首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wnt signaling pathways are essential for embryonic patterning, and they are disturbed in a wide spectrum of diseases, including cancer. An unresolved question is how the different Wnt pathways are supported and regulated. We previously established that the postsynaptic density 95/disc-large/zona occludens (PDZ) protein syntenin binds to syndecans, Wnt coreceptors, and known stimulators of protein kinase C (PKC)alpha and CDC42 activity. Here, we show that syntenin also interacts with the C-terminal PDZ binding motif of several Frizzled Wnt receptors, without compromising the recruitment of Dishevelled, a key downstream Wnt-signaling component. Syntenin is coexpressed with cognate Frizzled during early development in Xenopus. Overexpression and down-regulation of syntenin disrupt convergent extension movements, supporting a role for syntenin in noncanonical Wnt signaling. Syntenin stimulates c-jun phosphorylation and modulates Frizzled 7 signaling, in particular the PKCalpha/CDC42 noncanonical Wnt signaling cascade. The syntenin-Frizzled 7 binding mode indicates syntenin can accommodate Frizzled 7-syndecan complexes. We propose that syntenin is a novel component of the Wnt signal transduction cascade and that it might function as a direct intracellular link between Frizzled and syndecans.  相似文献   

2.
In slightly over a period of twenty years, our comprehension of the cellular and molecular mechanisms that govern the Wnt signaling pathway continue to unfold. The Wnt proteins were initially implicated in viral carcinogenesis experiments associated with mammary tumors, but since this period investigations focusing on the Wnt pathways and their transmembrane receptors termed Frizzled have been advanced to demonstrate the critical nature of Wnt for the development of a variety of cell populations as well as the potential of the Wnt pathway to avert apoptotic injury. In particular, Wnt signaling plays a significant role in both the cardiovascular and nervous systems during embryonic cell patterning, proliferation, differentiation, and orientation. Furthermore, modulation of Wnt signaling under specific cellular influences can either promote or prevent the early and late stages of apoptotic cellular injury in neurons, endothelial cells, vascular smooth muscle cells, and cardiomyocytes. A number of downstream signal transduction pathways can mediate the biological response of the Wnt proteins that include Dishevelled, beta-catenin, intracellular calcium, protein kinase C, Akt, and glycogen synthase kinase-3beta. Interestingly, these cellular cascades of the Wnt-Frizzled pathways can participate in several neurodegenerative, vascular, and cardiac disorders and may be closely integrated with the function of trophic factors. Identification of the critical elements that modulate the Wnt-Frizzled signaling pathway should continue to unlock the potential of Wnt pathway for the development of new therapeutic options against neurodegenerative and vascular diseases.  相似文献   

3.
Wnt glycoproteins are developmentally essential signaling molecules, and lesions afflicting Wnt pathways play important roles in human diseases. Some Wnts signal to the canonical pathway by stabilizing beta-catenin, while others lack this activity. Frizzled serpentine receptors mediate distinct signaling pathways by both classes of Wnts. Here, we tandemly linked noncanonical Wnt5a with the C-terminal half of Dickkopf-2 (Dkk2C), a distinct ligand of the Wnt coreceptor LRP5/6. Whereas Wnt5a, Dkk2C, or both together were incapable of stimulating endogenous canonical signaling, the Wnt5a/Dkk2C chimera efficiently activated this pathway in a manner inhibitable by specific antagonists of either frizzled or LRP receptors. Thus, activation of the canonical pathway requires ligand coupling of an endogenous frizzled/LRP coreceptor complex, rather than Wnt triggering each receptor independently. Moreover, fusion of Wnt5a with Dkk2C unmasked its ability to signal to Dishevelled through multiple frizzleds, indicating that the lack of functional interaction with LRP distinguishes noncanonical Wnt5a from canonical Wnts in mammalian cells. These findings provide a novel mechanism by which the same receptor can be switched between distinct signaling pathways depending on the differential recruitment of a coreceptor by members of the same ligand family.  相似文献   

