首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For pulmonary structure-function analysis excised rabbit lungs were fixed by vascular perfusion at six points on the pressure-volume (P-V) curve, i.e. at 40, 80, and 100% of total lung capacity (TLC) on inflation, at 80 and 40% TLC on deflation, and at 80% TLC on reinflation. Before fixation alveolar surface tensions (gamma) were measured in individual alveoli over the entire P-V loop, using an improved microdroplet method. A maximal gamma of approximately 30 mN/m was measured at TLC, which decreased during lung deflation to about 1 mN/m at 40% TLC. Surface tensions were considerably higher on the inflation limb starting from zero pressure than on the deflation limb (gamma-V hysteresis). In contrast, the corresponding alveolar surface area-volume (SA-V) relationship did not form a complete hysteresis over the entire volume range. There was a considerable difference in SA between lungs inflated to 40% TLC (1.49 +/- 0.11 m2) and lungs deflated to 40% TLC (2.19 +/- 0.21 m2), but at 80% TLC the values of SA were essentially the same regardless of the volume history. The data indicate that the gamma-SA hysteresis is only in part accountable for the P-V hysteresis and that the determinative factors of alveolar geometry change with lung volume. At low lung volumes airspace dimensions appear to be governed by an interplay between surface and tissue forces. At higher lung volumes the tissue forces become predominant.  相似文献   

2.
Stress failure in pulmonary capillaries   总被引:1,自引:0,他引:1  
In the mammalian lung, alveolar gas and blood are separated by an extremely thin membrane, despite the fact that mechanical failure could be catastrophic for gas exchange. We raised the pulmonary capillary pressure in anesthetized rabbits until stress failure occurred. At capillary transmural pressures greater than or equal to 40 mmHg, disruption of the capillary endothelium and alveolar epithelium was seen in some locations. The three principal forces acting on the capillary wall were analyzed. 1) Circumferential wall tension caused by the transmural pressure. This is approximately 25 dyn/cm (25 mN/m) at failure where the radius of curvature of the capillary is 5 microns. This tension is small, being comparable with the tension in the alveolar wall associated with lung elastic recoil. 2) Surface tension of the alveolar lining layer. This contributes support to the capillaries that bulge into the alveolar spaces at these high pressures. When protein leakage into the alveolar spaces occurs because of stress failure, the increase in surface tension caused by surfactant inhibition could be a powerful force preventing further failure. 3) Tension of the tissue elements in the alveolar wall associated with lung inflation. This may be negligible at normal lung volumes but considerable at high volumes. Whereas circumferential wall tension is low, capillary wall stress at failure is very high at approximately 8 x 10(5) dyn/cm2 (8 x 10(4) N/m2) where the thickness is only 0.3 microns. This is approximately the same as the wall stress of the normal aorta, which is predominantly composed of collagen and elastin. The strength of the thin part of the capillary wall is probably attributable to the collagen IV of the basement membranes. The safety factor is apparently small when the capillary pressure is raised during heavy exercise. Stress failure causes increased permeability with protein leakage, or frank hemorrhage, and probably has a role in several types of lung disease.  相似文献   

3.
Alveolar surface tension (gamma)-lung volume relationships were obtained for quasi-static and dynamic lung pressure-volume (PV) histories from measurements of PV curves of liquid- and air-filled excised rabbit lungs. PV relationships were measured at room temperature in lungs filled with test liquids with constant liquid-liquid interfacial tensions with alveolar surface-active materials; and air-filled lungs before and after the normal alveolar surface film was covered with test liquids with constant values of liquid- and air-liquid interfacial tensions. Interfacial tensions of test liquids were measured in a surface balance on monolayers of dipalmitoyl phosphatidylcholine. Values of gamma for the normal air-filled lung were obtained either from points of intersection between PV curves with the normal and test liquid interface or from a general relationship between gamma and the component of recoil pressure due to surface tension derived from the data. In contrast to previous analyses that have used PV measurements, this approach does not depend on assumptions about lung microstructural geometry. Surface tension-volume relationships for the normal air-filled lung show a prominent hysteresis with surface tension ranging from near 0 at low volumes during lung deflation to transiently high values near 40 dyn/cm during inflation; value of equilibrium surface tension (gamma EQ) near 28 dyn/cm; and characteristic transitions in surface film compressibility and associated transitions in film kinetic behavior in nonequilibrium film states where gamma deviates from gamma EQ. These features are consistent with the behavior predicted from current models of alveolar surface film behavior.  相似文献   

