首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Terrestrial arthropods are important components of boreal ecosystems but relatively little is known about their trophic structure within communities. We measured δ13C and δ15N values in a broad range of arthropod taxa (Coleoptera, Diptera, Ephemeroptera, Homoptera, Hymenoptera, Lepidoptera, Odonata, Orthoptera, Araneae) from boreal forest in Prince Albert National Park, Saskatchewan, Canada. Isotopic measurements supported previous conventional investigations on foraging niches based on stomach content analysis and direct feeding observations but additional, new information was also obtained using the stable isotope approach. Significant differences were observed in both δ15N and δ13C values between various orders and families or superfamilies within orders. Higher variance in stable isotope values for scavengers (e.g. carrion beetles; Coleoptera, Silphidae) and generalists (e.g. ground beetles; Coleoptera, Carabidae) was found compared to specialists (e.g. grasshoppers; Orthoptera). Consistent isotopic differences between terrestrial and aquatic species were not found. However, aquatic insect δ13C values tended to be lower than those of their terrestrial counterparts. We discuss the potential for using stable isotope methods to reconstruct trophic linkages and interaction involving arthropods.  相似文献   

2.
1. We investigated the spatial (longitudinal position and reach geomorphology) and seasonal (spring and autumn) influences on the variation of δ13C among organic matter sources and consumers in a forested Piedmont river, South Carolina, U.S.A. 2. Six sites were sampled along a continuum and varied in basin area from approximately 30 to 300 km2. Sites fell into two geomorphic categories (i) high‐gradient, rock bed (‘rock’) or (ii) low‐gradient, sand bed (‘sand’) sites. 3. Variation in δ13C was more strongly related to reach geomorphology than longitudinal position. δ13C of biofilm and consumers was consistently enriched at rock sites. Leaf litter (i.e. coarse particulate organic matter, CPOM) δ13C did not vary with bed type. There was significant δ13C enrichment at rock sites for biofilm, seston, fine benthic organic matter (FBOM), and eight of nine consumer trophic guilds (e.g. grazing invertebrates, insectivorous fishes). δ13C of biofilm and four trophic guilds was also positively correlated with drainage area, but the magnitude of enrichment was less than between bed types. 4. δ13C was generally enriched in spring, but this varied among organic matter types, consumers, and by bed type. CPOM and seston were enriched in spring, FBOM was enriched in autumn, and biofilm showed no trend. Five consumer guilds were enriched in spring, and only one fish guild, generalised carnivores, showed enrichment of muscle tissue in autumn. 5. Consumer δ13C enrichment at rock sites suggests greater reliance on algal carbon than for consumers at sand sites, but we also found δ13C enrichment of biofilm at rock sites. Thus, differences in consumer δ13C between bed types could be related to (i) increased consumption of biofilm at rock compared with sand sites, or (ii) consumption of biofilm at rock sites that is enriched relative to biofilm at sand sites or (iii) both mechanisms. 6. δ13C signatures in local food webs appear to respond to processes operating at multiple spatial scales. Overall downstream enrichment of biofilm and consumers was disrupted by strong local effects related to bed morphology. These results suggest that human alteration of channel habitat will have corresponding effects on stream food webs, as assessed by changes in δ13C.  相似文献   

3.
1. Increased water motion is expected to reduce boundary layer diffusion resistance of autotrophs, thereby enabling greater isotopic discrimination against 13C such that lower δ13C values (ratio of 13C : 12C) should ensue. A field test of this hypothesis was undertaken by sampling benthic algae in streams of differing current speed.
2. Contrary to the expected negative relationship between δ13C and water motion, filamentous benthic algae were found to exhibit higher δ13C values in rapid water.
3. Under conditions of low current in the streams studied, concentrations of dissolved organic carbon as measured by water colour are elevated through the microbial decomposition of largely terrestrial organic matter. Photoassimilation of this respired carbon by benthic filamentous algae generates 13C‐depletion and lower δ13C values, and appears to be substantial enough in the streams used in the present study to override the competing influence of water motion on boundary layer thickness.  相似文献   