4.
Dishevelled activates Ca2+ flux,PKC, and CamKII in vertebrate embryos   总被引:1,自引:0,他引:1  
Wnt ligands and Frizzled (Fz) receptors have been shown to activate multiple intracellular signaling pathways. Activation of the Wnt-beta-catenin pathway has been described in greatest detail, but it has been reported that Wnts and Fzs also activate vertebrate planar cell polarity (PCP) and Wnt-Ca2+ pathways. Although the intracellular protein Dishevelled (Dsh) plays a dual role in both the Wnt-beta-catenin and the PCP pathways, its potential involvement in the Wnt-Ca2+ pathway has not been investigated. Here we show that a Dsh deletion construct, XDshDeltaDIX, which is sufficient for activation of the PCP pathway, is also sufficient for activation of three effectors of the Wnt-Ca2+ pathway: Ca2+ flux, PKC, and calcium/calmodulin-dependent protein kinase II (CamKII). Furthermore, we find that interfering with endogenous Dsh function reduces the activation of PKC by Xfz7 and interferes with normal heart development. These data suggest that the Wnt-Ca2+ pathway utilizes Dsh, thereby implicating Dsh as a component of all reported Fz signaling pathways.  相似文献   

5.
6.
Wnt signaling controls a variety of developmental and homeostatic events. As a key component of Wnt signaling, Dishevelled (Dvl/Dsh) protein relays Wnt signals from receptors to downstream effectors. In the canonical Wnt pathway that depends on the nuclear translocation of β-catenin, Dvl is recruited by the receptor Frizzled and prevents the constitutive destruction of cytosolic β-catenin. In the non-canonical Wnt pathways such as Wnt-Frizzled/PCP (planar cell polarity) signaling, Dvl signals via the Daam1-RhoA axis and the Rac1 axis. In addition, Dvl plays important roles in Wnt-GSK3β-microtubule signaling, Wnt-calcium signaling, Wnt-RYK signaling, Wnt-atypical PKC signaling, etc. Dvl also functions to mediate receptor endocytosis. To fulfill its multifaceted functions, it is not surprising that Dvl associates with various kinds of proteins. Its activity is also modulated dynamically by phosphorylation, ubiquitination and degradation. In this review, we summarize the current understanding of Dvl functions in Wnt signal transduction and its biological functions in mouse development, and also discuss the molecular mechanisms of its actions.  相似文献   

7.
The kinase PAR-1 plays conserved roles in cell polarity. PAR-1 has also been implicated in axis establishment in C. elegans and Drosophila and in Wnt signaling, but its role in vertebrate development is unclear. Here we report that PAR-1 has two distinct and essential roles in axial development in Xenopus mediated by different PAR-1 isoforms. Depletion of PAR-1A or PAR-1BX causes dorsoanterior deficits, reduced Spemann organizer gene expression, and inhibition of canonical Wnt-beta-catenin signaling. By contrast, PAR-1BY depletion inhibits cell movements and localization of Dishevelled protein to the cell cortex, processes associated with noncanonical Wnt signaling. PAR-1 phosphorylation sites in Dishevelled are required for this translocation, but not for canonical Wnt signaling. We conclude that PAR-1BY is required in the PCP branch and mediates Dsh membrane localization while PAR-1A and PAR-1BX are essential for canonical signaling to beta-catenin, possibly via targets other than Dishevelled.  相似文献   

8.
β-Catenin independent, non-canonical Wnt signaling pathways play a major role in the regulation of morphogenetic movements in vertebrates. The term non-canonical Wnt signaling comprises multiple, intracellularly divergent, Wnt-activated and β-Catenin independent signaling cascades including the Wnt/Planar Cell Polarity and the Wnt/Ca2+ cascades. Wnt/Planar Cell Polarity and Wnt/Ca2+ pathways share common effector proteins, including the Wnt ligand, Frizzled receptors and Dishevelled, with each other and with additional branches of Wnt signaling. Along with the aforementioned proteins, β-Arrestin has been identified as an essential effector protein in the Wnt/β-Catenin and the Wnt/Planar Cell Polarity pathway. Our results demonstrate that β-Arrestin is required in the Wnt/Ca2+ signaling cascade upstream of Protein Kinase C (PKC) and Ca2+/Calmodulin-dependent Protein Kinase II (CamKII). We have further characterized the role of β-Arrestin in this branch of non-canonical Wnt signaling by knock-down and rescue experiments in Xenopus embryo explants and analyzed protein-protein interactions in 293T cells. Functional interaction of β-Arrestin, the β subunit of trimeric G-proteins and Dishevelled is required to induce PKC activation and membrane translocation. In Xenopus gastrulation, β-Arrestin function in Wnt/Ca2+ signaling is essential for convergent extension movements. We further show that β-Arrestin physically interacts with the β subunit of trimeric G-proteins and Dishevelled, and that the interaction between β-Arrestin and Dishevelled is promoted by the beta/gamma subunits of trimeric G-proteins, indicating the formation of a multiprotein signaling complex.  相似文献   