4.
Alveolar recruitment is a central strategy in the ventilation of patients with acute lung injury and other lung diseases associated with alveolar collapse and atelectasis. However, biomechanical insights into the opening and collapse of individual alveoli are still limited. A better understanding of alveolar recruitment and the interaction between alveoli in intact and injured lungs is of crucial relevance for the evaluation of the potential efficacy of ventilation strategies. We simulated human alveolar biomechanics in normal and injured lungs. We used a basic simulation model for the biomechanical behavior of virtual single alveoli to compute parameterized pressure–volume curves. Based on these curves, we analyzed the interaction and stability in a system composed of two alveoli. We introduced different values for surface tension and tissue properties to simulate different forms of lung injury. The data obtained predict that alveoli with identical properties can coexist with both different volumes and with equal volumes depending on the pressure. Alveoli in injured lungs with increased surface tension will collapse at normal breathing pressures. However, recruitment maneuvers and positive endexpiratory pressure can stabilize those alveoli, but coexisting unaffected alveoli might be overdistended. In injured alveoli with reduced compliance collapse is less likely, alveoli are expected to remain open, but with a smaller volume. Expanding them to normal size would overdistend coexisting unaffected alveoli. The present simulation model yields novel insights into the interaction between alveoli and may thus increase our understanding of the prospects of recruitment maneuvers in different forms of lung injury.  相似文献   

5.
Mechanics of edematous lungs.   总被引:5,自引:0,他引:5  
Using the parenchymal marker technique, we measured pressure (P)-volume (P-V) curves of regions with volumes of approximately 1 cm3 in the dependent caudal lobes of oleic acid-injured dog lungs, during a very slow inflation from P = 0 to P = 30 cmH2O. The regional P-V curves are strongly sigmoidal. Regional volume, as a fraction of volume at total lung capacity, remains constant at 0.4-0.5 for airway P values from 0 to approximately 20 cmH2O and then increases rapidly, but continuously, to 1 at P = approximately 25 cmH2O. A model of parenchymal mechanics was modified to include the effects of elevated surface tension and fluid in the alveolar spaces. P-V curves calculated from the model are similar to the measured P-V curves. At lower lung volumes, P increases rapidly with lung volume as the air-fluid interface penetrates the mouth of the alveolus. At a value of P = approximately 20 cmH2O, the air-fluid interface is inside the alveolus and the lung is compliant, like an air-filled lung with constant surface tension. We conclude that the properties of the P-V curve of edematous lungs, particularly the knee in the P-V curve, are the result of the mechanics of parenchyma with constant surface tension and partially fluid-filled alveoli, not the result of abrupt opening of airways or atelectatic parenchyma.  相似文献   

6.
A species comparison of alveolar size and surface forces   总被引:1,自引:0,他引:1  
The independent roles of alveolar size and surface tension in relation to lung stability were investigated in 11 different mammalian species whose body weight ranged from 0.03 to 50 kg. This range in species provided a wide variation in subgross anatomy as well as a fourfold range in alveolar diameter. Alveolar diameter was estimated from the mean linear intercept (Lm) of fixed lungs. Quasi-static pressure-volume curves were determined in excised lungs and the percent volume remaining on deflation from total lung capacity at 30 cmH2O to 10 cmH2O (%V10) provided an index of deflation stability related to functional surfactant. Surface tension of lung extract was measured in the Wilhelmy balance, and the minimum surface tension measured provided an index of surface tension lowering capacity of surfactant. Relationships of %V10 with alveolar diameter and surface tension with alveolar diameter were examined for correlations. Our results indicated that despite a range in Lm between 31 and 133 micron (mouse to pig), %V10 did not change in proportion with Lm across species. Similarly, minimum surface tension was about the same (6.1 to 8.8 dyn/cm) across a threefold difference in alveolar diameter. These results suggest that a stable alveolar configuration is maintained by both surface and tissue forces in a complex manner yet to be analyzed.  相似文献   