4.
Understanding ecosystem carbon (C) and nitrogen (N) cycling under global change requires experiments maintaining natural interactions among soil structure, soil communities, nutrient availability, and plant growth. In model Douglas-fir ecosystems maintained for five growing seasons, elevated temperature and carbon dioxide (CO2) increased photosynthesis and increased C storage belowground but not aboveground. We hypothesized that interactions between N cycling and C fluxes through two main groups of microbes, mycorrhizal fungi (symbiotic with plants) and saprotrophic fungi (free-living), mediated ecosystem C storage. To quantify proportions of mycorrhizal and saprotrophic fungi, we measured stable isotopes in fungivorous microarthropods that efficiently censused the fungal community. Fungivorous microarthropods consumed on average 35% mycorrhizal fungi and 65% saprotrophic fungi. Elevated temperature decreased C flux through mycorrhizal fungi by 7%, whereas elevated CO2 increased it by 4%. The dietary proportion of mycorrhizal fungi correlated across treatments with total plant biomass (n= 4, r2= 0.96, P= 0.021), but not with root biomass. This suggests that belowground allocation increased with increasing plant biomass, but that mycorrhizal fungi were stronger sinks for recent photosynthate than roots. Low N content of needles (0.8–1.1%) and A horizon soil (0.11%) coupled with high C : N ratios of A horizon soil (25–26) and litter (36–48) indicated severe N limitation. Elevated temperature treatments increased the saprotrophic decomposition of litter and lowered litter C : N ratios. Because of low N availability of this litter, its decomposition presumably increased N immobilization belowground, thereby restricting soil N availability for both mycorrhizal fungi and plant growth. Although increased photosynthesis with elevated CO2 increased allocation of C to ectomycorrhizal fungi, it did not benefit plant N status. Most N for plants and soil storage was derived from litter decomposition. N sequestration by mycorrhizal fungi and limited N release during litter decomposition by saprotrophic fungi restricted N supply to plants, thereby constraining plant growth response to the different treatments.  相似文献   

5.
The impact of a heterogeneous within‐crown light environment on carbon allocation was investigated on young walnut trees trained on two branches: one left in full sunlight, the other shaded until leaf fall resulting in 67% reduction in photosynthetically active radiation. In September, the two branches were separately labelled with 14CO2 and 13CO2, respectively, so that the photosynthates from each branch could be traced independently at the same time. Although some carbon movements could be detected within 5 d in both directions (including from the shaded branch to the sun branch), between‐branch carbon movements were very limited: approximately 1% of the diurnal net assimilation of a branch. At this time of the year branch autonomy was nearly total, leading to increased relative respiratory losses and a moderate growth deficit in the shaded branch. The ratio of growth to reserve storage rate was only slightly affected, indicating that reserves acted not as a mere buffer for excess C but as an active sink for assimilates. In winter, branch autonomy was more questionable, as significant amounts of carbon were imported into both branches, possibly representing up to 10% of total branch reserves. Further within‐plant carbon transfers occurred in spring, which totally abolished plant autonomy, as new shoots sprouted on each branch received significantly more C mobilized from tree‐wide reserves than from local, mother‐branch located reserves. This allowed great flexibility of tree response to environment changes at the yearly time scale. As phloem is considered not functional in winter, it is suggested that xylem is involved as the pathway for carbohydrate movements at this time of the year. This is in agreement with other results regarding sugar exchanges between the xylem vessels and the neighbouring reserve parenchyma tissues.  相似文献   

6.
7.
1. Although marine research has indicated that metabolic fractionations of 13C due to differences in organismal trophic position and proximal composition can complicate the isotopic interpretation of energy flow pathways, such potentially confounding problems have never been examined in freshwater benthic food webs.
2. The δ13C values of animals comprising a littoral benthic food web composited from four Canadian Shield lakes showed no relationship with either individual trophic position (δ15N) or lipid content (C/N ratios).
3. Differences in the relative incorporation of autochthonous and allochthonous energy sources by freshwater benthic organisms will alter their δ13C and δ15N values, thereby masking any possibility of observing 13C trophic enrichment.
4. Removal of the possibly confounding influences of lipids through either empirical correction or by analytical extraction may be unnecessary in studies of freshwater benthic food webs. Likewise, a priori adjustments in δ13C for freshwater benthic organisms in order to accommodate trophic fractionations which are presumed to occur, based on data from marine offshore food webs, may also be inappropriate.  相似文献   

8.
1. Although marine research has indicated that metabolic fractionations of 13C due to differences in organismal trophic position and proximal composition can complicate the isotopic interpretation of energy flow pathways, such potentially confounding problems have never been examined in freshwater benthic food webs.
2. The δ13C values of animals comprising a littoral benthic food web composited from four Canadian Shield lakes showed no relationship with either individual trophic position (δ15N) or lipid content (C/N ratios).
3. Differences in the relative incorporation of autochthonous and allochthonous energy sources by freshwater benthic organisms will alter their δ13C and δ15N values, thereby masking any possibility of observing 13C trophic enrichment.
4. Removal of the possibly confounding influences of lipids through either empirical correction or by analytical extraction may be unnecessary in studies of freshwater benthic food webs. Likewise, a priori adjustments in δ13C for freshwater benthic organisms in order to accommodate trophic fractionations which are presumed to occur, based on data from marine offshore food webs, may also be inappropriate.  相似文献   