9.
Multiplicity of the interactions of Wnt proteins and their receptors   总被引:11,自引:0,他引:11  
Wnts are secreted proteins that are essential for a wide array of developmental and physiological processes. They signal across the plasma membranes by interacting with serpentine receptors of the Frizzled (Fz) family and members of the low-density-lipoprotein receptor-related protein (LRP) family. Recent advances in the Wnt signaling field have revealed that Wnt-unrelated proteins activate or suppress Wnt signaling by binding to Fzs or LRP5/6 and that atypical receptor tyrosine kinases mediate Wnt signaling independently of Fz and/or function as a Fz co-receptor. This review highlights recent progress in our understanding of the multiplicity of Wnts and their receptors. We discuss how the interaction between the ligands and receptors activate distinct intracellular signaling pathways. We also discuss how intracellular trafficking of Wnt signaling components can regulate the sensitivity of cells to Wnts.  相似文献   

10.
Wnt association with its receptor, Frizzled (Fz), and recruitment by the latter of an adaptor, Dishevelled (Dvl), initiates signaling through at least two distinct pathways ("canonical" and "noncanonical"). Endocytosis and compartmentalization help determine the signaling outcome. Our previous work has shown that Dvl2 links at least one Frizzled family member (Fz4) to clathrin-mediated endocytosis by interacting with the μ2 subunit of the AP-2 clathrin adaptor, through both a classical endocytic tyrosine motif and a so-called "DEP domain." We report here the crystal structure of a chimeric protein that mimics the Dvl2-μ2 complex. The DEP domain binds at one end of the elongated, C-terminal domain of μ2. This domain:domain interface shows that parts of the μ2 surface distinct from the tyrosine-motif site can help recruit specific receptors or adaptors into a clathrin coated pit. Mutation of residues at the DEP-μ2 contact or in the tyrosine motif reduce affinity of Dvl2 for μ2 and block efficient internalization of Fz4 in response to ligation by Wnt5a. The crystal structure has thus allowed us to identify the specific interaction that leads to Frizzled uptake and to downstream, noncanonical signaling events.  相似文献   

11.
12.
Intracellular signaling cascades induced by Wnt proteins play a key role in developmental processes and are implicated in cancerogenesis. It is still unclear how the cell determines which of the three possible Wnt response mechanisms should be activated, but the decision process is most likely dependent on Dishevelled proteins. Dishevelled family members interact with many diverse targets, however, molecular mechanisms underlying these binding events have not been comprehensively described so far. Here, we investigated the specificity of the PDZ domain from human Dishevelled-2 using C-terminal phage display, which led us to identification of a leucine-rich binding motif strongly resembling the consensus sequence of a nuclear export signal. PDZ interactions with several peptide and protein motifs (including the nuclear export signal sequence from Dishevelled-2 protein) were investigated in detail using fluorescence spectroscopy, mutational analysis and immunoenzymatic assays. The experiments showed that the PDZ domain can bind the nuclear export signal sequence of the Dishevelled-2 protein. Since the intracellular localization of Dishevelled is governed by nuclear localization and nuclear export signal sequences, it is possible that the intramolecular interaction between PDZ domain and the export signal could modulate the balance between nuclear and cytoplasmic pool of the Dishevelled protein. Such a regulatory mechanism would be of utmost importance for the differential activation of Wnt signaling cascades, leading to selective promotion of the nucleus-dependent Wnt β-catenin pathway at the expense of non-canonical Wnt signaling.  相似文献   