7.
Structural aspects of gas exchange   总被引:1,自引:0,他引:1  
The lung is composed of several million small air spaces, lined by a delicate tissue membrane separating air from capillary blood. The design features of the gas exchange region in the lung are optimal for gaseous diffusion, by having a very extensive contact surface but with a minimal tissue barrier composed of an epithelial and endothelial layer separating an interstitial layer. The extent of the gas exchange surface in adult lungs is determined by general maturation which in turn is influenced by metabolic requirements of the organism. Environmental factors can modulate the pattern of ultimate lung development. Lung inflation causes air spaces to expand mainly by a process of tissue unfolding beneath an extremely thin layer of alveolar surfactant. This ensures cellular integrity during extreme deformations while at the same time providing a reserve of gas exchange surface so that functional diffusion capacity at all lung volumes is less than the structural maximum.  相似文献   

8.
At fixed lung volume (VL), alterations in surface tension change alveolar surface area (S) and lung recoil (PL). Wilson (26), using data from fixed lungs (1, 9), quantified the isovolume change in S with PL. We reexamined this question in fresh excised rabbit lungs, with two important differences. First, we measured fractional changes in S by using diffuse light scattering, avoiding the potential upset of the balance of tissue and surface forces during fixation. Second, we altered surface tension by ventilating the lungs with nebulized polydimethylsiloxane, with much less residual fluid compared with lavage. We found that S decreased at low and mid VL (treatment surface tension > control) by about half of Wilson's estimates and was nearly unaffected by treatment at high VL. This suggests that with increased surface tension there is 1) greater septal retraction in lungs fixed by vascular perfusion compared with unfixed lungs and 2) a greater increase in PL and less loss of S than would have been predicted.  相似文献   

9.
The direct contribution of forces in tree structures in the lung to lung recoil pressure and changes in recoil pressure induced by alterations of the forces are analyzed. The analysis distinguishes the contributions of axial and circumferential tensions in the trees and indicates that only axial tensions directly contribute to static recoil. This contribution is derived from analysis of the axial forces transmitted across a random plane transecting the lung. The change in recoil pressure induced by changes in axial tension is similarly derived. Alterations of circumferential tensions in the trees indirectly change recoil by causing nonuniform deformations of the surrounding lung parenchyma, and a continuum elasticity solution for the stress induced by the deformations is derived. Sample calculations are presented for the airway tree based on available data on airway morphometric and mechanical properties. The increase in recoil pressure accompanying increases in axial and circumferential tensions with contraction of airway smooth muscle is also analyzed. The calculations indicate that axial stresses in the airway tree out to bronchioles directly contribute only a small fraction of the static recoil pressure. However, it is found that contraction of smooth muscle in these airways can increase recoil pressure appreciably (10-20%), mainly by the deformation of the parenchyma with increases in circumferential tension in smaller airways. The results indicate that the geometric and mechanical properties of the airway tree are such that only peripheral elements of the tree can substantially affect the elastic properties of the lung. The possible contributions of vascular trees for which data on mechanical and morphometric properties are more limited are also discussed.  相似文献   

10.
Alveolar epithelial surface area-volume relationship in isolated rat lungs.   总被引:6,自引:0,他引:6  
In vitro studies of the alveolar epithelial response to deformation require knowledge of the in situ mechanical environment of these cells. Because of the presence of tissue folding and crumpling, previous measurements of the alveolar surface area available for gas exchange are not equivalent to the epithelial surface area. To identify epithelial deformations in uniformly inflated lungs representative of the in vivo condition, we studied isolated Sprague-Dawley rat lungs (n = 31) fixed by perfusion with glutaraldehyde on deflation after cycling three times at high lung volume (10-25 cmH2O). The epithelial basement membrane in 45 electron micrographs (x12,000)/rat was traced, digitally scanned, and analyzed. Epithelial basement membrane surface area (EBMSA) was computed from a morphometric relationship. EBMSA was found to increase 5, 16, 12, and 40% relative to EBMSA at 24% total lung capacity at lung volumes of 42, 60, 82, and 100% total lung capacity, respectively. The increases in EBMSA suggest that epithelial cells undergo significant deformations with large inflations and that alveolar basement membrane deformation may contribute to lung recoil at high lung pressures.  相似文献   

