. One AGP fraction (ZUM 15 AGPs) was able to induce vacuolation of embryogenic cells. Those cells failed to produce embryos. The other AGP fraction (ZUM 18 AGPs) increased the percentage of embryognic cells from about 40% up to 80% within one week and this subsequently resulted in the formation of more embryos on hormone-free medium. This activity was higher than that of unfractionated carrot seed AGPs, while the optimum concentration was 50-fold lower. Since both ZUM 18 AGPs (carrot or tomato) yielded identical responses it can be concluded that neither the Rf value nor the source are essential for biological activity. The dose-response curve of ZUM 18 AGPs showed a sharp optimum. When the AGPs that also bound to the antibody ZUM 15 were removed, the dose-response curve of the remaining AGPs (containing only the ZUM 18 epitope, not the ZUM 15 epitope) resembled a saturation curve. Regardless of its concentration, the fraction in which AGP molecules contained both epitopes showed no appreciable embryogenesis-promoting activity. The biological activity of AGPs was therefore determined by the presence of embryogenesis-enhancing and-inhibiting epitopes. The inhibiting and enhancing epitopes can be located on separate molecules or one single AGP molecule.  相似文献   

15.
Carrot arabinogalactan proteins are interlinked with pectins   总被引:4,自引:0,他引:4  
Cell wall extracts from a carrot cell culture and tap roots were obtained by sequential extraction with water, EDTA buffer solution and cold sodium hydroxide solution. Arabinogalactan proteins (AGPs) were isolated from the extracts and from the medium of the cell culture and analysed for their molecular weight distribution and carbohydrate composition. Copper ions were used to separate the Yariv positive fractions into AGP fractions with a high and a low level of galacturonic acid (GalA). The GalA rich AGP fractions were incubated with pectin methylesterase and polygalacturonase. This enzyme incubation released GalA fragments from the AGP fractions as monitored by HPAEC and MALDI-TOF MS. At least part of carrot AGPs from the medium and cell walls may be covalently linked to pectin containing a homogalacturonan structural element.  相似文献   

16.
Arabinogalactan proteins (AGPs) are very large proteoglycans thought to have more of a signaling than a structural role when secreted into the plant cell wall. AGPs are also the first known family of abundant plant proteins synthesized with glycosylphosphatidylinositol(GPI) anchors. Nascent cellular Arabidopsis AGPs, still bearing an intact GPI anchor, and AGPs copiously discharged into the culture medium after phospholipase-cleavage of their anchor were each represented by more than 15 seemingly homologous molecular species of increasing size. In washed cells 3H-ethanolamine was slowly incorporated into each AGP’s GPI anchor via phosphatidylethanolamine. Pulse labeling of AGPs by 3H-acetate and by 3H-galactose was much more rapid, allowing labeled AGP detection in the growth medium within 1 h. HPLC analysis of the radiolabel distribution in AGPs secreted within 1–8 h revealed a sharp preference for the larger molecular species. After several hours a population of smaller radioactive AGP species began to appear in the medium. Following certain manipulations of the cells newly secreted AGP species measured by HPLC on a relative mass basis formed a pattern surprisingly different from the radioactivity pattern, although larger species still dominated. Thus Arabidopsis cells appear capable of releasing higher mass AGP species apparently stored in cell wall sites along with a unique mixture of freshly synthesized AGPs in combinations potentially active in signaling.  相似文献   

17.
Qin Y  Chen D  Zhao J 《Protoplasma》2007,231(1-2):43-53
Summary. Western blot analysis indicated the presence of two epitopes recognized by the anti-arabinogalactan protein antibodies JIM13 and LM2 and the absence of the JIM4 epitope in mature tobacco anthers. Immunoenzyme localization of arabinogalactan proteins (AGPs) with JIM13 showed that AGPs accumulate mainly at the early stages of anther development. AGP content and distribution were also investigated at the ultrastructural level in pollen tubes grown in vivo and in vitro. Abundant AGPs were present in the transmitting tissue of styles, and the AGP content of the extracellular matrix changed during pollen tube growth. In pollen tubes, immunogold particles were mainly distributed in the cell wall and cytoplasm, especially around the peripheral region of the generative-cell wall. β-D-Glucosyl Yariv reagent, which specifically binds to AGPs, caused slow growth of pollen tubes and reduced immunogold labeling of AGPs with JIM13 in vitro. These data suggest that AGPs participate in male gametogenesis and pollen tube growth and may be important surface molecules in generative and sperm cells. Correspondence and reprints: Key Laboratory of the Ministry of Education for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, People’s Republic of China.  相似文献   

18.
Arabinogalactan proteins (AGPs) are a family of highly glycosylated cell surface proteins located at the plasma membrane and plant cell wall. AGPs play important roles in plant growth and development. Yariv phenylglycoside (βGlcY), synthetic red-brown dye that specifically binds and precipitates AGPs, has been used for detection and quantification of AGPs in plant tissue. Graded concentrations of βGlcY (0–75 μM) were used to investigate the effect of this synthetic dye on induction of in vitro morphogenesis in Centaurium erythraea root culture on two nutrient media: ½MS and ½MS + IBA 1.0 μM. Regeneration of C. erythraea shoots on root explants was stimulated on both media supplemented with 25 μM βGlcY after 8 weeks in culture. Quantification of AGPs in different tissues of C. erythraea was determinate with single radial diffusion method. This work emphasizes clear effect of βGlcY on induction of morphogenesis in vitro in C. erythraea root culture.  相似文献   

19.
20.
The morphology of somatic embryos of Norway spruce ( Picea abies ) varies among different cell lines, from less developed somatic embryos with small embryonic regions (group B) to well developed embryos with large embryonic regions (group A). Only well developed somatic embryos will undergo a maturation process after a treatment with ABA and develop into mature somatic embryos, which is required for plant regeneration. We have previously shown that the presence of specific extracellular proteins can be correlated with the morphology of the somatic embryos. In the present study we show that extracellular proteins concentrated from group A cell lines can stimulate group B embryos to develop further and that seed extract can stably convert B embryos into A embryos. The arabinogalactan protein (AGP) fraction of the extracellular proteins and of the seed extract was shown to be an active component for stimulating B embryos to develop further. Furthermore, the amount and type of extracellular AGPs, as detected with β-glucosyl Yariv reagent and monoclonal antibodies, varied among different types of tissues and cell lines. The data show that development of somatic embryos in Norway spruce is associated with particular extracellular AGPs, which have a regulatory function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号