13.
Structure-function analysis of Frizzleds   总被引:1,自引:0,他引:1  
Frizzleds, cell surface receptors that mediate the actions of Wnt ligands on early development, are heptahelical (based upon hydropathy analysis) and couple to heterotrimeric G proteins. The primary structure of all ten mammalian Frizzleds display many landmarks observed in virtually all G protein-coupled receptors, including an exofacial N-terminus that is N-glycosylated, the presence of seven hydrophobic transmembrane segments predicted to form alpha-helixes, and three intracellular loops as well as a cytoplasmic, C-terminal tail that harbor suspected sites for protein phosphorylation. Prediction of the G proteins to which Frizzleds mediate signaling based upon a bioinformatic analysis of the primary sequence of the intracellular domains are in good agreement with functional screens in Drosophila, zebrafish, and mouse models of development, e.g., predicting Frizzled-1 to interact with members of the Gi/Go protein family. Likewise various Wnt signaling pathways are sensitive to treatment with pertussis toxin and knock-down of specific G protein alpha-subunits. Homology among the sequences encoding the cytoplasmic domains of human Frizzleds is high and the various Frizzleds can be segregated into subsets predicted to share some common downstream signaling elements. Among different species, homologies can reveal conservation of signaling to cognate G protein partners. Additionally, cytoplasmic domains of the prototypic beta2-adrenergic receptor can be substituted with those from either Frizzled-1 or Frizzled-2 to create chimeric receptors that are activated by beta-adrenergic agonists, yet signal with high fidelity to the Wnt/beta-catenin and Wnt/Ca2+, cyclic GMP pathways, respectively, regulating key aspects of early development. The nature of Frizzled-based signaling complexes, their temporal assembly, and spatial distribution via scaffold protein remains to be elucidated, as does whether or not these Wnt receptors display agonist-induced desensitization, internalization, and re-cycling to the cell membrane.  相似文献   

14.
Shan J  Shi DL  Wang J  Zheng J 《Biochemistry》2005,44(47):15495-15503
The Wnt signaling pathways are involved in embryo development as well as in tumorigenesis. Dishevelled (Dvl) transduces Wnt signals from the receptor Frizzled (Fz) to downstream components in canonical and noncanonical Wnt signaling pathways. The Dvl PDZ domain is thought to play an essential role in both pathways, and we recently demonstrated that the Dvl PDZ domain binds directly to Fz receptors. In this study, using structure-based virtual ligand screening, we identified an organic molecule (NSC668036) from the National Cancer Institute small-molecule library that can bind to the Dvl PDZ domain. We then used molecular dynamics simulation to analyze the binding between the PDZ domain and NSC668036 in detail. In addition, we showed that, in Xenopus, as expected, NSC668036 inhibited the signaling induced by Wnt3A. This compound provides a basis for rational design of high-affinity inhibitors of the PDZ domain, which can block Wnt signaling by interrupting the Fz-Dvl interaction.  相似文献   

15.
The Dishevelled protein mediates several diverse biological processes. Intriguingly, within the same tissues where Xenopus Dishevelled (Xdsh) controls cell fate via canonical Wnt signaling, it also controls cell polarity via the vertebrate planar cell polarity (PCP) cascade [1, 2, 3, 4, 5, 6, 7, 8 and 9]. The relationship between subcellular localization of Dishevelled and its signaling activities remains unclear; conflicting results have been reported depending upon the organism and cell types examined [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 and 20]. We have approached this issue by developing new reagents to sequester wild-type Dishevelled protein either at the cell membrane or away from the cell membrane. Removal of Dishevelled from the cell membrane disrupts convergent extension by preventing Rho/Rac activation and mediolateral cell polarization. By manipulating the subcellular localization of K-->M (dsh1), we show that this mutation inhibits Dishevelled activation of Rac, regardless of its subcellular localization. These data demonstrate that membrane localization of Dishevelled is a prerequisite for vertebrate PCP signaling. However, both membrane-targeted and cytoplasm-targeted Dishevelled can potently activate canonical Wnt signaling, suggesting that local concentration of Dishevelled protein, but not its spatial localization, is central to canonical Wnt signaling. These results suggest that in vertebrate embryos, subcellular localization is insufficient to account for the pathway specificity of Dishevelled in the canonical Wnt versus PCP signaling cascades.  相似文献   