11.
Adequate pulmonary function at birth depends upon a mature surfactant system and lungs of normal size. Surfactant is controlled primarily by hormonal factors, especially from the hypophysis, adrenal, and thyroid; but these have little influence on fetal lung growth. In contrast, current data indicate that lung growth is determined by the following physical factors that permit the lungs to express their inherent growth potential. (a) Adequate intrathoracic space: lesions that decrease intrathoracic space impede lung growth, apparently by physical compression. (b) Adequate amount of amniotic fluid: oligohydramnios retards lung growth, possibly by lung compression or by affecting fetal breathing movements or the volume of fluid within the potential airways and airspaces. (c) Fetal breathing movements of normal incidence and amplitude: fetal breathing movements stimulate lung growth, possibly by stretching the pulmonary tissue, and do not affect mean pulmonary blood flow but do induce small changes in phasic flow; these changes are probably too slight to influence lung growth. (d) Normal balance of volumes and pressures within the potential airways and airspaces: in the fetus, tracheal pressure greater than amniotic pressure greater than pleural pressure. This differential produces a distending pressure which may promote lung growth. Disturbing the normal pressure relationships alters the volume of fluid in the lungs and distorts lung growth, which is stimulated by distending the lungs and is impeded by decreasing lung fluid volume. The mechanisms by which these factors affect lung growth remain to be defined. Fetal lung growth also depends on at least a small amount of blood flow through the pulmonary arteries.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Distribution of elastin and collagen in canine lung alveolar parenchyma   总被引:1,自引:0,他引:1  
We have quantified the fibrous collagen (predominantly type I) and elastin in four locations of perceived mechanical importance: one quasi-planar feature, the alveolar septum or wall (W), and three linear features, the junction (J) of three septa, the free edges (E) of septa, and the line along which two septa join at a distinct angle or bend (B). The frequencies of these four features on light micrographs and the areas of transections through collagen and elastin seen on electron micrographs were combined to give the volumes of collagen and elastin within each feature. We find that E and B have similar compositions and contain most (4/5) of the parenchymal elastin in their relatively heavy cables. The E and B are interconnected and similar in location and composition, and they may constitute a functional entity in which elastin provides tension over a range of lung volumes, opposing septal tensions. In J and W, elastin is typically sparse and fine. Calculations, however, suggest it contributes the dominant portion of septal tension at lower lung volumes. Elastin may be essential to stabilizing septal configuration. Collagen, on the other hand, is distributed relatively evenly throughout E, B, J, and W, consistent with the role of protecting all components against rupture.  相似文献   

13.
Surfactant is present in the alveoli and conductive airways of mammalian lungs. The presence of surface active agents was, moreover, demonstrated for avian tubular lungs and for the stomach and intestine. As the surface characteristics of these organs differ from each other, their surfactants possess distinct biochemical and functional characteristics. In the stomach so-called 'gastric surfactant' forms a hydrophobic barrier to protect the mucosa against acid back-diffusion. For this purpose gastric mucosal cells secrete unsaturated phosphatidylcholines (PC), but no dipalmitoyl-PC (PC16:0/16:0). By contrast, surfactant from conductive airways, lung alveoli and tubular avian lungs contain PC16:0/16:0 as their main component in similar concentrations. Hence, there is no biochemical relation between gastric and pulmonary surfactant. Alveolar surfactant, being designed for preventing alveolar collapse under the highly dynamic conditions of an oscillating alveolus, easily reaches values of <5 mN/m upon cyclic compression. Surfactants from tubular air-exposed structures, however, like the conductive airways of mammalian lungs and the exclusively tubular avian lung, display inferior compressibility as they only reach minimal surface tension values of approximately 20 mN/m. Hence, the highly dynamic properties of alveolar surfactant do not apply for surfactants designed for air-liquid interfaces of tubular lung structures.  相似文献   