9.
10.
The natural abundance of 13C and 15N was measured in basidiocarps of at least 115 species in 88 genera of ectomycorrhizal, wood-decomposing and litter-decomposing fungi from Japan and Malaysia. The natural abundance of 13C and 15N was also measured in leaves, litter, soil and wood from three different sites. 15N and 13C were enriched in ectomycorrhizal and wood-decomposing fungi, respectively, relative to their substrates. Ectomycorrhizal and wood-decomposing fungi could be distinguished on the basis of their δ13C and δ15N signatures. Although there was high variability in the isotopic composition of fungi, the following isotope- enrichment factors (ε, mean±SD) of the fungi relative to substrates were observed:
εectomycorrhizal fungi/litter = 6.1±0.4‰15N
εectomycorrhizal fungi/wood = 1.4±0.8‰13C
εwood-decomposing fungi/wood = −0.6±0.7‰15N
εwood-decomposing fungi/wood = 3.5±0.9‰13C
The basis of isotope fractionation in C metabolism from wood to wood-decomposing fungus is discussed.  相似文献   

11.
12.
Evidence is presented for a very specific, seasonally recurring tri‐phase carbon isotope pattern in tree rings of broad‐leaf deciduous tree species. It is derived from highly resolved intra‐annual measurements of 13C/12C ratios of wood and cellulose from tree rings of Fagus sylvatica, Populus nigra, Quercus petraea and Morus alba. Investigations on δ13C from buds and leaves of Fagus sylvatica revealed a similar tri‐phase δ13C pattern. At the very beginning of a growing season, the δ13C trend of tree rings and foliage shows a marked increase of up to 5‰. The maximum δ13C‐value of each vegetation period always occurs in young heterotrophic leaves shortly after bud burst and persistently in the early wood of each tree ring, when growth depends on carbon reserves. Thereafter, δ13C profiles represent the autotrophic stage of the leaves, which show different patterns of variation, by and large characterized by a decline. The minimum δ13C‐value always shows up in the late wood of each tree ring. At the very end of each tree ring δ13C‐values start rising again. This increase in δ13C marks the gradual switch‐over to storage‐dependent growth and can also be observed in senescent leaves. Seasonal changes of more than 4‰ were measured, whereas contiguous δ13C values rarely differed from each other by more than 0.3‰. This tri‐phase pattern cannot be explained by the common model of carbon isotope fractionation during photosynthesis. It appears to be primarily an indication of seasonal changes in down‐stream processes of the carbohydrate metabolism. Environmental influences on the carbon isotope fractionation during photosynthesis are presumably of secondary importance and expressed by certain peculiarities showing up during the autotrophic phase, i.e. the mid‐section of the seasonal δ13C pattern.  相似文献   

13.
The scales of whitefish Coregonus lavaretus were used in place of dorsal muscle, which necessitates killing the fish, to study food webs from the δ13C and δ15N isotopic ratios in the organic fraction. As scales are composed of both organic and calcified fractions, a protocol for scale decalcification was first devised. The δ13C and δ15N values of the decalcified scales were then shown to be closely correlated to those of the dorsal muscle, demonstrating that scales could be used in place of muscle to study food webs. Changes in the δ13C of whitefish were determined from a scale collection that extended over the period during which the trophic state of Lake Geneva was recovering.  相似文献   