16.
17.
Wnt glycoproteins play essential roles in the development of metazoan organisms. Many Wnt proteins, such as Wnt1, activate the well-conserved canonical Wnt signaling pathway, which results in accumulation of beta-catenin in the cytosol and nucleus. Other Wnts, such as Wnt5a, activate signaling mechanisms which do not involve beta-catenin and are less well characterized. Dishevelled (Dvl) is a key component of Wnt/beta-catenin signaling and becomes phosphorylated upon activation of this pathway. In addition to Wnt1, we show that several Wnt proteins, including Wnt5a, trigger phosphorylation of mammalian Dvl proteins and that this occurs within 20 to 30 min. Unlike the effects of Wnt1, phosphorylation of Dvl in response to Wnt5a is not concomitant with beta-catenin stabilization, indicating that Dvl phosphorylation is not sufficient to activate canonical Wnt/beta-catenin signaling. Moreover, neither Dickkopf1, which inhibits Wnt/beta-catenin signaling by binding the Wnt coreceptors LRP5 and -6, nor dominant-negative LRP5/6 constructs could block Wnt-mediated Dvl phosphorylation. We conclude that Wnt-induced phosphorylation of Dvl is independent of LRP5/6 receptors and that canonical Wnts can elicit both LRP-dependent (to beta-catenin) and LRP-independent (to Dvl) signals. Our data also present Dvl phosphorylation as a general biochemical assay for Wnt protein function, including those Wnts that do not activate the Wnt/beta-catenin pathway.  相似文献   

18.
Gradients of Wnt/beta-catenin signaling coordinate development and physiological homeostasis in metazoan animals. Proper embryonic development of the fruit fly Drosophila melanogaster requires the Naked cuticle (Nkd) protein to attenuate a gradient of Wnt/beta-catenin signaling across each segmental anlage. Nkd inhibits Wnt signaling by binding the intracellular protein Dishevelled (Dsh). Mice and humans have two nkd homologs, nkd1 and nkd2, whose encoded proteins can bind Dsh homologs (the Dvl proteins) and inhibit Wnt signaling. To determine whether nkd genes are necessary for murine development, we replaced nkd exons that encode Dvl-binding sequences with IRES-lacZ/neomycin cassettes. Mutants homozygous for each nkd(lacZ) allele are viable with slightly reduced mean litter sizes. Surprisingly, double-knockout mice are viable, with subtle alterations in cranial bone morphology that are reminiscent of mutation in another Wnt/beta-catenin antagonist, axin2. Our data show that nkd function in the mouse is dispensable for embryonic development.  相似文献   

19.
20.
Wnt proteins transmit myriad intercellular signals crucial for the development and homeostasis of metazoan animals from Hydra to human. Abnormal Wnt signaling causes a growing number of diseases, including cancer and osteoporosis. Depending on the context, a given Wnt signal may denote: cell proliferation or apoptosis; cell fate determination, differentiation, or stem cell maintenance; a variety of changes in cell behavior; and/or coordinated interactions with its neighbors. Which event(s) occur in Wnt-responsive cells depends critically on the ability of Dishevelled (Dsh)/Dvl proteins to interpret distinct types of intracellular, receptor-generated stimuli and transmit them to at least two distinct sets of effector molecules, all while apparently ignoring a third type of Wnt-generated Ca(2+) signal. The three conserved domains present in Dsh/Dvl proteins uniquely function in each Wnt pathway, in part by association with 18 (and counting) Dsh/Dvl-associated proteins. The latest data suggest that Dsh/Dvl proteins organize dynamic, pathway-specific subcellular signaling complexes that ensure correct information routing, signal amplification, and dynamic control through feedback regulation. The biochemical and cell biological mechanisms by which Dsh/Dvl proteins accomplish these remarkable tasks remain obscure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号