14.
Inhaled and deposited spherical particles, 1-6 micrometer in diameter and of differing surface chemistry and topography, were studied in hamster intrapulmonary conducting airways and alveoli by electron microscopy. Polystyrene and Teflon particles, as well as puffball spores, were found submersed in the aqueous lining layer and adjacent to epithelial cells. The extent of particle immersion promoted by a surfactant film was assessed in a "floating-drop-surface balance" by light microscopy. Teflon and polystyrene spheres were immersed into the subphase by 50-60% at film surface tensions of 25 and 30 mJ/m(2), respectively, and totally submersed at 15 and 25 mJ/m(2), respectively. Puffball spores were immersed by approximately 50% at 22 mJ/m(2) and totally submersed at film surface tensions of 相似文献   

15.
The pattern of light backscattered by lung tissue should depend strongly on the size of air spaces and equivalently on the internal surface area of the lung. To verify and apply this, we shone a laser beam into excised lungs through the pleural surface and measured the backscattered light surrounding the beam with a focused photodetector. The intensity, I, fell off as a function of distance, r, from the point of entry of light. The configurations of I(r) curves corresponded closely to theory over a 3-decade range of I. I(r) changed systematically with lung volume. The optical mean free path, lambda, was calculated from I(r) curves in a series of canine lobes fixed immediately after optical scanning and was compared with stereological measurement of mean linear intercept, Lm, an index of alveolar size. At high lung volumes the relation of lambda to Lm was consistent with reflection by alveolar septa. At lower lung volumes there appeared to be, additionally, a substantial refractive component. This technique is independent of current stereological methods and has the advantages of being noninvasive, continuous, and potentially applicable to dynamic events in unfixed lungs.  相似文献   

16.
We hypothesized that agents very different from surfactant may still support lung function. To test this hypothesis, we instilled FC-100, a fluorocarbon, and Tween 20, a detergent, which have higher minimum surface tensions and less hysteresis than surfactant, into 15 full-term and 14 preterm lambs. FC-100 and Tween 20 were as efficient as natural surfactant in improving gas exchange and compliance in preterm lambs with respiratory failure. Dynamic compliance correlated with the equilibrium surface tension of the alveolar wash in both full-term (P less than 0.02) and preterm (P less than 0.008) lambs. Functional residual capacity in full-term and preterm lambs was lower after treatment with the two test agents than with surfactant, findings consistent with qualitative histology. Oxygenation in full-term lambs correlated with mean lung volumes (P less than 0.003), suggesting that the hysteresis and/or low minimum surface tension of surfactant may improve mean lung volume, and hence oxygenation, by maintaining functional residual capacity. The effects of the test agents suggest that agents with biophysical properties different from surfactant may still aid lung expansion.  相似文献   

17.
Hepatocyte growth factor (HGF) is involved in development and regeneration of the lungs. Human HGF, which was expressed specifically by alveolar epithelial type II cells after gene transfer, attenuated the bleomycin-induced pulmonary fibrosis in an animal model. As there are also regions that appear morphologically unaffected in fibrosis, the effects of this gene transfer to normal lungs is of interest. In vitro studies showed that HGF inhibits the formation of the basal lamina by cultured alveolar epithelial cells. Thus we hypothesized that, in the healthy lung, cell-specific expression of HGF induces a remodeling within septal walls. Electroporation of a plasmid of human HGF gene controlled by the surfactant protein C promoter was applied for targeted gene transfer. Using design-based stereology at light and electron microscopic level, structural alterations were analyzed and compared with a control group. HGF gene transfer increased the volume of distal air spaces, as well as the surface area of the alveolar epithelium. The volume of septal walls, as well as the number of alveoli, was unchanged. Volumes per lung of collagen and elastic fibers were unaltered, but a marked reduction of the volume of residual extracellular matrix (all components other than collagen and elastic fibers) and interstitial cells was found. A correlation between the volumes of residual extracellular matrix and distal air spaces, as well as total surface area of alveolar epithelium, could be established. Cell-specific expression of HGF leads to a remodeling of the connective tissue within the septal walls in the healthy lung, which is associated with more pronounced stretching of distal air spaces at a given hydrostatic pressure during instillation fixation.  相似文献   