14.
15.
We assessed the effects of doubling atmospheric CO2 concentration, [CO2], on C and N allocation within pedunculate oak plants (Quercus robur L.) grown in containers under optimal water supply. A short-term dual 13CO2 and 15NO3? labelling experiment was carried out when the plants had formed their third growing flush. The 22-week exposure to 700 μl l?1 [CO2] stimulated plant growth and biomass accumulation (+53% as compared with the 350 μl l?1 [CO2] treatment) but decreased the root/shoot biomass ratio (-23%) and specific leaf area (-18%). Moreover, there was an increase in net CO2 assimilation rate (+37% on a leaf dry weight basis; +71% on a leaf area basis), and a decrease in both above- and below-ground CO2 respiration rates (-32 and -26%, respectively, on a dry mass basis) under elevated [CO2]. 13C acquisition, expressed on a plant mass basis or on a plant leaf area basis, was also markedly stimulated under elevated [CO2] both after the 12-h 13CO2 pulse phase and after the 60-h chase phase. Plant N content was increased under elevated CO2 (+36%), but not enough to compensate for the increase in plant C content (+53%). Thus, the plant C/N ratio was increased (+13%) and plant N concentration was decreased (-11%). There was no effect of elevated [CO2] on fine root-specific 15N uptake (amount of recently assimilated 15N per unit fine root dry mass), suggesting that modifications of plant N pools were merely linked to root size and not to root function. N concentration was decreased in the leaves of the first and second growing flushes and in the coarse roots, whereas it was unaffected by [CO2] in the stem and in the actively growing organs (fine roots and leaves of the third growth flush). Furthermore, leaf N content per unit area was unaffected by [CO2]. These results are consistent with the short-term optimization of N distribution within the plants with respect to growth and photosynthesis. Such an optimization might be achieved at the expense of the N pools in storage compartments (coarse roots, leaves of the first and second growth flushes). After the 60-h 13C chase phase, leaves of the first and second growth flushes were almost completely depleted in recent 13C under ambient [CO2], whereas these leaves retained important amounts of recently assimilated 13C (carbohydrate reserves?) under elevated [CO2].  相似文献   

16.
Abstract: Cerebral metabolism of d [1-13C]glucose was studied with localized 13C NMR spectroscopy during intravenous infusion of enriched [1-13C]glucose in four healthy subjects. The use of three-dimensional localization resulted in the complete elimination of triacylglycerol resonance that originated in scalp and subcutaneous fat. The sensitivity and resolution were sufficient to allow 4 min of time-resolved observation of label incorporation into the C3 and C4 resonances of glutamate and C4 of glutamine, as well as C3 of aspartate with lower time resolution. [4-13C]Glutamate labeled rapidly reaching close to maximum labeling at 60 min. The label flow into [3-13C]glutamate clearly lagged behind that of [4-13C]glutamate and peaked at t = 110–140 min. Multiplets due to homonuclear 13C-13C coupling between the C3 and C4 peaks of the glutamate molecule were observed in vivo. Isotopomer analysis of spectra acquired between 120 and 180 min yielded a 13C isotopic fraction at C4 glutamate of 27 ± 2% (n = 4), which was slightly less than one-half the enrichment of the C1 position of plasma glucose (63 ± 1%), p < 0.05. By comparison with an external standard the total amount of [4-13C]glutamate was directly quantified to be 2.4 ± 0.1 µmol/ml-brain. Together with the isotopomer data this gave a calculated brain glutamate concentration of 9.1 ± 0.7 µmol/ml, which agrees with previous estimates of total brain glutamate concentrations. The agreement suggests that essentially all of the brain glutamate is derived from glucose in healthy human brain.  相似文献   

17.
18.
Abstract: Production of [14C]acetylcholine and 14CO2 was examined by using tissue prisms from neocortex, hippocampus, and striatum from rats aged approximately 5 months, 13 months, and 27 months. [14C]Acetylcholine synthesis in the striatum showed highly significant decreases with age for measurements in the presence of both 5 m m - and 31 m m -K+, contrasting with the lack of significant change in 14CO2 production in this region. The neocortex and hippocampus showed only small changes, especially when comparison was made between 13-month and senescent animals. Measurements of the release of [14C]acetylcholine and influence of atropine on this release confirmed the relative stability with age of the cholinergic system in the neocortex.  相似文献   

19.
We measured the carbon and oxygen isotopic composition of stem cellulose of Pinus sylvestris, Picea abies, Fagus sylvatica and Fraxinus excelsior. Several sites along a transect of a small valley in Switzerland were selected which differ in soil moisture conditions. At every site, six trees per species were sampled, and a sample representing a mean value for the period from 1940 to 1990 was analysed. For all species, the mean site δ13C and δ18O of stem cellulose are related to the soil moisture availability, whereby higher isotope ratios are found at drier sites. This result is consistent with isotope fractionation models when assuming enhanced stomatal resistance (thus higher δ13C of incorporated carbon) and increased oxygen isotope enrichment in the leaf water (thus higher δ18O) at the dry sites. δ18 O-δ13C plots reveal a linear relationship between the carbon and oxygen isotopes in cellulose. To interpret this relationship we developed an equation which combines the above-mentioned fractionation models. An important new parameter is the degree to which the leaf water enrichment is reflected in the stem cellulose. In the combined model the slope of the δ18O-δ13C plot is related to the sensitivity of the pi/pa of a plant to changing relative humidity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号