18.
Spatial distribution of collagen and elastin fibers in the lungs   总被引:3,自引:0,他引:3  
Surface tension forces acting on the thin-wall alveolar septa and the collagen-elastin fiber network are major factors in lung parenchymal micromechanics. Quantitative serial section analysis and morphometric evaluations of planar sections were used to determine the spatial location of collagen and elastin fibers in Sprague-Dawley rat and normal human lung samples. A large concentration of connective tissue fibers was located in the alveolar duct wall in both species. For rats, the tissue densities of collagen and elastin fibers located within 10 microns of an alveolar duct were 13 and 9%, respectively. In human lung samples, the tissue densities of collagen and elastin fibers within 20 microns of an alveolar duct were 18 and 16%, respectively. In both species, bands of elastin fibers formed a continuous ring around each alveolar mouth. In human lungs, elastin fibers were found to penetrate significantly deeper into alveolar septal walls than they did in rat lungs. The concentration of connective tissue elements in the alveolar duct walls of both species is consistent with their proposed roles as the principal load-bearing elements of the lung parenchyma.  相似文献   

19.
Extracellular nucleotides regulate mucociliary clearance in the airways and surfactant secretion in alveoli. Their release is exquisitely mechanosensitive and may be induced by stretch as well as airflow shear stress acting on lung epithelia. We hypothesized that, in addition, tension forces at the air-liquid interface (ALI) may contribute to mechanosensitive ATP release in the lungs. Local depletion of airway surface liquid, mucins, and surfactants, which normally protect epithelial surfaces, facilitate such release and trigger compensatory mucin and fluid secretion processes. In this study, human bronchial epithelial 16HBE14o(-) and alveolar A549 cells were subjected to tension forces at the ALI by passing an air bubble over the cell monolayer in a flow-through chamber, or by air exposure while tilting the cell culture dish. Such stimulation induced significant ATP release not involving cell lysis, as verified by ethidium bromide staining. Confocal fluorescence microscopy disclosed reversible cell deformation in the monolayer part in contact with the ALI. Fura 2 fluorescence imaging revealed transient intracellular Ca(2+) elevation evoked by the ALI, which did not entail nonspecific Ca(2+) influx from the extracellular space. ATP release was reduced by ~40 to ~90% from cells loaded with the Ca(2+) chelator BAPTA-AM and was completely abolished by N-ethylmalemide (1 mM). These experiments demonstrate that in close proximity to the ALI, surface tension forces are transmitted directly on cells, causing their mechanical deformation and Ca(2+)-dependent exocytotic ATP release. Such a signaling mechanism may contribute to the detection of local deficiency of airway surface liquid and surfactants on the lung surface.  相似文献   

20.
Surface tension-area relations from pulmonary surfactant were obtained with a new apparatus that contains a leak free captive bubble of controllable size. Rat pulmonary surfactant was studied at phospholipid concentrations of 50, 200 and 400 micrograms/ml. At the highest concentration, adsorption was rapid, reaching surface tensions below 30 mN/m within 1 s, while at the lowest concentration, approximately 3 min were required. Upon a first quasi static or dynamic compression, stable surface tensions below 1 mN/m could be obtained by a film area reduction of approximately 50%. After three to four cycles the surface tension-area relations became stationary, and the tension fell from 25-30 to approximately 1 mN/m for a film area reduction of less than 20%. Hysteresis became negligible, provided the films were not collapsed by further area reduction. Under these conditions, the films could be cycled for more than 20 min without any noticeable loss in surface activity. After only three to four consecutive cycles, surfactant films exhibited the low surface tensions, collapse rates and compressibilities characteristic of alveolar surfaces in situ. Remarkably, surface tension and area are interrelated in the captive bubble which may promote low and stable surface tensions. If the surface tension of the captive bubble suddenly increases ('click') because of mechanical vibration or unstable surfactant, the bubble shape changes from flat to more spherical. The associated isovolumetric decrease in surface area prevents the surface tension from rising as much as it would have in a constant-area situation. This feedback mechanism may also have a favorable effect in stabilizing alveolar surface tension at low lung volumes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号